\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 25, pp. 1--28.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/25\hfil A reaction-diffusion system] {Global dynamics of a reaction-diffusion system} \author[Y. You\hfil EJDE-2011/25\hfilneg] {Yuncheng You} \address{Yuncheng You \newline Department of Mathematics and Statistics \\ University of South Florida \\ Tampa, FL 33620, USA} \email{you@mail.usf.edu} \thanks{Submitted July 28, 2010. Published February 10, 2011.} \subjclass[2000]{37L30, 35B40, 35B41, 35K55, 35K57, 80A32, 92B05} \keywords{Reaction-diffusion system; Brusselator; two-cell model; \hfill\break\indent global attractor; absorbing set; asymptotic compactness; exponential attractor} \begin{abstract} In this work the existence of a global attractor for the semiflow of weak solutions of a two-cell Brusselator system is proved. The method of grouping estimation is exploited to deal with the challenge in proving the absorbing property and the asymptotic compactness of this type of coupled reaction-diffusion systems with cubic autocatalytic nonlinearity and linear coupling. It is proved that the Hausdorff dimension and the fractal dimension of the global attractor are finite. Moreover, the existence of an exponential attractor for this solution semiflow is shown. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \newcommand{\inpt}[1]{\langle #1 \rangle} \section{Introduction} Consider a reaction-diffusion systems consisting of four coupled two-cell Brusselator equations associated with cubic autocatalytic kinetics \cite{GLI07, KS80, aK83, SM82}, \begin{gather} \frac{\partial u}{\partial t} = d_1 \Delta u + a - (b + 1)u + u^2 v + D_1 (w - u), \label{equ} \\ \frac{\partial v}{\partial t} = d_2 \Delta v + bu - u^2 v + D_2 (z - v), \label{eqv} \\ \frac{\partial w}{\partial t} = d_1 \Delta w + a - (b + 1)w + w^2 z + D_1 (u - w), \label{eqw} \\ \frac{\partial z}{\partial t} = d_2 \Delta z + bw - w^2 z + D_2 (v - z), \label{eqz} \end{gather} for $t > 0$, on a bounded domain $\Omega \subset \Re^{n}, n \leq 3$, that has a locally Lipschitz continuous boundary, with the homogeneous Dirichlet boundary condition \begin{equation} \label{dbc} u(t, x) = v(t, x) = w (t, x) = z (t, x) = 0, \quad t > 0, \; x \in \partial \Omega, \end{equation} and an initial condition \begin{equation} \label{ic} u(0,x) = u_0 (x), \quad v(0, x) = v_0 (x), \quad w(0,x) = w_0 (x), \quad z(0, x) = z_0 (x),\quad x \in \Omega, \end{equation} where $d_1, d_2, a, b, D_1$, and $D_2$ are positive constants. In this work, we shall study the asymptotic dynamics of the solution semiflow generated by this problem. The Brusselator model is originally a system of two ordinary differential equations describing kinetics of cubic autocatalytic chemical or biochemical reactions, proposed by the scientists in the Brussels school led by the renowned Nobel Prize laureate (1977), Ilya Prigogine, cf. \cite{PL68, AN75}. Brusselator kinetics describes the following scheme of chemical reactions \begin{gather*} \text{A} \longrightarrow \text{U}, \\ \text{B} + \text{U} \longrightarrow \text{V} + \text{D}, \\ 2 \text{U} + \text{V} \longrightarrow 3 \text{U}, \\ \text{U} \longrightarrow \text{E}, \end{gather*} where \text{A}, \text{B}, \text{D}, \text{E}, \text{U}, and \text{V} are chemical reactants or products. Let $u(t, x)$ and $v(t, x)$ be the concentrations of \text{U} and \text{V}, and assume that the concentrations of the input compounds \text{A} and \text{B} are held constant during the reaction process, denoted by $a$ and $b$ respectively. Then by the law of mass action and the Fick's law one obtains a system of two nonlinear reaction-diffusion equations called (diffusive) \emph{Brusselator equations}, \begin{gather} \frac{\partial u}{\partial t} = d_1 \Delta u + u^{2}v - (b + 1)u + a, \label{bru}\\ \frac{\partial v}{\partial t} = d_2 \Delta v - u^{2}v + bu, \label{brv} \end{gather} Several known examples of autocatalysis which can be modelled by the Brusselator equations, such as ferrocyanide-iodate-sulphite reaction, chlorite-iodide-malonic acid reaction, arsenite-iodate reaction, and some enzyme catalytic reactions, cf. \cite{AO78, AN75, BD95}. Numerous studies by numerical simulations or by mathematical analysis, especially after the seminal publications \cite{LMOS93, jP93} in 1993, have shown that the autocatalytic reaction-diffusion systems such as the Brusselator equations and the Gray-Scott equations \cite{GS83, GS84} exhibit rich spatial patterns (including but not restricted to Turing patterns) and complex bifurcations \cite{AO78, BGMLF00, BD95, DKZ97, PPG01, PW05, WW03} as well as interesting dynamics \cite{CQ07, ER83, KCD97, KEW06, RR95, RPP97, Wet96} on 1D or 2D domains. For Brusselator equations and the other cubic autocatalytic model equations of space dimension $n \leq 3$, however, we have not seen substantial research results in the front of global dynamics until recently \cite{yY07, yY09a, yY09b, yY10}. In this paper, we shall prove the existence of a global attractor in the product $L^2$ phase space for the solution semiflow of the coupled two-cell Brusselator system \eqref{equ}--\eqref{eqz} with homogeneous Dirichlet boundary conditions \eqref{dbc}. This study of global dynamics of such a reaction-diffusion system of two cells or two compartments consisting of four coupled components is a substantial advance from the one-cell model of two-component reaction-diffusion systems toward the biological network dynamics \cite{GLI07, hK02}. Multi-cell or multi-compartment models generically mean the coupled ODEs or PDEs with large number of unknowns (interpreted as components in chemical kinetics or species in ecology), which appear widely in the literature of systems biology as well as cell biology. Here understandably "cell" is a generic term that may not be narrowly or directly interpreted as a biological cell. Coupled cells with diffusive reaction and mutual mass exchange are often adopted as model systems for description of processes in living cells and tissues, or in distributed chemical reactions and transport for compartmental reactors \cite{TCN01, SM82}. In this regard, unfortunately, the problems with high dimensionality can occur and puzzle the research, when the number of molecular species in the system turns out to be very large, which makes the behavior simulation extremely difficult or computationally too inefficient. Thus