\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 22, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/22\hfil Positive solutions] {Positive solutions for second-order multi-point boundary-value problems at resonance in Banach spaces} \author[W. Jiang, B. Wang\hfil EJDE-2011/22\hfilneg] {Weihua Jiang, Bin Wang} % in alphabetical order \address{Weihua Jiang \newline College of Sciences, Hebei University of Science and Technology\\ Shijiazhuang, 050018, Hebei, China} \email{weihuajiang@hebust.edu.cn} \address{Bin Wang \newline Department of Basic Courses, Hebei Professional and Technological College of Chemical and \\ Pharmaceutical Engineering, Shijiazhuang, 050026, Hebei, China} \email{wb@hebcpc.cn} \thanks{Submitted July 14, 2010. Published February 9, 2011.} \thanks{Supported by grants 10875094 from the Natural Science Foundation of China, \hfill\break\indent A2009000664 from the Natural Science Foundation of Hebei Province, 2008153 from the \hfill\break\indent Foundation of Hebei Education Department, and XL200814 from the Foundation of \hfill\break\indent Hebei University of Science and Technology.} \subjclass[2000]{34B15} \keywords{Banach space; positive solution; strict set contraction; \hfill\break\indent boundary value problem} \begin{abstract} In this article, we study the existence and multiplicity of positive solutions for a nonlinear second-order multi-point boundary-value problem at resonance in Banach spaces. The arguments are based upon a specially constructed equivalent equation and the fixed point theory in a cone for strict set contraction operators. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} The theory of ordinary differential equations in Banach spaces has become a new important branch (see, for example, \cite{d1,g1,g2,l1} and references cited therein). In 1988, Guo and Lakshmikantham \cite{g3} discussed the existence of multiple solutions for two-point boundary value problem of ordinary differential equations in Banach spaces. Since then, nonlinear second-order multi-point boundary value problems at non-resonance in Banach spaces have been studied by several authors (see, for example, \cite{f1,l2,l3,z1} and references cited therein). Recently, the existence of solutions for boundary value problems at resonance have been studied by many papers, (see, for example \cite{d2,d3,h1,k1,k2,l4,l5,z2}). Using the Krasnolsel'skii-Guo fixed point theorem, Han \cite{h1} studied a second order three-point BVP at resonance by rewriting the original BVP as an equivalent one. Motivated by their results, in this paper, we will discuss the existence of positive solutions for the second-order $m$-point boundary value problem at resonance \begin{gather} y''(t)=f(t,y),\quad 00$, $i=1,2,\dots,m-2$, $\sum_{i=1}^{m-2}k_i =1$. The boundary