\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 167, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/167\hfil Existence of solutions] {Existence of solutions for non-uniformly nonlinear elliptic systems} \author[G. A. Afrouzi, S. Mahdavi, N. B. Zographopoulos \hfil EJDE-2011/167\hfilneg] {Ghasem Alizadeh Afrouzi, Somayeh Mahdavi, \\ Nikolaos B. Zographopoulos} % in alphabetical order \address{Ghasem Alizadeh Afrouzi \newline Department of Mathematics, Faculty of Mathematical Sciences \\ University of Mazandaran, Babolsar, Iran} \email{afrouzi@umz.ac.ir} \address{Somayeh Mahdavi \newline Department of Mathematics, Faculty of Mathematical Sciences \\ University of Mazandaran, Babolsar, Iran} \email{smahdavi@umz.ac.ir} \address{Nikolaos B. Zographopoulos \newline University of Military Education, Hellenic Army Academy \\ Department of Mathematics \& Engineering Sciences, Vari - 16673, Athens, Greece} \email{nzograp@gmail.com, zographopoulosn@sse.gr} \thanks{Submitted November 12, 2011. Published December 14, 2011.} \subjclass[2000]{34B18, 35B40, 35J65} \keywords{Non-uniformly elliptic system; mountain pass theorem; \hfill\break\indent minimum principle} \begin{abstract} Using a variational approach, we prove the existence of solutions for the degenerate quasilinear elliptic system \begin{gather*} -\operatorname{div}(\nu_1 (x)|\nabla u|^{p-2} \nabla u) =\lambda F_u(x,u,v)+\mu G_u(x,u,v),\\ -\operatorname{div}(\nu_2 (x)|\nabla v|^{q-2} \nabla v) =\lambda F_v(x,u,v)+\mu G_v(x,u,v), \end{gather*} with Dirichlet boundary conditions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In this article, we study the degenerate quasilinear elliptic system \begin{equation} \label{1} \begin{gathered} -\operatorname{div}(\nu_1 (x)|\nabla u|^{p-2} \nabla u ) =\lambda F_u(x,u,v)+\mu G_u(x,u,v), \quad \text{in }\Omega,\\ -\operatorname{div}(\nu_2 (x)|\nabla v|^{q-2} \nabla v) =\lambda F_v(x,u,v)+\mu G_v(x,u,v), \quad\text{in }\Omega,\\ u=v=0, \quad\text{on } \partial\Omega. \end{gathered} \end{equation} where $\Omega$ is a bounded smooth domain in $\mathbb{R}^N$, $N \geq 2$ and $1 < p,q < N$. The parameters $\lambda$ and $\mu$ are nonnegative real numbers. Throughout this work we assume that \begin{equation} \label{eP} (F_u,F_v)=\nabla F\quad\text{and}\quad (G_u,G_v)=\nabla G \end{equation} which stand for gradient of $F$ and $G$, respectively, in the variables $w=(u,v) \in \mathbb{R}^2$. Systems of form \eqref{1}, where hypothesis \eqref{eP} is satisfied, are called potential systems. In recent years, more and more attention have been paid to the existence and multiplicity of positive solutions for potential systems. For more details about this kind of systems see \cite{ar73,bf02,ch96, ct09,dt03,dt07,sx08,sz99,st01,zt10,wz10} and references therein. The degeneracy of this system is considered in the sense that the measurable, non-negative diffusion coefficients $\nu_1$, $\nu_2$ are allowed to vanish in $\Omega$, (as well as at the boundary $\partial \Omega$) and/or to blow up in $\bar{\Omega}$. The point of departure for the consideration of suitable assumptions on the diffusion coefficients is the work \cite{dkn97}, where the degenerate scalar equation was studied. We introduce the space $(\mathcal{H})_p$ consisting of functions $\nu: \Omega \subset \mathbb{R}^N \to \mathbb{R}$, such that $\nu \in L^{1} (\Omega)$, $\nu^{-1/(p-1)} \in L^{1} (\Omega)$ and $\nu^{-s} \in L^{1} (\Omega)$, for some $p>1$, $s >\max\{\frac{N}{p}, \frac{1}{p-1}\}$ satisfying $ps \leq N(s+1)$. Then for the weight functions $\nu_1$, $\nu_2$ we assume the hypothesis: \begin{itemize} \item[(H1)] There exist $\mu_1$ in the space $(\mathcal{H})_p$ for some $s_p$, and there exists $\mu_2$ in the spaces $(\mathcal{H})_{q}$ for some $s_p$, such that \begin{equation} \label{e2.2} \frac{\mu_1(x)}{c_1} \leq \nu_1(x) \leq c_1 \mu_1(x),\quad \frac{\mu_2(x)}{c_2} \leq \nu_2(x) \leq c_2 \mu_2(x), \end{equation} a.e. in $\Omega$, for some constants $c_1 >1$ and $c_2>1$. \end{itemize} There exists a vast literature on non-uniformly nonlinear elliptic problems in bounded or unbounded domains. Many authors studied the existence of solutions for such problems (equations or systems); see for example \cite{ch08, cht09, mr09, tc09, zz09, z04,z08}. Recently in \cite{cht09}, the authors considered the system \begin{gather*} -\operatorname{div}(h_1 (x) \nabla u) =\lambda F_u(x,u,v), \quad\text{in }\Omega,\\ -\operatorname{div}(h_2 (x) \nabla v) =\lambda F_v(x,u,v), \quad \text{in }\Omega,\\ u=v=0, \quad\text{on } \partial\Omega. \end{gather*} They are concerned with the nonexistence and multiplicity of nonnegative, nontrivial solutions. In \cite{z08}, the author studied the principal eigenvalue of the system \begin{gather*} %1.3 -\nabla (\nu_1(x)|\nabla u|^{p-2} \nabla u) =\lambda a(x)|u|^{p-2}u+\lambda b(x) |u|^{\alpha}|v|^{\beta}v, \quad \text{in }\Omega,\\ -\nabla (\nu_2(x)|\nabla v|^{q-2} \nabla v) =\lambda d(x)|v|^{q-2}v+\lambda b(x) |u|^{\alpha}|v|^{\beta}u, \quad\text{in }\Omega,\\ u=v=0, \quad\text{on } \partial\Omega. \end{gather*} While in \cite{mr09} the following system was considered \begin{gather*} -\operatorname{div}(|x|^{-ap}|\nabla u|^{p-2} \nabla u ) =\lambda g_1(x,u,v), \quad \text{in }\Omega,\\ -\operatorname{div}(|x|^{-bq}|\nabla v|^{q-2} \nabla v) =\lambda g_2(x,u,v), \quad\text{in }\Omega,\\ u=v=0, \quad\text{on } \partial\Omega, \end{gather*} where $g_1, g_2:\Omega\times \mathbb{R}times\mathbb{R}$ are continuous and monotone functions. The aim of this work is to extend or complete some of the above results for system \eqref{1}. Our assumptions are as follows: $F(x,t,s)$ and $G(x,t,s)$ are $C^1$-functions satisfying the hypotheses below: \begin{itemize} \item[(F1)] There exist positive constants $c_1, c_2>0$ such that $$ |F_u(x,t,s)| \leq c_1|t|^{\theta}|s|^{\delta+1},\quad |F_v(x,t,s)| \leq c_2|t|^{\theta+1}|s|^{\delta} $$ for all $(t,s) \in \mathbb{R}^2$, a.e. $x \in \Omega$ and some $\theta, \delta >0$ with \begin{equation} \label{1.4} \frac{\theta+1}{p}+\frac{\delta+1}{q}=1. \end{equation} \item[(F2)] \[ \lim_{|(s,t)| \to \infty} \frac{1}{p}F_u(x,s,t) +\frac{1}{q}F_v(x,s,t)-F(x,s,t)=\infty \] \item[(G1)] There exist positive constants $c'_1, c'_2$ $$ G_u(x,t,s) \leq c'_1 |t|^\alpha|s|^{\gamma+1},\quad G_v(x,t,s) \leq c'_2|t|^{\alpha+1}|s|^{\gamma}; $$ for all $(t,s) \in \mathbb{R}^2$, a.e. $x \in \Omega$ and for some $\alpha, \gamma>0$. We will distinguish the following cases: \begin{gather} \label{1.2} \frac{\alpha+1}{p}+\frac{\gamma+1}{q}<1;\\ \label{1.3} \frac{\alpha+1}{p}+\frac{\gamma+1}{q}>1\quad \textrm{and }\frac{\alpha+1}{p^*}+\frac{\gamma+1}{q^*}<1; \end{gather} \item[(G2)] \[ \lim_{|(s,t)| \to \infty} \frac{1}{p}G_u(x,s,t) +\frac{1}{q}G_v(x,s,t)-G(x,s,t)=\infty \] \end{itemize} The main results of this paper are the following two theorems. \begin{theorem} \label{thm1} In addition to {\rm (F1), (G1)} and \eqref{1.2}, assume that there exist $p_1 \in (1,p)$ and $q_1 \in (1,q)$, such that $\frac{\alpha+1}{p_1}+\frac{\gamma+1}{q_1}=1$. Then there exists $\lambda_0>0$, such that \eqref{1} possesses a weak solution for all $\mu>0$ and $0\leq \lambda<\lambda_0$. \end{theorem} \begin{theorem} \label{thm2} In addition to {\rm (F1), (G1), (F2)} or {\rm (G2)} and \eqref{1.3}, assume that there exist $p_2 \in (p, p^*)$ and $ q_2 \in (q, q^*)$, such that $\frac{\alpha+1}{p_2}+\frac{\gamma+1}{q_2}=1$. Then there exists $\lambda_0>0$ such that system \eqref{1} possesses a weak solution for all $\mu>0$ and $0\leq \lambda <\lambda_0$. \end{theorem} The quantities $p^*$ and $q^*$ are defined in the next section. \section {Preliminaries} Let $\nu(x)$ be a nonnegative weight function in $\Omega$ which satisfies condition $\mathcal{H}_p$. We consider the weighted Sobolev space $\mathcal{D}^{1,p}_0 (\Omega, \nu)$ defined as the closure of $C_0^{\infty}(\Omega)$ with respect to the norm \[ \|u\|_{\mathcal{D}_0^{1,p}(\Omega,\nu)} := \Big( \int_{\Omega} \nu(x) |\nabla u|^p \Big)^{1/p}. \] The space $\mathcal{D}_0^{1,p}(\Omega,\nu)$ is a reflexive Banach space. For a discussion about the space setting we refer the reader to \cite{dkn97} and