theoretical research results on multi-cell dynamics can give insights to deeper exploration of various signal transductions and spatio-temporal pattern formations or chaos. For most reaction-diffusion systems consisting of two or more equations arising from the scenarios of autocatalytic chemical reactions or biochemical activator-inhibitor reactions, such as the Brusselator equations and the coupled two-cell Brusselator systems here, the asymptotically dissipative sign condition in vector version $$ \lim_{|s| \to \infty} F(s) \cdot s \leq C, $$ where $C \geq 0$ is a constant, is inherently not satisfied by the opposite-signed and coupled nonlinear terms, see \eqref{opF} later. Besides serious challenge arises in dealing with the coupling of the two groups of variables $u, v$ and $w, z$. The novel mathematical feature in this paper is to overcome this coupling obstacle and make the \emph{a priori} estimates by a method of \emph{grouping estimation} combined with the other techniques to show the globally dissipative and attractive dynamics. We start with the formulation of an evolutionary equation associated with the two-cell Brusselator equations. Define the product Hilbert spaces as follows, \[ H = [L^2 (\Omega)]^4, \quad E = [H_{0}^{1}(\Omega)]^4, \quad \text{and} \quad \Pi = [(H_{0}^{1}(\Omega) \cap H^{2}(\Omega))]^4. \] The norm and inner-product of $H$ or the component space $L^2 (\Omega)$ will be denoted by $\| \cdot \|$ and $\inpt{\cdot , \cdot}$, respectively. The norm of $L^p (\Omega)$ will be denoted by $\| \cdot \|_{L^{p}}$ if $p \ne 2$. By the Poincar\'e inequality and the homogeneous Dirichlet boundary condition \eqref{dbc}, there is a constant $\gamma > 0$ such that \begin{equation} \label{pcr} \| \nabla \varphi \|^2 \geq \gamma \| \varphi \|^2, \quad \text{for } \varphi \in H_{0}^{1}(\Omega) \text{ or } E, \end{equation} and we shall take $\| \nabla \varphi \|$ to be the equivalent norm $\| \varphi \|_E$ of the space $E$ and of the component space $H_{0}^{1}(\Omega)$. We use $| \cdot |$ to denote an absolute value or a vector norm in a Euclidean space. It is easy to check that, by the Lumer-Phillips theorem and the analytic semigroup generation theorem \cite{SY02}, the linear operator \begin{equation} \label{opA} A = \begin{pmatrix} d_1 \Delta & 0 &0 &0\\ 0 & d_2 \Delta &0 &0\\ 0 &0 &d_1 \Delta &0\\ 0 &0 &0 &d_2 \Delta \end{pmatrix} : D(A) (= \Pi) \longrightarrow H \end{equation} is the generator of an analytic $C_0$-semigroup on the Hilbert space $H$, which will be denoted by $\{e^{At}, t \geq 0\}$. It is known \cite{MK05, SY02, rT88} that $A$ in \eqref{opA} is extended to be a bounded linear operator from $E$ to $E^*$. By the fact that $H_{0}^{1}(\Omega) \hookrightarrow L^6(\Omega)$ is a continuous embedding for $n \leq 3$ and using the generalized H\"{o}lder inequality, $$ \| u^{2}v \| \leq \| u \|_{L^6}^2 \| v \|_{L^6}, \quad \| w^{2}z \| \leq \| w \|_{L^6}^2 \| z \|_{L^6}, \quad \text{for} \; u, v, w, z \in L^6 (\Omega), $$ one can verify that the nonlinear mapping \begin{equation} \label{opF} F(g) = \begin{pmatrix} a - (b+1)u + u^2 v + D_1 (w - u) \\ bu - u^2 v + D_2 (z - v) \\ a - (b+1)w + w^2 z + D_1 (u - w) \\ bw - w^2 z + D_2 (v - z) \end{pmatrix} : E \longrightarrow H, \end{equation} where $g = (u, v, w, z)$, is well defined on $E$ and is locally Lipschitz continuous. Thus the initial-boundary value problem \eqref{equ}--\eqref{ic} is formulated into the following initial value problem, \begin{gather} \label{eveq} \frac{dg}{dt} = A g + F(g), \quad t > 0, \\ g(0) = g_0 = \operatorname{col} (u_0, v_0, w_0, z_0). \notag \end{gather} where $g (t) = \operatorname{col} (u(t, \cdot), v(t, \cdot), w(t, \cdot), z(t, \cdot))$, which is simply written as \\ $(u(t, \cdot), v(t, \cdot), w(t, \cdot), z(t, \cdot))$. We shall also simply write $g_0 = (u_0, v_0, w_0, z_0)$. The local existence of solution to a multi-component reaction-diffusion system such as \eqref{eveq} with certain regularity requirement is not a trivial issue. There are two different approaches to get a solution. One is the mild solution provided by the "variation-of-constant formula" in terms of the associated linear semigroup $\{e^{At}\}_{t \geq 0}$ but the the parabolic theory of mild solution requires that $g_0 \in E$ instead of $g_0 \in H$ assumed here. The other is the weak solution obtained through the Galerkin approximation (the spectral approximation) and the Lions-Magenes type of compactness approach, cf. \cite{CV02, jL69, SY02}. \begin{definition} \label{D:wksn} \rm A function $g(t, x), (t, x) \in [0, \tau] \times \Omega$, is called a weak solution to the initial value problem of the parabolic evolutionary equation \eqref{eveq}, if the following two conditions are satisfied: \begin{itemize} \item[(i)] $\frac{d}{dt} (g, \zeta) = (Ag, \zeta) + (F(g), \zeta)$ is satisfied for a.e. $t \in [0, \tau]$ and for any $\zeta \in E$; \item[(ii)] $g(t, \cdot) \in L^2 (0, \tau; E) \cap C_w ([0, \tau]; H)$ such that $g(0) = g_0$. \end{itemize} Here $(\cdot , \cdot)$ stands for the dual product of $E^*$ (the dual space of $E$) and $E$, $C_w$ stands for the weakly continuous functions valued in $H$, and \eqref{eveq} is satisfied in the space $E^*$. \end{definition} \begin{proposition} \label{P:locwk} For any given initial data $g_0 \in H$, there exists a unique, local weak solution $g(t) = (u(t), v(t), w(t), z(t)), t \in [0,\tau]$ for some $\tau > 0$, of the Brusselator evolutionary equation \eqref{eveq}, which becomes a strong solution on $(0, \tau]$, namely, it satisfies \begin{equation} \label{soln} g \in C([0, \tau]; H) \cap C^1 ((0, \tau); H) \cap L^2 (0, \tau; E) \end{equation} and \eqref{eveq} is satisfied in the space $H$ for $t \in (0, \tau]$. \end{proposition} The proof of Proposition \ref{P:locwk} is made by conducting \emph{a priori} estimates on the Galerkin approximate solutions of the initial value problem \eqref{eveq} (these estimates are similar to what we shall present in Section 2) and by the weak/weak$^*$ convergence argument, as well as the use of the properties of the function space, cf. \cite{CV02, jL69}, $$ \Phi (0, \tau) = \{\varphi (\cdot ): \varphi \in L^2 (0, \tau; E), \, \text{(distributional)} \, \partial_t \varphi \in L^2 (0, \tau; E^*)\}, $$ with the norm $$ \| \varphi \|_\Phi = \|\varphi \|_{L^2 (0, \tau; E)} + \| \partial_t \varphi \|_{L^2 (0, \tau; E^*)}. $$ The detail is omitted here. We refer to \cite{jH88, SY02, rT88} and many references therein for the concepts and basic facts in the theory of infinite dimensional dynamical systems, including few given below for clarity. \begin{definition} \label{D:abs} \rm Let $\{S(t)\}_{t \geq 0}$ be a semiflow on a Banach space $X$. A bounded subset $B_0$ of $X$ is called an \emph{absorbing set} in $X$ if, for any bounded subset $B \subset X$, there is some finite time $t_0 \geq 0$ depending on $B$ such that $S(t)B \subset B_0$ for all $t > t_0$. \end{definition} \begin{definition} \label{D:asp} \rm A semiflow $\{S(t)\}_{t \geq 0}$ on a Banach space $X$ is called \emph{asymptotically compact} if for any bounded sequences $\{x_n \}$ in $X$ and $\{t_n \} \subset (0, \infty)$ with $t_n \to \infty$, there exist subsequences $\{x_{n_k}\}$ of $\{x_n \}$ and $\{t_{n_k}\}$ of $\{t_n\}$, such that $\lim_{k \to \infty} S(t_{n_k})x_{n_k}$ exists in $X$. \end{definition} \begin{definition} \label{D:atr} \rm Let $\{S(t)\}_{t \geq 0}$ be a semiflow on a Banach space $X$. A subset $\mathscr{A}$ of $X$ is called a \emph{global attractor} for this semiflow, if the following conditions are satisfied: \begin{itemize} \item[(i)] $\mathscr{A}$ is a nonempty, compact, and invariant set in the sense that $$ S(t)\mathscr{A} = \mathscr{A} \quad \text{for any } t \geq 0. $$ \item[(ii)] $\mathscr{A}$ attracts any bounded set $B$ of $X$ in terms of the Hausdorff distance, i.e. $$ \operatorname{dist} (S(t)B, \mathscr{A}) = \sup_{x \in B} \inf_{y \in \mathscr{A}} \| S(t) x - y\|_{X} \to 0, \quad \text{as } t \to \infty. $$ \end{itemize} \end{definition} Now we state the main result of this paper. We emphasize that this result is established unconditionally, neither assuming initial data or solutions are nonnegative, nor imposing any restriction on any positive parameters involved in the equations \eqref{equ}--\eqref{eqz}. \begin{theorem}[Main Theorem] \label{Mthm} For any positive parameters $d_1, d_2, a, b, D_1,D_2$, there exists a global attractor $\mathscr{A}$ in the phase space $H$ for the solution semiflow $\{S(t)\}_{t\geq0}$ generated by the Brusselator evolutionary equation \eqref{eveq}. \end{theorem} The following proposition states concisely the basic result on the existence of a global attractor for a semiflow, cf. \cite{jH88, SY02, rT88}. \begin{proposition} \label{P:kpac} Let $\{S(t)\}_{t\geq0}$ be a semiflow on a Banach space $X$. If the following conditions are satisfied: \begin{itemize} \item[(i)] $\{S(t)\}_{t\geq0}$ has a bounded absorbing set $B_0$ in $X$, and \item[(ii)] $\{S(t)\}_{t\geq0}$ is asymptotically compact, \\ then there exists a global attractor $\mathscr{A}$ in $X$ for this semiflow, which is given by $$ \mathscr{A} = \omega (B_0) \overset{\rm def}{=} \cap_{\tau \geq 0} \operatorname{Cl}_{X} \cup_{t \geq \tau} (S(t)B_0). $$ \end{itemize} \end{proposition} In Section 2 we shall prove the global existence of the weak solutions of the Brusselator evolutionary equation \eqref{eveq} and the absorbing property of this solution semiflow. In Section 3 we shall prove the asymptotic compactness of this solutions semiflow. In Section 4 we show the existence of a global attractor in space $H$ for this Busselator semiflow and its properties