value problem \eqref{e1.1}-\eqref{e1.2} is at resonance when $\sum_{i=1}^{m-2}k_i =1$; that is, the corresponding homogeneous boundary value problem \begin{gather*} y''(t)=0, \quad t\in[0,1],\\ y'(0)=0,\quad y(1)=\sum _{i=1}^{m-2}k_i y(\xi _i ) \end{gather*} has nontrivial solutions. To the best of our knowledge, no paper has considered the existence of positive solutions for the boundary value problems at resonance in Banach spaces. We shall fill this gap in the literature. The organization of this paper is as follows. We shall introduce a theorem and some notations in the rest of this section. In Section 2, we provide some necessary background. In particular, we state some properties of Green's function associated with the equivalent problem of \eqref{e1.1}-\eqref{e1.2}. In Section 3, the main results will be stated and proved. \begin{theorem}[\cite{c1,p1}] \label{thm1.1} Let $K$ be a cone of the real Banach space $X$ and $K_{r,R}=\{x\in K |r\leq \|x\|\leq R\}$ with $R>r>0$. Assume that $A:~K_{r,R}\to K$ is a strict set contraction such that one of the following two conditions is satisfied \begin{itemize} \item[(i)] $Ax\not\leq x$ for all $x\in K$, $\|x\|=r$ and $Ax\not\geq x$ for all $x\in K$, $\|x\|=R$. \item[(ii)] $Ax\not\geq x$ for all $x\in K$, $\|x\|=r$ and $Ax\not\leq x$ for all $x\in K$, $\|x\|=R$. \end{itemize} Then $A$ has at least one fixed point $x\in K$ satisfying $r<\|x\|0)$ and $B_r=\{y\in C[I,E]:\|y\|_c\leq r\}(r>0)$, respectively. Define $$ F(t,y):=f(t,y)+\beta^2 y, $$ where $\beta\in(0,\frac{\pi}{2})$. Obviously, $y(t)$ is a solution of the problem \eqref{e1.1}-\eqref{e1.2} if and only if it is a solution of the problem \begin{gather} y''(t)+\beta^2 y(t)=F(t,y(t)), \quad 00$, $i=1,2,\dots,m-2$, $0<\xi_1<\xi_2<\dots<\xi_{m-2}<1$, $\sum_{i=1}^{m-2}k_i =1$. \item[(H2)] $P$ is a normal cone of $E$ and $N$ is the normal constant; $F:I\times P\to P$, $F(t,\theta)=\theta$ for all $t\in I$; for any $r>0$, $F(t,x)$ is uniformly continuous and bounded on $I\times (P\cap T_r)$ and there exists a constant $L_r$ with $0\leq L_r<(\beta a_0)/(2a_1)$ such that $$ \alpha(F(I\times D))\leq L_r\alpha(D),\quad \forall D\subset P\cap T_r. $$ \end{itemize} \section{Preliminary lemmas} \begin{lemma} \label{lem2.1} Assume $\sum_{i=1}^{m-2}k_i=1$, then for $h(t)\in C[I,E]$, the problem \begin{gather} y''(t)+\beta^2y(t)=h(t),\quad 00$ such that $$ c_1(1-s)\leq G(t,s)\leq c_2(1-s),\quad t,s\in[0,1]. $$ \end{lemma} \begin{proof} Take $H(t,s)=c(1-s)-G(t,s)$. We will prove that $H(t,s)\geq 0$, $t,s\in[0,1]$, when $c$ is sufficiently large. For $t,s\in[0,1]$, we have \begin{align*} H(t,s) &\geq c(1-s)-\frac{1}{\beta}\sin\beta(t-s)- \frac{\cos\beta t}{\beta a_0}\sin\beta(1-s)\\ &\geq c(1-s)-\frac{1}{\beta}\sin\beta(1-s)- \frac{\sin\beta(1-s)}{\beta a_0}\\ &=c(1-s)-\frac{1}{\beta}[1+\frac{1}{a_0}]\sin\beta(1-s)\\ &\geq(c-1-\frac{1}{a_0})(1-s). \end{align*} Take $c_2\geq1+\frac{1}{a_0}$, then $H(t,s)\geq 0$, $t,s\in[0,1]$. Now, we prove $H(t,s)\leq 0$, $t,s\in[0,1]$, when $c$ is sufficiently small. For $t\in[0,1]$, $s\in(\xi_1,1]$, we have \begin{align*} H(t,s) &\leq c(1-s)- \frac{\cos\beta t}{\beta a_0}[\sin\beta(1-s)-\sum _{j=i}^{m-2}k_{j}\sin\beta(\xi_{j}-s)]\\ &\leq c(1-s)-\frac{\cos\beta}{\beta a_0}[\sin\beta(1-s)-\sum _{j=2}^{m-2}k_{j}\sin\beta(\xi_{j}-s)]\\ &\leq c(1-s)-\frac{k_1\cos\beta}{\beta a_0}\sin\beta(1-s). \end{align*} Since $$ g(x)=\begin{cases} \frac{\sin x}{x}, & 00; $$ i.e., $\sin x\geq m_0x$, $x\in[0,\pi/2]$. Therefore, \begin{align*} H(t,s) &\leq c(1-s)-\frac{m_0k_1\cos\beta}{a_0}(1-s)\\ &=(c-\frac{m_0k_1\cos\beta}{a_0})(1-s). \end{align*} For $t\in[0,1]$, $s\in[0,\xi_1]$, we obtain \begin{align*} H(t,s) &\leq c(1-s)- \frac{\cos\beta t}{\beta a_0}[\sin\beta(1-s)-\sum _{j=1}^{m-2}k_{j}\sin\beta(\xi_{j}-s)]\\ &\leq c(1-s)-\frac{\cos\beta}{\beta a_0}2\sum _{j=1}^{m-2}k_{j}\cos\frac{\beta(1+\xi_{j}-2s)}{2}\sin\frac{\beta(1-\xi_{j})}{2}\\ &\leq c-\frac{2\cos\beta}{\beta a_0}\sum _{i=1}^{m-2}k_i \cos\frac{\beta(1+\xi_i )}{2}\sin\frac{\beta(1-\xi_i )}{2}.\\ \end{align*} Take $$ 00$, the operator $A$ is a strict set contraction on $Q\cap B_r$. \end{lemma} \begin{proof} Since $F(t,x)$ is uniformly continuous and bounded on $I\times (P\cap T_r)$, we see from \eqref{e2.4} that $A$ is continuous and bounded on $Q\cap B_r$. For any $S\subset Q\cap B_r$, by \eqref{e2.4}, we can easily get that functions $A(S)=\{Ay|y\in S\}$ are uniformly bounded and equicontinuous. By \cite{l1}, we have \begin{equation} \alpha(A(S))=\sup_{t\in I}\alpha(A(S(t))),\label{e2.5} \end{equation} where $A(S(t))=\{Ay(t):y\in S,\; t\in I\text{ is fixed}\}$. For any $y\in C[I,E]$, $g\in C[I,I]$, by $\int_0^tg(s)y(s)ds\in \overline{\rm co}(\{g(t)y(t)|t\in I\}\cup\{\theta\}) \subset\overline{\rm co}(\{y(t)|t\in I\}\cup\{\theta\})$, we obtain \begin{align*} &\alpha(A(S(t)))\\ &=\alpha(\{\frac{1}{\beta}\int_0^t\sin \beta(t-s)F(s,y(s))ds +\frac{\cos\beta t}{\beta a_0}\Big[\int_0^1\sin \beta(1-s)F(s,y(s))ds\\ &\quad -\sum_{i=1}^{m-2} k_i\int_0^{\xi_i}\sin \beta(\xi_i-s)F(s,y(s))ds\Big]:y \in S\})\\ &\leq\frac{\sin\beta}{\beta}\alpha(\overline{\rm co}(\{F(s,y(s)):s\in I,~y\in S\}\cup\{\theta\}))\\ &\quad +\frac{\sin\beta}{\beta a_0}\alpha(\overline{\rm co}(\{F(s,y(s)):s\in I,\;y\in S\}\cup\{\theta\}))\\ &\quad +\frac{\sum_{i=1}^{m-2} k_i\sin\beta\xi_i}{\beta a_0}\alpha(\overline{\rm co}(\{F(s,y(s)):s\in I,~y\in S\}\cup\{\theta\}))\\ &=\frac{a_1}{\beta a_0}\alpha(\{F(s,y(s)):s\in I,\; y\in S\})\\ &\leq\frac{a_1}{\beta a_0}\alpha(F(I\times B)), \end{align*} where $B=\{y(s):s\in I,~y\in S\}\subset P\cap T_r$. By (H2), we obtain \begin{equation} \alpha(A(S(t)))\leq\frac{a_1}{\beta a_0}L_r\alpha(B).