the references therein. Let \begin{equation} \label{e2.1} p^{*}_{s} := \frac{Nps}{N(s+1)-ps}. \end{equation} \begin{lemma} \label{lemma2.1} Assume that $\Omega$ is a bounded domain in $\mathbb{R}^N$ and the weight $\nu$ satisfies $(\mathcal{N})_p$. Then the following embeddings hold: \begin{itemize} \item[(i)] $\mathcal{D}_0^{1,p}(\Omega,\nu) \hookrightarrow L^{p^{*}_{s}}(\Omega)$ continuously for $10$ such that $\min \{1-\lambda(\theta+1) c,1-\lambda(\delta+1) c\}>0$ for all $0 \leq \lambda <\lambda_0$, it follows that for $\mu >0$ and $0 \leq \lambda <\lambda_0$, $\phi$ is coercive, indeed $\phi(u,v) \to \infty$ as $\|(u,v)\|_H \to \infty$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1}] The coerciveness of $\Phi$ and the weak sequential lower semicontinuity are enough in order to prove that $\Phi$ attains its infimum, so the system \eqref{1} has at least one weak solution. \end{proof} \begin{proof}[Proof of theorem \ref{thm2}] To prove the existence of a weak solution we apply a version of the Mountain Pass Theorem due to Ambrosetti and Rabinowitz [1]. For this purpose we verify that $\Phi$ satisfies: \begin{itemize} \item[(i)] the mountain pass type geometry, \item[(ii)] the $(PS)_c$ condition. \end{itemize} (i) By choosing $p_2 \in (p,p^*)$ and $ q_2 \in (q,q^*)$ such that $\frac{\alpha+1}{p_2}+\frac{\gamma+1}{q_2}=1$ and applying the Young's inequality, we obtain \begin{align*} \int G(x,u,v) dx &\leq c_3'\int|u|^{\alpha+1}|v|^{\gamma+1}dx\\ &\leq c_3'(\frac{\alpha+1}{p_2}\int|u|^{p_2}dx +\frac{\gamma+1}{q_2}\int|v|^{q_1} dx) \\ &\leq c(\frac{\alpha+1}{p_2}\|u\|_{\mathcal{D}_0^{1,p}(\Omega, \nu_1)}^{p_2} +\frac{\gamma+1}{q_2}\|v\|_{\mathcal{D}_0^{1,q}(\Omega,\nu_2)}^{q_2}), \end{align*} which implies \begin{align*} \Phi(u,v) &\geq (\frac{1}{p}-\lambda c\frac{\theta+1}{p}) \|u\|_{\mathcal{D}_0^{1,p}(\Omega, \nu_1)}^p +(\frac{1}{q}-\lambda c\frac{\delta+1}{q}) \|v\|_{\mathcal{D}_0^{1,q}(\Omega, \nu_2)}^q \\ &\quad -\mu c'\frac{\alpha+1}{p_2}\|u\|_{\mathcal{D}_0^{1,p} (\Omega,\nu_1)}^{p_2}-\mu c'\frac{\gamma+1}{q_2} \|v\|_{\mathcal{D}_0^{1,q}(\Omega, \nu_2)}^{q_2}. \end{align*} Hence, there exists $r>0$, small enough, such that $$ \inf_{\|(u,v)\|=r}\Phi(u,v)>0=\Phi(0,0). $$ On the other hand by using \eqref{2.5} we have \begin{align*} &\Phi(t^{1/p}\varphi_1, t^{1/q}\varphi_2)\\ &\leq \frac{t}{p}\int \nu_1|\nabla \varphi_1|^p dx + \frac{t}{q}\int \nu_2|\nabla \varphi_2|^q dx -(\lambda_1+\varepsilon) \int (|t^{1/p}\varphi_1|^{\theta+1} |t^\frac{1}{q}\varphi_2|^{\delta+1})dx \\ &=-t\varepsilon \int (|\varphi_1|^{\theta+1}|\varphi_2|^{\delta+1}) dx. \end{align*} Thus, we conclude that there exists $t>0$, large enough, such that for $e=(t^{1/p}\varphi_1, t^{1/q}\varphi_2)$, we have $\|e\|>r$ and $\Phi(e)<0$. (ii) Let $\{w_n\}_{n=1}^{\infty} \in H$ be such that there exists $c>0$, with \begin{equation}\label{1.7} |\Phi(w_n)| \leq c, \quad \forall n \in \mathbb{N}, \end{equation} and there exists a strictly decreasing sequence $\{\varepsilon_n\}_{n=1}^{\infty}, \lim_{n \to \infty} \varepsilon_n=0$, such that \begin{equation}\label{1.8} |\langle\Phi'(w_n),z\rangle| \leq \varepsilon_n\|z\|_H, \quad \forall n \in N , z \in H. \end{equation} We will prove that $\{w_n\}$ contains a subsequence which converges strongly in $H$. Let us begin by proving that $\{w_n\}$ is bounded in $H$. Suppose, by contradiction, that $\|w_n\|_H \to \infty$. We have \begin{align*} &|\langle\Phi'(u_n,v_n),(u_n,v_n)\rangle| \\ &= | \int \nu_1(x)|\nabla u_n|^p dx +\int \nu_2(x)|\nabla v_n|^q dx -\lambda\int F_u(x,u_n,v_n)u_n dx\\ &\quad -\lambda \int F_v(x,u_n,v_n)v_n dx -\mu\int G_u(x,u_n,v_n)u_n dx -\mu \int G_v(x,u_n,v_n)v_n dx | \\ &\leq \varepsilon_n\|(u_n,v_n)\|_{H}. \end{align*} On the other hand \begin{align*} |\Phi(u_n,v_n)| &= |\frac{1}{p}\int \nu_1(x)|\nabla u_n|^p dx +\frac{1}{q}\int \nu_2(x)|\nabla v_n|^q dx \\ &\quad -\lambda \int F(x,u_n,v_n) dx-\mu\int G(x,u_n,v_n) dx| \leq c. \end{align*} Thus one has \begin{align*} &c+\varepsilon_n\|(u_n,v_n)\|_H \\ &\geq \Phi(u_n,v_n)-\langle \Phi'(u_n,v_n) ,(\frac{u_n}{p},\frac{v_n}{q})\rangle \\ &= \lambda \int\Big(\frac{1}{p}F_u(x,u_n,v_n)u_n +\frac{1}{q}F_v(x,u_n,v_n)v_n-F(x,u_n,v_n)\Big) dx \\ &\quad \mu \int\Big(\frac{1}{p}G_u(x,u_n,v_n)u_n +\frac{1}{q}G_v(x,u_n,v_n)v_n-G(x,u_n,v_n)\Big)dx , \end{align*} which contradicts both (F2) and (G2). So $\{w_n\}$ is bounded. This imply that there exists $(u,v) \in H$ such that at least its subsequence, $w_n$ converges and strongly in $L^p(\Omega)\times L^q(\Omega)$. Choosing $z=(u_n-u,0)$ in \eqref{1.8}, we obtain \begin{align*} &\Big|\int \nu_1(x)|\nabla u_n|^{p-2}\nabla u_n\nabla (u_n-u) dx -\lambda\int F_u(x,u_n,v_n)(u_n-u) dx \\ & -\mu\int G_u(x,u_n,v_n)(u_n-u) dx\Big|\\ & \leq \varepsilon_n\|u_n-u\|_{\mathcal{D}_0^{1,p}(\Omega, \nu_1)}, \end{align*} \begin{align*} \Big|\int F_u(x,u_n,v_n)(u_n-u) dx\Big| &\leq \int |F_u(x,u_n,v_n)\|(u_n-u)| dx\\ &\leq \int |u_n|^{\theta}|v_n|^{\gamma+1}|u_n-u| dx \\ &\leq \|u_n\|_{L^p}^{\theta}\|v_n\|_{L^q}^{\gamma+1}\|u_n-u\|_{L^p}, \end{align*} and \begin{align*} \Big|\int G_u(x,u_n,v_n)(u_n-u) dx\Big| &\leq \int |G_u(x,u_n,v_n)\|(u_n-u)| dx\\ &\leq \int |u_n|^{\alpha}|v_n|^{\delta+1}|u_n-u| dx \\ &\leq \|u_n\|_{L^p}^{\alpha}\|v_n\|_{L^q}^{\delta+1}\|u_n-u\|_{L^p}. \end{align*} Thus, we obtain $$ \int \nu_1(x)|\nabla u_n|^{p-2}\nabla u_n(\nabla u_n- \nabla u)dx \to 0, $$ as $n \to \infty$. % In the same way