as being the $(H, E)$ global attractor and the $\mathbb{L}^\infty$ regularity. We also prove that the global attractor has a finite Hausdorff dimension and a finite fractal dimension. In Section 5, the existence of an exponential attractor for this semiflow is shown. As a remark, with some adjustment in proof, these results are also valid for the homogeneous Neumann boundary condition. Furthermore, corresponding results can be shown for the coupled two-cell Gray-Scott equations, Selkov equations, and Schnackenberg equations. \section{Global solutions and absorbing property} In this article, we shall write $u(t, x)$, $v(t, x)$, $w(t, x)$, and $z(t,x)$ simply as $u(t)$, $v(t)$, $w(t)$, and $z(t)$, or even as $u$, $v$, $w$, and $z$, and similarly for other functions of $(t,x)$. \begin{lemma} \label{L:glsn} For any initial data $g_0 =(u_0, v_0, w_0, z_0) \in H$, there exists a unique, global weak solution $g(t) = (u(t), v(t), w(t), z(t)), \, t \in [0, \infty)$, of the Brusselator evolutionary equation \eqref{eveq} and it becomes a strong solution on the time interval $(0, \infty)$. \end{lemma} \begin{proof} By Proposition \ref{P:locwk}, the local weak solution $g(t) = (u(t), v(t), w(t), z(t))$ exists uniquely on $[0, T_{\rm max})$, the maximal interval of existence. Taking the inner products $\inpt{\eqref{eqv}, v(t)}$ and $\inpt{\eqref{eqz}, z(t)}$ and summing up, we obtain \begin{equation} \label{vziq} \begin{split} \frac{1}{2} &\Big(\frac{d}{dt} \| v \|^2 + \frac{d}{dt} \| z \|^2 \Big) + d_2 \left(\| \nabla v \|^2 + \| \nabla z \|^2\right) \\ & = \int_{\Omega} \left(-u^2 v^2 + buv - w^2 z^2 + bwz - D_2 [v^2 - 2vz + z^2] \right) \, dx \\ & = \int_{\Omega} - \Big[\big(uv - \frac{b}{2}\big)^2 + \big(wz - \frac{b}{2}\big)^2 + D_2 (v - z)^2 \Big]\, dx + \frac{1}{2} b^2 |\Omega |\\ &\leq \frac{1}{2} b^2 |\Omega |. \end{split} \end{equation} It follows that \[ \frac{d}{dt} \left(\| v \|^2 + \| z \|^2 \right) + 2\gamma d_2 \left(\| v \|^2 + \| z \|^2 \right) \leq b^2 |\Omega |, \] which yields \begin{equation} \label{vz} \| v(t) \|^2 + \| z (t)\|^2 \leq e^{- 2\gamma d_2 t} \left(\| v_0 \|^2 + \| z_0 \|^2 \right) + \frac{b^2 |\Omega |}{2\gamma d_2}, \quad \text{for } t \in [0, T_{\rm max}). \end{equation} Let $y(t, x) = u(t, x) + v(t, x) + w(t,x) + z(t,x)$. In order to treat the $u$-component and the $w$-component, first we add up \eqref{equ}, \eqref{eqv}, \eqref{eqw} and \eqref{eqz} altogether to get the following equation satisfied by $y(t) = y(t, x)$, \begin{equation} \label{eqy} \frac{\partial y}{\partial t} = d_1 \Delta y - y + \left[(d_2 - d_1)\Delta (v + z) + (v + z) + 2a\right]. \end{equation} Taking the inner-product $\inpt{\eqref{eqy},y(t)}$ we obtain \begin{align*} &\frac{1}{2} \frac{d}{dt} \| y \|^2 + d_1 \| \nabla y \|^2 + \| y \|^2\\ &= \int_{\Omega} \, \left[(d_2 - d_1)\Delta (v+z) + (v+ z) + 2a\right]y \, dx \\ & \leq | d_1 - d_2 | \| \nabla (v + z) \| \| \nabla y \| + \| v + z \| \| y \| + 2a | \Omega |^{1/2} \| y \|\\ & \leq \frac{d_1}{2} \| \nabla y \|^2 + \frac{|d_1 - d_2 |^2}{2d_1} \| \nabla (v + z) \|^2 + \frac{1}{2} \| y \|^2 + \| v + z \|^2 + 4a^2 | \Omega |, \end{align*} so that \begin{equation} \label{nyiq} \frac{d}{dt} \| y \|^2 + d_1 \| \nabla