\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 169, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/169\hfil Nonlinear delay integral inequalities] {Nonlinear delay integral inequalities for multi-variable functions} \author[H. Khellaf, M. Smakdji\hfil EJDE-2011/169\hfilneg] {Hassane Khellaf, Mohamed el hadi Smakdji} % in alphabetical order \address{Hassane Khellaf \newline Department of Mathematics, Faculty of Exact Sciences, University of Mentouri, Constantine 25000, Algeria} \email{khellafhassane@umc.edu.dz, khellaf1973@gmail.com} \address{Mohamed el hadi Smakdji \newline Department of Mathematics, Faculty of Exact Sciences, University of Mentouri, Constantine 25000, Algeria} \email{smakelhadi71@gmail.com} \thanks{Submitted August 5, 2011. Published December 18, 2011.} \subjclass[2000]{26D15, 26D20, 26D10} \keywords{Delay integral inequality; multi-variable function; \hfill\break\indent delay partial differential equation} \begin{abstract} In this article, we establish some nonlinear retarded integral inequalities in $n$ independent variables. These inequalities represent a generalization of the results obtained in \cite{aa,pec,pach1} for function of one and two variables. Our results can be used in the qualitative theory of delay partial differential equations and delay integral equations. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In the study of ordinary differential and integral equations, one often deals with certain integral inequalities. The Gronwall-Bellman inequality and its various linear and nonlinear generalizations are crucial in the discussion of the existence, uniqueness, continuation, boundedness, oscillation, stability and other qualitative properties of the solutions of differential and integral equations. The literature on such inequalities and their applications is vast; see \cite{9,10,12,13,17} and references therein. During the past few years, investigators have established some useful and interesting delay integral inequalities in order to achieve various goals; see \cite{8,11,14,15,16} and the references cited therein. Let us first list the main results of \cite{aa,pec,pach1}, for functions with two variables for $u(x,y)\in (\Delta \in \mathbb{R}_{+}^{2},\mathbb{R}_{+})$: Inequality by Ma and Pecaric \cite[Theorem 2.1]{pec}: \begin{equation} \label{1.1} \begin{split} u^{p}(x,y) &= k+\sum_{i=1}^{m}\int_{\alpha _{1i}(x_0)}^{\alpha _{1i}(x)}\int_{\beta _{1i}(y_0)}^{\beta _{1i}(y)}a_i(s,t) u^{q}(s,t)\,dt\,ds \\ &\quad +\sum_{j=1}^n\int_{\alpha _{2j}(x_0)}^{\alpha _{2j}(x)} \int_{\beta_{2j}(y_0)}^{\beta _{2j}(y)}b_j(s,t)u^{q}(s,t)w(u(s,t)) \,dt\,ds. \end{split} \end{equation} Pachpatte's inequality \cite[Theorem 4]{pach1}; \begin{equation} \label{1.2} \begin{split} u^{p}(x,y) &= k+\int_{x_0}^{x} \int_{y_0}^{y}a(s,t)g_1(u(s,t))\,dt\,ds \\ &\quad +\int_{\alpha (x_0)}^{\alpha (x)}\int_{\beta (y_0)}^{\beta (y)}b(s,t)g_2(u(s,t))\,dt\,ds. \end{split} \end{equation} Cheung's inequality \cite[Theorem 2.4]{aa}: \begin{equation} \label{1.3} \begin{split} u^{p}(x,y) &= k+\frac{p}{p-q}\int_{\alpha (x_0)}^{\alpha (x)}\int_{\beta (y_0)}^{\beta (y)}a(s,t)u^{q}(s,t)\,dt\,ds \\ &\quad + \int_{\gamma (x_0)}^{\gamma (x)} \int_{\gamma (y_0)}^{\delta (y)}b(s,t)u^{q}(s,t)\varphi (u(s,t))\,dt\,ds. \end{split} \end{equation} However, sometimes we need to study such inequalities with a function $c(x)$ in place of the constant term $k$. Our main result, for functions with $n$ independent variables, is given in the inequality \begin{equation} \begin{split} \varphi (u(x)) &\leq c(x)+\sum_{j=1}^{n_1}d_j(x)\int_{\widetilde{\alpha }_j(x^0)}^{\widetilde{\alpha }_j(x)}a_j(x,t) \Phi (u(t))w_1(u(t))dt \\ &\quad + \sum_{k=1}^{n_2}l_k(x) \int_{\widetilde{\beta }_k(x^0)} ^{\widetilde{\beta }_k(x)}b_k(x,t)\Phi (u(t))w_2(u(t))dt, \end{split} \label{1.4} \end{equation} where $c(x)$ is a function and all the functions which appear in this inequality are assumed to be real valued of $n$ variables. It is interesting to note that the results \eqref{1.1}-\eqref{1.3} can be deduced from our inequality \eqref{1.4} in some special cases. As applications we give the estimate solution of retarded partial differential equation. The main purpose of this article is to establish some nonlinear retarded integral inequalities for functions of $n$ independent variables which can be used as handy tools in the theory of partial differential and integral equations with time delays. These new inequalities represent a generalization of the results obtained by Ma and Pecaric \cite{pec}, Pachpatte \cite{pach1} and by Cheung \cite{aa} in case of the functions with one and two variables. We note that the inequality \eqref{1.4} is also a generalization of the main results in \cite{lp,sun}. \section{Main results} In this article, we denote $\mathbb{R}_{+}^n=[ 0,\infty) $ which is a subset of $\mathbb{R}^n$. All the functions which appear in the inequalities are assumed to be real valued of $n$-variables which are nonnegative and continuous. All integrals are assumed to exist on their domains of definitions. For $x=(x_1,x_2,\dots, x_n)$, $t=(t_1,t_2,\dots, t_n)$, $x^0=(x_1^0,x_2^0,\dots ,x_n^0)\in \mathbb{R}_{+}^n$, we shall denote: \begin{gather*} \int_{\widetilde{\alpha }_i(x^0)}^{\widetilde{\alpha }_i(x)}dt = \int_{\alpha _{j1}(x_1^0)}^{\alpha _{j1}(x_1)}\int_{\alpha _{j2}(x_2^0)}^{\alpha _{j2}(x_2)}\dots \int_{\alpha _{jn}(x_n^0)}^{\alpha _{jn}(x_n)}\dots dt_n\dots dt_1,\quad j=1,2,\dots ,n_1, \\ \int_{\widetilde{\beta }_k(x^0)}^{\widetilde{\beta }_k(x)}dt = \int_{\beta _{k1}(x_1^0)}^{\beta _{k1}(x_1)}\int_{\beta _{k2}(x_2^0)}^{\beta _{k2}(x_2)}\dots \int_{\beta _{kn}(x_n^0)}^{\beta _{kn}(x_n)}\dots dt_n\dots dt_1,\quad k=1,2,\dots ,n_2, \end{gather*} with $n_1,n_2\in \{1,2,\dots ,\}$. For $x,t\in \mathbb{R}_{+}^n$, we shall write $t\leq x$ whenever $t_i\leq x_i$, $i=1,2,\dots ,n$ and $x\geq x_0\geq 0$, for $x,x^0\in \mathbb{R}_{+}^n$. We denote $D=D_1D_2\dots D_n$, where $D_i=\frac{\partial }{\partial x_i}$, for $i=1,2,\dots ,n$, We use the usual convention of writing $\sum_{s\in\emptyset}u(s)=0$ if $\emptyset$ is the empty set. \begin{gather*} \widetilde{\alpha }_j(t)=\big( \alpha _{j1}(t_1),\alpha _{j2}(t_2),\dots ,\alpha _{jn}(t_n)\big) \in \mathbb{R}_{+}^n\quad \text{for} j=1,2,\dots ,n_1;\\ \widetilde{\beta }_k(t)=\big( \alpha _{k1}(t_1),\alpha _{k2}(t_2),\dots ,\alpha _{kn}(t_n)\big) \in \mathbb{R}_{+}^n\quad \text{for } k=1,2,\dots ,n_1. \end{gather*} We denote $\widetilde{\alpha }_j(t)\leq t$ for $j=1,2,\dots ,n_1$ whenever $\alpha _{ji}(t_i)\leq t_i$ for $i=1,2,\dots ,n$ and $j=1,2,\dots ,n_1$, and $\widetilde{\beta }_k(t)\leq t$ for $k=1,2,\dots ,n_2$ whenever $\beta_{ki}(t_i)\leq t_i$ for $i=1,2,\dots ,n$ and $k=1,2,\dots ,n_2$ Our main results read as the follows. \begin{theorem}\label{th1} Let $c\in C(\mathbb{R}_{+}^n,\mathbb{R}_{+})$, $w_1,w_2\in C(\mathbb{R}_{+},\mathbb{R}_{+})$ be nondecreasing functions with $w_1(u),w_2(u)>0$ on $(0,\infty )$ and let $a_j(x,t)$ and $b_k(x,t)\in C(\mathbb{R}_{+}^n\times \mathbb{R}_{+}^n, \mathbb{R}_{+})$ be nondecreasing functions in $x$ for every $t$ fixed for any $j=1,2,\dots ,n_1$, $k=1,2,\dots ,n_2$. Let $\alpha _{ji},\beta _{ki}\in C^{1}(\mathbb{R}_{+},\mathbb{R}_{+})$ be nondecreasing functions with $\alpha _{ji}(t_i)\leq t_i$ and $\beta _{ki}(t_i)$ $\leq t_i$ on $\mathbb{ R}_{+}$ for $i=1,2,\dots ,n$; $j=1,2,\dots ,n_1$, $k=1,2,\dots ,n_2$ and $p>q\geq 0$. \textbf{(A1)} If $u\in C(\mathbb{R}_{+}^n,\mathbb{R}_{+})$ and \begin{equation} \label{2.1} \begin{split} u^{p}(x) &\leq c(x)+\sum_{j=1}^{n_1}\int_{\widetilde{\alpha } _j(x^0)}^{\widetilde{\alpha }_j(x)}a_j(x,t)u^{q}(t)dt \\ &\quad + \sum_{k=1}^{n_2}\int_{\widetilde{\beta }_k(x^0)}^{\widetilde{\beta } _k(x)}b_k(x,t)u^{q}(t)w_1(u(t))dt, \end{split} \end{equation} for any $x\in \mathbb{R}_{+}^n$ with $x^0\leq t\leq x$, then there exists $x^{\ast }\in \mathbb{R}_{+}^n$, such as for all $x^0\leq t\leq x^{\ast }$, we have \begin{equation} u(x)\leq \Big( \Psi _1^{-1}\Big[ \Psi _1(p(x))+\frac{p-q}{p} \sum_{k=1}^{n_2}\int_{\widetilde{\beta }_k(x^0)}^{\widetilde{\beta } _k(x)}b_k(x,t)dt\Big] \Big) ^{1/(p-q)}. \label{2.2} \end{equation} Where \begin{gather} p(x)=c^{(p-q)/p}(x)+\frac{p-q}{p}\sum_{j=1}^{n_1}\int_{\widetilde{\alpha } _j(x^0)}^{\widetilde{\alpha }_j(x)}a_j(x,t)\,dt, \label{2.3} \\ \Psi _1(\delta )=\int_{\delta _0}^{\delta } \frac{ds}{w_1(s^{\frac{1}{p-q}})}\,,\quad \delta >\delta _0>0. \label{2.4} \end{gather} Here, $\Psi ^{-1}$ is the inverse function of $\Psi $, and the real numbers $x^{\ast }$ are chosen so that $\Psi _1(p(x))+\frac{p-q}{p}\sum_{k=1}^{n_2} \int_{\widetilde{\beta }_k(x^0)}^{\widetilde{\beta } _k(x)}b_k(x,t)dt\in\operatorname{dom}(\Psi _1^{-1})$. \textbf{(A2)} If $u\in C(\mathbb{R}_{+}^n,\mathbb{R}_{+})$ and \begin{equation} \label{2.5} \begin{split} u^{p}(x) &\leq c(x)+\sum_{j=1}^{n_1}\int_{\widetilde{\alpha } _j(x^0)}^{\widetilde{\alpha }_j(x)}a_j(x,t)u^{q}(t)w_1(u(t))dt \\ &\quad + \sum_{k=1}^{n_2}\int_{\widetilde{\beta }_k(x^0)}^{\widetilde{\beta } _k(x)}b_k(x,t)u^{q}(t)w_2(u(t))dt. \end{split} \end{equation} (i) In the case $w_2(u)\leq w_1(u)$, for any $x\in \mathbb{R}_{+}^n$ with $x^0\leq t\leq x$, there exists $\xi _1\in \mathbb{R}_{+}^n$, such as for all $x^0\leq t\leq \xi _1$, we have \[ u(x)\leq \Big( \Psi _1^{-1}\big( \Psi _1(c^{(p-q)/p}(x))+e(x)\big) \Big) ^{1/(p-q)}. \] (ii) In the case $w_1(u)\leq w_2(u)$, for any $x\in \mathbb{R}_{+}^n$ with $x^0\leq t\leq x$, there exists $\xi _2\in \mathbb{R}_{+}^n$, such as for all $x^0\leq t\leq \xi _2$, we have \[ u(x)\leq \Big( \Psi _2^{-1}\big( \Psi _2(c^{(p-q)/p}(x))+e(x)\big) \Big) ^{1/(p-q)}, \] where \begin{gather*} e(x) = \frac{p-q}{p}\Big[ \sum_{j=1}^{n_1}\int_{\widetilde{\beta } _k(x^0)}^{\widetilde{\beta }_k(x)}a_j(x,t)dt +\sum_{k=1}^{n_2}\int_{\widetilde{\beta }_k(x^0)} ^{\widetilde{\beta }_k(x)}b_k(x,t)dt\Big] , \\ \Psi _i(\delta ) = \int_{\delta _0}^{\delta }\frac{ds}{w_i(s^{\frac{1 }{p-q}})},\quad \delta >\delta _0>0,\text{ for } i=1,2. \end{gather*} Here, $\Psi _i^{-1}$ is the inverse function of $\Psi _i$ and the real numbers $\xi _i$ are chosen so that $\Psi_2(c^{(p-q)/p}(x))+e(x)\in\operatorname{dom}(\Psi _i^{-1})$ for $i=1,2$ respectively. \end{theorem} The proof of the above theorem will be given in the next section. \begin{corollary}\label{c1} Let the functions $u,c,w_1,a_j,b_k$ $(j=1,2,\dots ,n_1;\, k=1,2,\dots ,n_1)$ and the constants $p,q$ be defined as in Theorem \ref{th1} and \begin{equation} \label{2.6} \begin{split} u^{p}(x,y) &\leq c(x,y)+\sum_{j=1}^{n_1}\int_{\alpha _j(x_0)} ^{\alpha_j(x)}\int_{\alpha _j(y_0)}^{\alpha_j(y)} a_j(x,y,s,t)u^{q}(s,t)\,ds\,dt \\ &\quad + \sum_{k=1}^{n_2}\int_{\beta _k(x_0)}^{\beta _k(x)} \int_{\beta _k(y_0)}^{\beta _k(y)}b_k(x,y,s,t)u^{q}(t)w_1(u(t))dt, \end{split} \end{equation} for any $(x,y)\in \mathbb{R}_{+}^{2}$ with $x_0\leq s\leq x$ and $y_0\leq t\leq y$, then there exists $(x^{\ast },y^{\ast })\in \mathbb{R}_{+}^n$, such as for all $x_0\leq s\leq x^{\ast }$ and $y_0\leq s\leq y^{\ast }$, then \begin{equation} u(x,y)\leq \Big(\Psi ^{-1}\big[ \Psi (p_1(x,y))+\frac{p-q}{p}B_1(x,y) \big] \Big) ^{1/(p-q)}, \label{2.7} \end{equation} where \begin{gather*} p_1(x,y) = c^{(p-q)/p}(x,y)+\frac{p-q}{p}A_1(x,y), \\ A_1(x,y) = \sum_{j=1}^{n_1}\int_{\alpha _j(x_0)}^{\alpha _j(x)}\int_{\alpha _j(y_0)}^{\alpha _j(y)}a_j(x,y,s,t)\,ds\,dt, \\ B_1(x,y) = \sum_{k=1}^{n_2}\int_{\beta _k(x_0)}^{\beta _k(x)}\int_{\beta _k(y_0)}^{\beta _k(y)}b_k(x,y,s,t)\,ds\,dt, \end{gather*} and \begin{equation} \Psi (\delta )=\int_{\delta _0}^{\delta }\frac{ds}{w_1(s^{1/(p-q)}) },\quad \delta >\delta _0>0. \end{equation} Here, $\Psi ^{-1}$ is the inverse function of $\Psi $, and the real numbers $(x^{\ast },y^{\ast })$ are chosen so that $\Psi (p_1(x,y))+\frac{p-q}{p} B_1(x,y)\in\operatorname{dom}(\Psi ^{-1})$. \end{corollary} \begin{remark} \label{rmk1} \rm Setting $a_j(x,y,s,t)=a_j(s,t)$, $b_k(x,y,s,t)=b_k(s,t)$ and $c(x,y)=k$ $\geq 0$ in Corollary \ref{c1}, we obtain Ma and Pecaric's result \cite[Theorem 2.1]{pec}. \end{remark} \begin{remark} Defining $a_j(x,y,s,t)=\frac{p}{p-q}a_j(s,t),\ b_k(x,y,s,t)=\frac{p}{ p-q}b_k(s,t)\ $\ $c(x,y)=k>0$ (Constant) and $j=k=1$ in Corollary \ref{c1}, we obtain Cheung's result \cite[Theorem 2.4]{aa}. Obviously, \eqref{1.1}--\eqref{1.3} are special cases of Theorem \ref{th1}. So our result includes the main results in \cite{pec,pach1,aa}. \end{remark} Using Theorem \ref{th1}, we can get some more generalized results as follow: \begin{theorem} \label{th2} Let the functions $u,c,w_i,a_j,b_k$ ($i=1,2$, $j=1,2,\dots ,n_1$, $k=1,2,\dots ,n_1$) be defined as in Theorem \ref{th1}. Moreover, let $\varphi \in C(\mathbb{R}_{+},\mathbb{R}_{+})$ be a strictly increasing function so that $\lim_{x\to \infty }\varphi (x)=\infty $, and let $\Phi \in C(\mathbb{R}_{+},\mathbb{R}_{+})$ be nondecreasing function with $\Phi (x)>0$ for all $x\in \mathbb{R}_{+}^n$. \textbf{(B1)} If $u\in C(\mathbb{R}_{+}^n,\mathbb{R}_{+})$ and \begin{equation} \label{2.8} \begin{split} \varphi (u(x)) &\leq