\label{e2.6} \end{equation} For any given $\varepsilon>0$, there exists a partition $S=\cup_{j=1}^{l}S_j$ such that \begin{equation} \operatorname{diam}(S_j)<\alpha(S)+\frac{\varepsilon}{3}, \quad j=1,2,\dots,l.\label{e2.7} \end{equation} Now, choose $y_j\in S_j$, $j=1,2,\dots,l$ and a partition $0=t_00$ for any $x>\theta$ and $F^\varphi_{0}>\frac{\beta^2a_0}{\gamma a_2}$. \item[(H4)] There exists $\varphi\in P^*$ such that $\varphi(x)>0$ for any $x>\theta$ and $F^\varphi_{\infty}>\frac{\beta^2a_0}{\gamma a_2}$. \item[(H5)] $F^0<\frac{\beta^2a_0}{N(1+a_0)(1-\cos\beta)}$. \item[(H6)] $F^\infty<\frac{\beta^2a_0}{N(1+a_0)(1-\cos\beta)}$. \item[(H7)] There exists $r_0>0$ such that $$ \sup_{\stackrel {t\in I,~x\in P}{ \gamma r_0/N\leq\|x\|\leq r_0}}\|F(t,~x)\|<\frac{\beta^2a_0}{N(1+a_0)(1-\cos\beta)}r_0. $$ \item[(H8)] There exist $R_0>0$ and $\varphi\in P^*$ with $\varphi(x)>0$ for any $x>\theta$ such that $$ \inf_{\stackrel {t\in I, x\in P}{\gamma R_0/N\leq\|x\|\leq R_0}} \frac{\varphi(F(t,x))}{\varphi(x)}> \frac{\beta^2a_0}{\gamma a_2}. $$ \end{itemize} \begin{theorem} \label{thm3.1} Assume {\rm (H1), (H2)} hold. If one of the following conditions is satisfied: \begin{itemize} \item[(i)] {\rm (H4)} and {\rm (H5)} hold. \item[(ii)] {\rm (H3)} and {\rm (H6)} hold. \end{itemize} Then the problem \eqref{e1.1}-\eqref{e1.2} has at least one positive solution. \end{theorem} \begin{proof} (i) By (H4), we obtain that there exist constants $M>\frac{\beta^2a_0}{\gamma a_2}$ and $r_1>0$ such that \begin{equation} \varphi(F(t,x))\geq M\varphi(x),\quad \forall t\in I, x\in P,\quad \|x\|>r_1.\label{e3.1} \end{equation} For any $R>N r_1/\gamma$, we will show that \begin{equation} Ay\not\leq y,\quad \forall y\in K,\; \|y\|_c=R.\label{e3.2} \end{equation} In fact, if not, there exists $y_0\in K$, $\|y_0\|_c=R$ such that $Ay_0\leq y_0$. By \begin{equation} y_0(t)\geq \gamma y_0(s)\geq \theta,\quad \forall t,\; s\in I,\label{e3.3} \end{equation} we have \begin{equation} \|y_0(t)\|\geq \frac{\gamma}{N}\|y_0\|_c>r_1,\quad \forall t\in I.\label{e3.4} \end{equation} By \eqref{e2.4}, for any $t\in I$, we have \begin{align*} A(y_0(t)) &=\frac{1}{\beta}\int_0^t\sin \beta(t-s)F(s,y_0(s))ds +\frac{\cos\beta t}{\beta a_0}\Big[\int_0^1\sin \beta(1-s)F(s,y_0(s))ds\\ &\quad -\sum_{i=1}^{m-2} k_i\int_0^{\xi_i}\sin \beta(\xi_i-s)F(s,y_0(s))ds\Big]\\ &\geq\frac{\cos\beta t}{\beta a_0}\sum_{i=1}^{m-2} k_i\int_{\xi_i}^1\sin \beta(1-s)F(s,y_0(s))ds. \end{align*} This inequality, \eqref{e3.1}, \eqref{e3.3} and \eqref{e3.4}, imply \begin{align*} \varphi(Ay_0(0)) &\geq\frac{1}{\beta a_0}\sum_{i=1}^{m-2} k_i\int_{\xi_i}^1 \sin \beta(1-s)M\gamma \varphi(y_0(0))ds\\ &=\frac{a_2}{\beta^2a_0}M\gamma \varphi(y_0(0)). \end{align*} Considering $Ay_0\leq y_0$, we obtain \begin{equation} \varphi(y_0(0))\geq\frac{\gamma a_2}{\beta^2a_0}M\varphi(y_0(0)).