y \|^2 + \| y \|^2 \leq \frac{| d_1 - d_2 |^2}{d_1} \| \nabla (v+z) \|^2 + 4\left(\| v\|^2 + \|z \|^2\right) + 8a^2 | \Omega |. \end{equation} By substituting \eqref{vz} for $\|v \|^2 + \| z \|^2$ in the above inequality, we obtain \begin{equation} \label{yiq} \frac{d}{dt} \| y \|^2 + d_1 \| \nabla y \|^2 + \| y \|^2 \leq \frac{| d_1 - d_2 |^2}{d_1} \| \nabla (v+z) \|^2 + C_1(v_0, z_0, t), \end{equation} where \[ C_1(v_0, z_0, t) = 4 e^{- 2\gamma d_2 t} \left(\| v_0 \|^2 + \| z_0 \|^2\right) + \big(\frac{4b^2}{\gamma d_2} + 8a^2 \big) |\Omega |. \] Integrate the inequality \eqref{yiq}. Then the weak solution $y(t)$ of \eqref{eqy} satisfies the estimate \begin{equation} \label{yy} \begin{split} \| y(t) \|^2 &\leq \| u_0 + v_0 + w_0 + z_0\|^2 + \frac{| d_1 - d_2 |^2}{d_1} \int_{0}^{t} \| \nabla (v(s)+z(s)) \|^2 \, ds \\ &\quad + \frac{2}{\gamma d_2} \left(\| v_0 \|^2 + \| v_0 \|^2\right) + \big(\frac{4b^2}{\gamma d_2 } + 8a^2 \big) |\Omega | t, \quad t \in [0, T_{\rm max}). \end{split} \end{equation} From \eqref{vziq} we also have \begin{align*} d_2 \int_0^{t} \| \nabla (v(s) + z(s)) \|^2 \, ds &\leq 2d_2 \int_0^{t} \Big(\|\nabla v(s) \|^2 + \|\nabla z(s) \|^2\Big)\, ds \\ &\leq \left(\| v_0 \|^2 + \|z_0 \|^2\right) + b^2 | \Omega | t. \end{align*} Substitute this into \eqref{yy} to obtain \begin{equation} \label{yy1} \begin{split} \| y(t) \|^2 & \leq \| u_0 + v_0 + w_0 + z_0\|^2 + \Big(\frac{| d_1 - d_2 |^2}{d_1 \, d_2} + \frac{2}{\gamma d_2} \Big) \left( \| v_0 \|^2 + \|z_0 \|^2\right)\\ &\quad + \Big[ \Big(\frac{| d_1 - d_2 |^2}{d_1 \, d_2} + \frac{4}{\gamma d_2 } \Big) b^2+ 8a^2 \Big] |\Omega | \,t, \quad t \in [0, T_{\rm max}). \end{split} \end{equation} Let $p(t) = u(t) + w(t)$. Then by \eqref{vz} and \eqref{yy1} we have shown that \begin{equation} \label{pp} \begin{split} &\| p(t) \|^2 = \|u(t) + w(t) \|^2 = \|y(t) - (v(t) + z(t))\|^2 \\ & \leq 2\Big(\|u_0 +v_0+w_0+z_0\|^2 + \Big(1 + \frac{| d_1 - d_2 |^2}{d_1 \, d_2} + \frac{2}{\gamma d_2} \Big)(\|v_0\|^2+\|z_0\|^2) \Big) + C_2 \, t, \end{split} \end{equation} for $t \in [0, T_{\rm max})$, where $C_2$ is a constant independent of the initial data $g_0$. On the other hand, let $\psi (t,x) = u(t, x) + v(t, x) - w(t,x) - z(t,x)$, which satisfies the equation \begin{equation} \label{eqps} \frac{\partial \psi}{\partial t} = d_1 \Delta \psi - (1 + 2D_1) \psi + \left[(d_2 - d_1)\Delta (v - z) + (1 + 2(D_1 - D_2))(v - z)\right]. \end{equation} Taking the inner-product $\inpt{\eqref{eqps},\psi(t)}$ we obtain \begin{align*} \frac{1}{2} & \frac{d}{dt} \|\psi \|^2 + d_1 \|\nabla \psi \|^2 + \|\psi \|^2 \leq \frac{1}{2} \frac{d}{dt} \|\psi \|^2 + d_1 \|\nabla \psi \|^2 + (1 + 2D_1) \|\psi \|^2 \\[5pt] & \leq (d_1 - d_2) \|\nabla (v - z)\| \|\nabla \psi \| + |1 + 2(D_1 - D_2)| \|v - z\| \|\psi \| \\ & \leq \frac{d_1}{2} \|\nabla \psi\|^2 + \frac{|d_1 - d_2|^2}{2d_1} \|\nabla (v-z)\|^2 + \frac{1}{2} \|\psi\|^2 + \frac{1}{2} |1 + 2(D_1 - D_2)|^2 \|v - z\|^2, \end{align*} so that \begin{equation} \label{psiq} \frac{d}{dt} \|\psi \|^2 + d_1 \|\nabla \psi \|^2 + \|\psi \|^2 \leq \frac{|d_1 - d_2|^2}{d_1} \|\nabla (v-z)\|^2 + C_3 (v_0, z_0, t), \end{equation} where \[ C_3(v_0, z_0, t) = 2 |1 + 2(D_1 - D_2)|^2 \Big( e^{- 