we obtain $$ \int \nu_1(x)|\nabla u|^{p-2}\nabla u(\nabla u_n- \nabla u) dx, $$ as $n \to \infty$. Finally, we conclude that \begin{equation} \label{1.9} \lim _{n \to \infty}\int \nu_1(x)(|\nabla u_n|^{p-2}\nabla u_n-|\nabla u|^{p-2}\nabla u) (\nabla u_n - \nabla u) dx=0. \end{equation} Observe now that for all $\xi, \eta \in \mathbb{R}^N$, there exists constant $c_3>0$, such that \begin{equation}\label{1.10} \begin{gathered} (|\xi|^{p-2}\xi-|\eta|^{p-2}\eta,\xi-\eta) \geq c(|\xi|+|\eta|)^{p-2}|\xi-\eta|^2 \quad\text{if }10$, such that \begin{align*} 0 &\leq \int |\nabla z_n-\nabla z|^p dx\\ &=\int |\nabla z_n-\nabla z|^p (|\nabla z_n|+|\nabla z|) ^{p(p-2)/2}(|\nabla z_n|+|\nabla z|)^{p(2-p)/2} dx\\ &\leq \Big(\int |\nabla z_n-\nabla z|^2 (|\nabla z_n|+|\nabla z|)^{p-2}dx \Big)^{p/2} \Big(\int(|\nabla z_n|+|\nabla z|)^pdx\Big)^{(2-p)/2} \\ &\leq \frac{1}{c^*}\Big(\int (|\nabla z_n|^{p-2}\nabla z_n-|\nabla z|^{p-2}\nabla z, (\nabla z_n - \nabla z)dx\Big)^{p/2}\\ &\quad\times \Big(\int(|\nabla z_n|+|\nabla z|)^pdx\Big)^{(2-p)/2}\\ &\leq \frac{c}{c^*}\Big(\int (|\nabla z_n|^{p-2}\nabla z_n -|\nabla z|^{p-2}\nabla z, (\nabla z_n - \nabla z)dx\Big)^{p/2}, \end{align*} which implies $\|u_n-u\|_{\mathcal{D}_0^{1,p}(\Omega, \nu_1)} \to 0$, by \eqref{1.9}, as $n \to \infty$. While, for $p\geq 2$, by \eqref{1.10}, one has $$ 0 \leq \|u_n-u\|_{\mathcal{D}_0^{1,p}(\Omega, \nu_1)}\leq \frac{1}{c^*}\Big(\int (|\nabla z_n|^{p-2}\nabla z_n-|\nabla z|^{p-2}\nabla z, (\nabla z_n - \nabla z)dx\Big), $$ so we have $\|u_n-u\|_{\mathcal{D}_0^{1,p}(\Omega, \nu_1)} \to 0$, by \eqref{1.9}, as $n \to \infty$. Therefore, $\|u_n-u\|_{\mathcal{D}_0^{1,p}(\Omega, \nu_1)} \to 0$ for $p>1$, as $n \to \infty$, that is, $u_n \to u$ in ${\mathcal{D}_0^{1,p}(\Omega, \nu_1)}$ as $n \to \infty$. Similarly , we obtain $v_n \to v$ in ${\mathcal{D}_0^{1,q}(\Omega, \nu_2)}$ as $n \to \infty$. Consequently, $\Phi$ satisfies the $(PS)_c$ condition and the proof of is completed. \end{proof} \begin{thebibliography}{99} \bibitem{ar73} A. Ambrosetti, P. H. Rabinowitz; \emph{Dual variational methods in critical point theory and applications,} J. Funct. Anal. 14 (1973), 349-381. \bibitem{bf02} L. Boccardo, D. G. De Figueiredo; \emph{Some remarks on a system of quasilinear elliptic equations,} Nonlinear Differ. Equ. Appl. 9 (2002) 309-323. \bibitem{ch96} J. Chabrowski; \emph{On multiple solutions for nonhomogeneous system of elliptic equations,} Rev. Mat. Univ. Complutense Madrid 9 (1) (1996) 207-234. \bibitem{ct09} C. M. Chu, C. L. Tang; \emph{Existence and multiplicity of positive solutions for semilinear elliptic system with Sobolev critical exponents,} Nonlinear Anal. 71 (2009) 5118-5130. \bibitem{ch08} N. T. Chung; \emph{Existence