\label{e3.5} \end{equation} It is easy to see that $\varphi(y_0(0))>0$ (In fact, if $\varphi(y_0(0))=0$, by \eqref{e3.3}, we obtain $\varphi(y_0(0))\geq \gamma\varphi(y_0(s))\geq 0$ for all $s\in I$. So, we have $\varphi(y_0(s))\equiv 0$ for all $s\in I$. That is, $y_0(s)\equiv\theta$. This is a contradiction with $\|y_0\|_c=R$). So, \eqref{e3.5} contradicts with $M>\frac{\beta^2a_0}{\gamma a_2}$. Therefore, \eqref{e3.2} is true. On the other hand, by (H5) and $F(t,\theta)=\theta$, we obtain that there exist constants $0<\varepsilon<\frac{\beta^2a_0}{N(1+a_0)(1-\cos\beta)}$ and $00$ such that for any $00$ and $\varepsilon$, with $0<\varepsilon<\frac{\beta^2a_0}{N(1+a_0)(1-\cos\beta)}$, such that $$ \|F(t,x)\|\leq\varepsilon\|x\|,\quad \forall t\in I,\; x\in P,\; \|x\|>r_1. $$ By (H2), we obtain $$ \sup_{t\in I,\, x\in P\cap T_{r_1}} \|F(t,x)\|=:b<\infty. $$ So, we have \begin{equation} \|F(t,x)\|\leq\varepsilon\|x\|+b,\quad \forall t\in I,\; x\in P.\label{e3.10} \end{equation} Take $$ R>\max\big\{r_2,\; \frac{Nb(1+a_0)(1-\cos\beta)}{\beta^2a_0-N\varepsilon(1+a_0) (1-\cos\beta)}\big\}, $$ we will prove that \begin{equation} Ay\not\geq y,\quad \forall y\in K,\; \|y\|_c=R. \label{e3.11} \end{equation} In fact, if there exists $y_0\in K$, $\|y_0\|_c=R$ such that $Ay_0\geq y_0$. Then, by \eqref{e3.8} and \eqref{e3.10}, we obtain \begin{align*} \|y_0(t)\|&\leq\frac{N(a_0+\cos\beta t)}{\beta a_0}\int_0^1\sin\beta(1-s)(\varepsilon\|y_0(s)\|+b)ds\\ &\leq\frac{N(1+a_0)(1-\cos\beta)}{\beta^2a_0} (\varepsilon\|y_0\|_c+b),\quad \forall t\in I. \end{align*} So, we have $$ \|y_0\|_c\leq\frac{Nb(1+a_0)(1-\cos\beta)} {\beta^2a_0-N\varepsilon(1+a_0)(1-\cos\beta)}0$, $\varphi_i\in P^*$ with $\varphi_i(x)>0$ for $x>\theta$, $i=1,2$ such that $$ \inf_{t\in I,\, x\in P,\, \gamma R_i/N\leq\|x\|\leq R_i} \frac{\varphi_i(F(t,x))}{\varphi_i(x)}> \frac{\beta^2a_0}{\gamma a_2},\quad i=1,2, $$ where $R_1<\gamma r_0/N$, $r_0<\gamma R_2/N$. \item[(ii)] {\rm (H3), (H4), (H8)} hold, and there exist $r_1, r_2>0$ such that $$ \sup_{t\in I,\,x\in P,\, \gamma r_i/N\leq\|x\|\leq r_i} \|F(t,~x)\|<\frac{\beta^2a_0}{N(1+a_0)(1-\cos\beta)}r_i,\quad i=1,2, $$ where $r_1<\gamma R_0/N$, $R_0<\gamma r_2/N$. \end{itemize} Then \eqref{e1.1}-\eqref{e1.2} has at least four positive solutions. \end{corollary} We can prove easily the existence of multiple positive solutions for \eqref{e1.1}-\eqref{e1.2}. \begin{thebibliography}{00} \bibitem{c1} N. P. Cac, J. A. Gatica; \emph{Fixed point theorems for mappings in ordered Banach spaces}, J. Math. Anal. Appl., 71 (1979), 545-557. \bibitem{d1} K. Demling; \emph{Ordinary Differential Equations in Banach Spaces} Springer, Berlin, 1977. \bibitem{d2} Z. Du, X. Lin, W. Ge; \emph{Some higher-order multi-point boundary value problem at resonance}, J. Comput. Appl. Math. 177(2005), 55-65. \bibitem{d3} B. Du, X. Hu; \emph{A new continuation theorem for the existence of solutions to $P$-Lpalacian BVP at resonance}, Appl. Math. Comput. 