c(x)+\sum_{j=1}^{n_1}\int_{\widetilde{\alpha }_j(x^0)} ^{\widetilde{\alpha }_j(x)}a_j(x,t)\Phi (u(t))dt \\ &\quad + \sum_{k=1}^{n_2}\int_{\widetilde{\beta }_k(x^0)} ^{\widetilde{\beta }_k(x)}b_k(x,t)\Phi (u(t))w_1(u(t))dt, \end{split} \end{equation} for any $x\in \mathbb{R}_{+}^n$ with $x^0\leq t\leq x$, then there exists $x^{\ast }\in \mathbb{R}_{+}^n$, so that for all $x^0\leq t\leq x^{\ast }$, we have \begin{equation} u(x)\leq \varphi ^{-1}\big( G^{-1}[ \Psi _1^{-1}\left( \Psi _1(\pi (x))+B(x)\right)] \big) , \label{2.9} \end{equation} where \begin{gather} \pi (x) = G(c(x))+A(x), \label{2.10} \\ A(x) = \sum_{j=1}^{n_1}\int_{\widetilde{\alpha }_j(x^0)}^{\widetilde{ \alpha }_j(x)}a_j(x,t)dt, \label{2.11} \\ B(x) = \sum_{k=1}^{n_2}\int_{\widetilde{\beta }_k(x^0)}^{\widetilde{ \beta }_k(x)}b_k(x,t)dt, \label{2.12}\\ G(x) = \int_{x_0}^{x}\frac{ds}{\Phi (\varphi ^{-1}(s))},\quad x>x_0>0, \label{2.13} \\ \Psi _i(\delta ) = \int_{\delta _0}^{\delta }\frac{ds}{w_i(\varphi ^{-1}(G^{-1}(s)))},\quad \delta >\delta _0>0,\; i=1,2. \label{2.14} \end{gather} The real number $x^{\ast }$ is chosen so that $\Psi _1(\pi (x))+B(x)\in \operatorname{dom}(\Psi _1^{-1})$. \textbf{(B2)} If $u\in C(\mathbb{R}_{+}^n,\mathbb{R}_{+})$ and \begin{align*} \varphi (u(x)) &\leq c(x)+\sum_{j=1}^{n_1}\int_{\widetilde{\alpha } _j(x^0)}^{\widetilde{\alpha }_j(x)}a_j(x,t)\Phi (u(t))w_1(u(t))dt\\ &\quad + \sum_{k=1}^{n_2}\int_{\widetilde{\beta }_k(x^0)} ^{\widetilde{\beta }_k(x)}b_k(x,t)\Phi (u(t))w_2(u(t))dt. \end{align*} (i) When $w_2(u)\leq w_1(u)$, for any $x\in \mathbb{R} _{+}^n$ with $x^0\leq t\leq x$, there exists $\xi _1\in \mathbb{R} _{+}^n$, so that for all $x^0\leq t\leq \xi _1$, we have \begin{equation*} u(x)\leq \varphi ^{-1}\big( G^{-1}[ \Psi _1^{-1}\big( \Psi _1(G(c(x)))+A(x)+B(x)\big) ] \big) . \end{equation*} (ii) When $w_1(u)\leq w_2(u)$, for any $x\in \mathbb{R}_{+}^n$ with $x^0\leq t\leq x$, there exists $\xi _2\in \mathbb{R}_{+}^n$, so that for all $x^0\leq t\leq \xi _2$, we have \begin{equation*} u(x)\leq \varphi ^{-1}\big( G^{-1}[ \Psi _2^{-1}\big( \Psi _2(G(c(x)))+A(x)+B(x)\big) ] \big) . \end{equation*} Where $A,B,G$ and $\Psi _i(i=1,2)$ are defined in \eqref{2.11}-\eqref{2.14}, $\Psi _i^{-1}$ is the inverse function of $\Psi _i$ and the real numbers $\xi _i$ are chosen so that $\Psi _i(G(c(x)))+A(x)+B(x)\in \operatorname{dom}(\Psi _i^{-1})$ for $i=1,2$ respectively. \end{theorem} Many interesting corollaries can also be obtained from the above theorems (in the case of one or $n$ independent variables). \begin{corollary}[Inequality in one variable]\label{c2} Let $p>q\geq 0$, $c>0$ be constant and $w_1,w_2$ be defined as in Theorem \ref{th1}. Moreover, let $a_j(x,t)$ and $b_k(x,t)\in C(\mathbb{R}_{+}\times \mathbb{R}_{+},\mathbb{R}_{+})$ be nondecreasing functions in $x$ for every $t$ fixed and $\alpha _j,\beta _k\in C^{1}(\mathbb{R}_{+},\mathbb{R}_{+})$ be nondecreasing functions with $\alpha_j(t)\leq t$ and $\beta _k(t)\leq t_i$ on $\mathbb{R}_{+}$ for $j=1,2,\dots ,n_1$, $k=1,2,\dots ,n_2$ for any $j=1,2,\dots ,n_1$, $k=1,2,\dots ,n_2$. \textbf{(C1)} Let $u\in C(\mathbb{R}_{+},\mathbb{R}_{+})$ and \begin{align*} u(x)^{p} &\leq c^{p/(p-q)}+\frac{p}{p-q}\sum_{j=1}^{n_1}\int_0^{ \alpha _j(x)}a_j(x,t)u(t)^{q}dt \\ &\quad + \frac{p}{p-q}\sum_{k=1}^{n_2}\int_0^{\beta _k(x)}b_k(x,t)u(t)^{q}w_1(u(t))dt, \end{align*} for any $x\in \mathbb{R}_{+}$ with $0\leq t\leq x$. Then there exists $(x^{\ast })\in \mathbb{R}_{+}$, so that for all $0\leq t\leq x^{\ast }$, we have \begin{equation} u(x)\leq \big( [ \Psi _1^{-1}\big( \Psi _1(\pi (x))+B(x)\big) ] \big) ^{1/(p-q)}. \end{equation} Where $\pi (x)=c+A(x)$ and \begin{gather} A(x) = \sum_{j=1}^{n_1}\int_0^{\alpha _j(x)}a_j(x,t)dt, \label{2.15} \\ B(x) = \sum_{k=1}^{n_2}\int_0^{\beta _k(x)}b_k(x,t)dt, \label{2.16} \\ \Psi _i(\delta ) = \int_{\delta _0}^{\delta }\frac{ds}{w_i( s^{ \frac{1}{p-q}}) }\quad \delta >\delta _0>0,\; i=1,2. \label{2.17} \end{gather} Where the real number $x^{\ast }$ is chosen so that $\Psi _1(\pi (x))+B(x)\in\operatorname{dom}(\Psi _1^{-1})$. \textbf{(C2)} If $u\in C(\mathbb{R}_{+},\mathbb{R}_{+})$ and \begin{align*} u(x)^{p} &\leq c^{p/(p-q)}+\frac{p}{p-q}\sum_{j=1}^{n_1}\int_0^{ \alpha _j(x)}a_j(x,t)u(t)^{q}w_1(u(t))dt \\ &\quad + \frac{p}{p-q}\sum_{k=1}^{n_2}\int_0^{\beta _k(x)}b_k(x,t)u(t)^{q}w_2(u(t))dt. \end{align*} (i) In the case $w_2(u)\leq w_1(u)$, for any $x,t\in \mathbb{R}_{+}$ with $0\leq t\leq x$, we have \begin{equation*} u(x)\leq u(x)\leq \big( [ \Psi _1^{-1}\left( \Psi _1(c)+A(x)+B(x)\right) ] \big) ^{1/(p-q)}. \end{equation*} (ii) In the case $w_1(u)\leq w_2(u)$, for any $x,t\in \mathbb{R}_{+}$ with $0\leq t\leq x$, we have \begin{equation*} u(x)\leq u(x)\leq \big( [ \Psi _2^{-1}\left( \Psi _2(c)+A(x)+B(x)\right) ] \big) ^{1/(p-q)}. \end{equation*} Where $\Psi _i, A, B$ ($i=1,2$) are defined in \eqref{2.15}-\eqref{2.17}. \end{corollary} \begin{remark} \rm (i) Corollary \ref{c2} (C1) reduces to Sun's inequality \cite[Theorem 2.1]{sun} in case of one variable ($n=1)$ when $a_j(x,t)=a_j(t)$, $b_k(x,t)=b_k(t)$, $\beta _k(x)=\alpha _j(x)$ and $j=k=1$. (ii) Corollary \ref{c2} (C2) reduces to Sun's inequality \cite[Theorem 2.2]{sun} in case of one variable ($n=1)$ when $a_j(x,t)=a_j(t)$,$b_k(x,t)=b_k(t)$, $\beta _k(x)=x$ and $j=k=1$ and $w_1=w_2$. \end{remark} \begin{remark} \rm Under some suitable conditions in (B1), the inequality \eqref{2.8} gives a new estimate for the inequality \eqref{2.1} in (A1). \end{remark} \begin{theorem}\label{th3} Let the functions $u,c,,\varphi ,\Phi ,w_i,a_j, b_k$ ($i=1,2$, $j=1,2,\dots ,n_1$, $k=1,2,\dots ,n_1)$ be defined as in Theorem \ref{th2} and If \begin{align*} \varphi (u(x)) &\leq c(x)+\sum_{j=1}^{n_1}d_j(x)\int_{\widetilde{\alpha }_j(x^0)}^{\widetilde{\alpha }_j(x)}a_j(x,t)\Phi (u(t))w_1(u(t))dt \\ &\quad + \sum_{k=1}^{n_2}l_k(x)\int_{\widetilde{\beta }_k(x^0)}^{ \widetilde{\beta }_k(x)}b_k(x,t)\Phi (u(t))w_2(u(t))dt, \end{align*} for any $x\in \mathbb{R}_{+}^n$, we have \begin{equation*} u(x)\leq \varphi ^{-1}\big( G^{-1}[ \Psi ^{-1}\left( \Psi (G(c(x)))+ \widetilde{A}(x)+\widetilde{B}(x)\right) ] \big) , \end{equation*} where \begin{gather*} \widetilde{A}(x) = \sum_{j=1}^{n_1}d_j(x)\int_{\widetilde{\alpha } _j(x^0)}^{\widetilde{\alpha }_j(x)}a_j(x,t)dt, \\ \widetilde{B}(x) = \sum_{k=1}^{n_2}l_k(x)\int_{\widetilde{\beta } _k(x^0)}^{\widetilde{\beta }_k(x)}b_k(x,t)dt. \end{gather*} \end{theorem} \begin{corollary}\label{c3} If \begin{equation*} u^{p}(x)\leq c(x)+\int_0^{\widetilde{\alpha } (x)}a(t)u^{q}(t)+b(t)u^{p}(t)dt \end{equation*} for any $x\in \mathbb{R}_{+}^n$ with $x^0\leq t\leq x$, then there exists $x^{\ast }\in \mathbb{R}_{+}^n$, so that for all $x^0\leq t\leq x^{\ast }$, we have \begin{equation*} u(x)\leq \frac{p}{p-q}c^{\frac{p-q}{p}}(x)\exp \Big[ \frac{p}{p-q}\int_0^{\widetilde{\alpha }(x)}a(t)+b(t)dt\Big] \end{equation*} \end{corollary} \begin{remark} \rm (i) Theorem \ref{th3} reduced to \cite[Theorem 2.2]{lp} in the case of one variable, when $\varphi (x)=x$, $b_k(x,t)=0,w_1(t)=1$, $j=1$ and $n=1$ (ii) Theorem \ref{th3} is also a generalization of the main result in Lipovan \cite[Theorem 2.1]{lp} in case of one variable, when $\varphi (x)=x$, $b_k(x,t)=0$, $w_1(t)=1$, $\Phi (t)=1$, for any $x,t\in \mathbb{R}_{+}(n=1)$ and for $j=1$. \end{remark} \begin{remark} \rm (i) Under some suitable conditions, Theorem \ref{th3} reduced to Theorem 2.3 and Theorem 2-4 in case of two variables of the main results in Zhang and Meng \cite{meng}. (ii) Under some suitable conditions in Theorem \ref{th3}, we can also obtain other estimations of the Ma and Pecaric's inequality \eqref{1.1} and the main results in \cite{pec}. \end{remark} \begin{remark} \rm Theorem \ref{th3} further reduces to the main results in \cite[Theorem 2.1, 2.2, 2.4]{aa} and the results in \cite{pach2}. \end{remark} \section{Proof of theorems} Since the proofs resemble each other, we give the details for (A1) in Theorem \ref{th3} only; the proofs of the remaining inequalities can be completed by following the proofs of the above-mentioned inequalities. \begin{proof}[Proof of Theorem \ref{th1} (A1)] Fixing arbitrary numbers $y=(y_1,\dots ,y_n)\in \mathbb{R}_{+}^n$ with $x^0q\geq 0$ is a constants and $ a(x),b(x)$ are nonnegative, continuous functions defined for $x\in \mathbb{R} _{+}^n$. For any solution $u(x)$ of the boundary value problem \eqref{4.1}, \begin{equation} u^{p}(x)=\sum_{i=1}^nc_i(x_i)+\int_0^{x}h(t,u(t),u(t-\widetilde{ \alpha }(t))dt, \label{4.4} \end{equation} For all $x,t\in \mathbb{R}_{+}^n$ with $0\leq t\leq x$. Using \eqref{4.1}, \eqref{4.3} and a suitable change of variables in \eqref{4.4}, we have \begin{equation} \left| u^{p}(x)\right| \leq c(x)+\int_0^{\widetilde{\alpha }(x)} \widetilde{a}(t)\left| u(t)\right| ^{q}+\widetilde{b}(t)\left| u(t)\right| ^{p}dt, \label{4.5} \end{equation} with $c(x)=\sum_{i=1}^n| c_i(x_i)|$, $\widetilde{a},\widetilde{b}\in C^{1}(\mathbb{R}_{+}^n,\mathbb{R}_{+})$. (E1) Applying (A1) in Theorem \ref{th1} to \eqref{4.5}, when $\widetilde{\alpha }_j=\widetilde{\beta }_k$, $a_j(x,t)=\widetilde{a}(t)$, $b_k(x,t)=\widetilde{b}(t)$ with $j=k=1$ and $w_1(u)=u^{p-q}$, we obtain a bound for the solution $u(x)$: \begin{equation} u(x)\leq \Big( c^{(p-q)/p}(x)+\frac{p-q}{p} \int_0^{\widetilde{\alpha }(x)} \widetilde{a}(t)dt\Big) ^{1/(p-q)} \exp \Big( \frac{1}{p}\int_0^{ \widetilde{\alpha }(x)}\widetilde{b}(t)dt\Big). \label{4.6} \end{equation} (E2) Or by a direct application of Corollary \ref{c3} to \eqref{4.5}, \begin{equation} u(x)\leq \frac{p}{p-q}c^{\frac{p-q}{p}}\exp \Big[ \frac{p}{p-q}\int_0^{ \widetilde{\alpha }(x)}[ \widetilde{a}(t)+\widetilde{b}(t)] dt \Big] . \label{4.7} \end{equation} \begin{remark} \rm In the special case ($p=2$ and $q=1$) in the boundary value problem \eqref{4.1}, we