of weak solution for a nonuniformly elliptic nonlinear system in $\mathbb{R}^N$,} Electronic J. Differential Equations.Vol 2008, No. 119 (2008)1-10. \bibitem{cht09} N. T. Chung, H. Q. Toan; \emph{On a class of degenerate and singular elliptic systems in bounded domains,} J. Math. Anal. Appl. 360 (2009) 422-431. % \bibitem{dt03} A. Djellit, S. Tas; \emph{Existence of solutions for a class of elliptic systems in $\mathbb{R}^N$ involving the p-laplacian,} Electronic J. Differential Equations. No. 56 (2003) 1-8. \bibitem{dt07}A. Djellit and S. Tas; \emph{Quasilinear elliptic systems with critical Sobolev exponents in $\mathbb{R}^N$,} Nonlinear Anal. 66 (2007) 1485-1497. \bibitem{dkn97} P. Dr\'{a}bek, A. Kufner and F. Nicolosi; \emph{ Quasilinear Elliptic Equations with Degenerations and Singularities}, Walter de Gruyter \& Co., Berlin, 1997. \bibitem{dsz03} P. Dr\'{a}bek, N. M. Stavrakakis, N. B. Zographopoulos; \emph{Multiple Nonsemitrivial Solutions for Quasilinear Elliptic Systems}, Diff. Int. Equ. 16 (2003) 1519-1531. \bibitem{mr09}O. H. Miyagaki, R. S. Rodrigues; \emph{On positive solution for a class of degenerate quasilinear elliptic positone/semipositone systems,} Nonlinear Anal. 70 (2009) 99-116. \bibitem{sx08} E. A. B. Silva, M. S. Xavier; \emph{Quasilinear elliptic with coupling on nonhomogeneous critical term,} Nonlinear Anal. 69 (2008) 1164-1178. % \bibitem{sz99} N. M. Stavrakakis, N. Zographopoulos; \emph{Existence results for quasilinear elliptic systems in $\mathbb{R}^N$,} Electronic J. Differential Equations. No. 39 (1999) 1-15. \bibitem{st01}J. B. Su, C. L. Tang; \emph{Multiplicity results for semilinear elliptic equations with resonance at higher eigenvalues,} Nonlinear Anal. 44 (2001) 311-321. \bibitem{tc09}H. Q. Toan, N. T. Chung; \emph{Existence of weak solution for a class of nonuniformly nonlinear elliptic equation in unbounded domains,} Nonlinear Anal. 70 (2009) 3987-3996. \bibitem{zz09}J. Zhang, Z. Zhang; \emph{Existence results for some nonlinear elliptic systems,} Nonlinear Anal. 71 (2009) 2840-2846. \bibitem{zt10}X.-X Zhao, C. L. Tang; \emph{Resonance problems for (p,q)-laplacian systems,} Nonlinear Anal.72 (2010) 1019-1030. \bibitem{z04} N. B. Zographopoulos; \emph{On a class of degenerate potential elliptic systems,} Nonlinear Differ. Equ. Appl. 11 (2004) 191-199. \bibitem{z08} N. B. Zographopoulos; \emph{On the principal eigenvalue of degenerate quasilinear elliptic systems,} Math. Nachr. 281, No. 9 (2008) 1351-1365. \bibitem{wz10}J. Wang, J. Xu, F. Zhang; \emph{Existence of solutions for nonperiodic superquadratic Hamiltonian elliptic systems,} Nonlinear Anal. 72 (2010) 1949-1960. \end{thebibliography} \end{document}