208(2009), 172-176. \bibitem{f1} M. Feng, D. Ji, W. Ge; \emph{Positive solutions for a class of boundary-value problem with integral boundary conditions in Banach spaces}, J. Comput. Appl. Math., 222(2008), 351-363. \bibitem{g1} D. Guo, V. Lakshmikantham, X. Liu; \emph{Nonlinear Integral Equation in Abstract spaces}, Kluwer Academic Publishers, Dordrecht, 1996. \bibitem{g2} D. Guo, V. Lakshmikantham; \emph{Nonlinear Problems in Abstract Cones}, Academic Press, San Diego, 1988. \bibitem{g3} D. Guo, V. Lakshmikantham; \emph{Multiple solutions of two-point boundary value problem of ordinary differential equations in Banach space}, J. Math. Anal. Appl., 129(1988), 211-222. \bibitem{h1} X. Han; \emph{Positive solutions for a three-point boundary value problem at resonance}, J. Math. Anal. Appl., 336(2007) 556-568. \bibitem{k1} N. Kosmatov; \emph{A multi-point boundary value problem with two critical conditions}, Nonlinear Anal., 65(2006), 622-633. \bibitem{k2} N. Kosmatov; \emph{Multi-point boundary value problems on an unbounded domain at resonance}, Nonlinear Anal., 68(2008), 2158-2171. \bibitem{l1} V. Lakshmikantham, S. Leela; \emph{Nonlinear Differential Equations in Abstract Spaces}, Pergamon Press, Oxford, 1981. \bibitem{l2} B. Liu; \emph{Positive solutions of a nonlinear four-point boundary value problems in Banach spaces}, J. Math. Anal. Appl., 305(2005), 253-276. \bibitem{l3} L. Liu, Z. Liu, Y. Wu; \emph{Infinite boundary value problems for $n$th-order nonlinear impulsive integro-differential equations in Banach spaces}, Nonlinear Analysis, 67(2007), 2670-2679. \bibitem{l4} Y. Liu, W. Ge; \emph{Solvability of nonlocal boundary value problems for ordinary differential equations of higher order}, Nonlinear Anal., 57(2004), 435-458. \bibitem{l5} S. Lu, W. Ge; \emph{On the existence of $m$-point boundary value problem at resonance for higher order differential equation}, J. Math. Anal. Appl. 287(2003), 522-539. \bibitem{p1} A. J. B. Potter; \emph{A fixed point theorem for positive $k$-set contractions}, Proc. Edinburgh Math. Soc., 19(1974), 93-102. \bibitem{z1} X. Zhang, M. Feng, W. Ge; \emph{Existence and nonexistence of positive solutions for a class of $n$th-order three-point boundary value problems in Banach spaces}, Nonlinear Analysis, 70(2009), 584-597. \bibitem{z2} X. Zhang, M. Feng, W. Ge; \emph{Existence result of second-order differential equations with integral boundary conditions at resonance}, J. Math. Anal. Appl. 353(2009), 311-319. \end{thebibliography} \end{document}