have (i) By \eqref{4.6}, we obtain \begin{equation*} u(x)\leq \Big( \sqrt{c(x)}+\frac{1}{2}\int_0^{\widetilde{\alpha }(x)} \widetilde{a}(t)dt\Big) \exp \Big( \frac{1}{2}\int_0^{\widetilde{\alpha }(x)}\widetilde{b}(t)dt\Big) . \end{equation*} (ii) Or by using \eqref{4.7}, \begin{equation*} u(x)\leq 2\sqrt{c(x)}\exp \Big[ 2\int_0^{\widetilde{\alpha }(x)}[ \widetilde{a}(t)+\widetilde{b}(t)] dt\Big] . \end{equation*} \end{remark} \begin{remark} Note that the results given here can be very easily generalized to obtain explicit bounds on integral inequalities involving several retarded arguments. Using similar method of those in the proof of the Theorems above, we can also obtain a new reversed inequalities of our results. \end{remark} \begin{thebibliography}{00} \bibitem{aa} W. S. Cheung; \emph{Some new nonlinear inequalities and applications to boundary value problems}, Nonlinear Analysis 64 (2006) 2112 -- 2128. \bibitem{8} W. S. Cheung, Q. H. Ma; \emph{Nonlinear retarded integral inequalities for functions in two variables}. J. Concr. Appl. Math. 2(2004) 119-134. \bibitem{9} M. Denche, H. Khellaf; \emph{Integral inequalities similar to Gronwall inequality}, Electron. J. Diff. Equ. , Vol 2007 (2007), No. 176, 1-14. \bibitem{10} Y. H. Kim; \emph{On some new integral inequalities for functions in one and two variables}, Acta Math. Sin. (Engl. Ser.) 21 (2005) 423--434. \bibitem{lp} O. Lipovan; \emph{Integral inequalities for retarded Volterra equations}, J. Math. Anal. Appl. 322 (2006) 349--358. \bibitem{11} O. Lipovan; \emph{A retarded integral inequality and its applications}, J. Math. Anal. Appl. 285 (2003) 436--443. \bibitem{12} O. Lipovan; \emph{A retarded Gronwall-like inequality and its applications}, J. Math. Anal. Appl. 252 (2000) 389--401. \bibitem{13} W. N. Li, M. A. Han, F. W. Meng; \emph{Some new delay integral inequalities and their applications}, J. Comput. Appl. Math. 180 (2005) 191--200. \bibitem{pec} Q. H. Ma, J. Pecaric; \emph{Some new nonlinear retarded integral inequalities and their applications}, Math. Inequal. Appl. 9 (2006) 617--632. \bibitem{14} Q. H. Ma, E. H. Yang; \emph{Some new nonlinear delay integral inequalities}, J. Math. Anal. Appl. 252 (2000) 864--878. \bibitem{15} Q. H. Ma, E. H. Yang; \emph{Some new Gronwall--Bellman--Bihari type integral inequalities with delay}, Period. Math. Hungar. 44 (2002) 225--238. \bibitem{pach1} B. G. Pachpatte; \emph{Explicit bounds on certain integral inequalities}, J. Math. Anal. Appl. 267 (2002) 48--61. \bibitem{pach2} B. G. Pachpatte; \emph{Explicit bound on a retarded integral inequality}, Math. Inequal. Appl. 7 (2004) 7--11. \bibitem{16} B. G. Pachpatte; \emph{On a certain retarded integral inequality and its applications}, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004) Art. 19. \bibitem{17} B. G. Pachpatte; \emph{Inequalities for Differential and Integral Equations}, Academic Press, New York, 1998. \bibitem{sun} G. Sun; \emph{On retarded integral inequalities and their applications}, J. Math. Anal. Appl. 301 (2005) 265--275. \bibitem{meng} H. Zhang, F. Meng; \emph{Integral inequalities in two independent variables for retarded Volterra equations}, Appl. Math. and Computation, 199 (2008) 90-98. \end{thebibliography} \end{document}