2\gamma d_2 t} \big(\| v_0 \|^2 + \| z_0 \|^2\big) + \frac{b^2}{2\gamma d_2} |\Omega|\Big). \] Integration of \eqref{psiq} yields \begin{equation} \label{ppsi} \begin{split} \|\psi\|^2 & \leq \|u_0+v_0 - w_0 - z_0\|^2 + \frac{|d_1 - d_2|^2}{d_1} \int_0^t \|\nabla (v(s) - z(s) )\|^2\, ds \\ &\quad + |1 + 2(D_1 - D_2)|^2 \Big(\frac{1}{\gamma d_2} (\|v_0\|^2 + \|z_0\|^2) + \frac{b^2 |\Omega|}{\gamma d_2}\, t \Big), \quad t \in [0, T_{\rm max}). \end{split} \end{equation} Note that \begin{align*} d_2 \int_0^{t} \| \nabla (v(s) - z(s)) \|^2 \, ds & \leq 2d_2 \int_0^{t} \left(\|\nabla v(s) \|^2 + \|\nabla z(s) \|^2\right)\, ds \\ &\leq \left(\| v_0 \|^2 + \|z_0 \|^2\right) + b^2 | \Omega | t. \end{align*} From \eqref{ppsi} it follows that \begin{equation} \label{ppsi1} \begin{split} \|\psi\|^2 &\leq \| u_0 + v_0 - w_0 - z_0\|^2 + \frac{| d_1 - d_2 |^2}{d_1 \, d_2} \left( \| v_0 \|^2 + \|z_0 \|^2 + b^2 |\Omega|\, t \right) \\ &\quad + |1 + 2(D_1 - D_2)|^2 \Big(\frac{1}{\gamma d_2} (\|v_0\|^2 + \|z_0\|^2) + \frac{b^2 |\Omega|}{\gamma d_2}\, t \Big), \quad t \in [0, T_{\rm max}). \end{split} \end{equation} Let $q(t) = u(t) - w(t)$. Then by \eqref{vz} and \eqref{ppsi1} we find that \begin{equation} \label{qq} \begin{split} \| q(t) \|^2 &= \|u(t) - w(t) \|^2 = \|\psi (t) - (v(t) - z(t))\|^2 \leq 2\|u_0 +v_0-w_0-z_0\|^2 \\ &\quad + 2\Big(1 + \frac{|d_1 - d_2 |^2}{d_1 d_2} + \frac{|1 + 2(D_1 - D_2)|^2}{\gamma d_2}\Big) (\|v_0\|^2+\|z_0\|^2) + C_4 t, \end{split} \end{equation} for $ t \in [0, T_{\rm max})$, where $C_4$ is a constant independent of the initial data $g_0$. Finally combining \eqref{pp} and \eqref{qq} we can conclude that for each initial data $g_0 \in H$, the components $u(t) = (1/2) (p(t) + q(t))$ and $w(t) = (1/2)(p(t) - q(t))$ are bounded if $T_{\rm max}$ of the maximal interval of existence of the solution is finite. Together with \eqref{vz}, it shows that, for each $g_0 \in H$, the weak solution $g(t) = (u(t), v(t), w(t), z(t))$ of the Brusselator evolutionary equation \eqref{eveq} will never blow up in $H$ at any finite time and it exists globally. \end{proof} By the global existence and uniqueness of the weak solutions and their continuous dependence on initial data shown in Proposition \ref{P:locwk} and Lemma \ref{L:glsn}, the family of all the global weak solutions $\{g(t; g_0):\, t \geq 0, g_0 \in H \}$ defines a semiflow on $H$, $$ S(t): g_0 \mapsto g(t; g_0), \quad g_0 \in H, \; t \geq 0, $$ which is called the two-cell Brusselator semiflow, or simply the \emph{Brusselator semiflow}, generated by the Brusselator evolutionary equation \eqref{eveq}. \begin{lemma} \label{L:absb} There exists a constant $K_1 > 0$, such that the set \begin{equation} \label{bk} B_0 = \left\{ \| g \| \in H : \| g \|^2 \leq K_1 \right\} \end{equation} is an absorbing set in $H$ for the Brusselator semiflow $\{S(t)\}_{ t \geq 0}$. \end{lemma} \begin{proof} For this two-cell Brusselator semiflow, from \eqref{vz} we obtain \begin{equation} \label{vzsup} \limsup_{t \to \infty} \, (\| v(t) \|^2 + \|z(t)\|^2) < R_0 = \frac{b^2 |\Omega |}{\gamma d_2} \end{equation} and that for any given bounded set $B \subset H$ and $g_0 \in B$ there is a finite time $t_1 (B) \geq 0$ such that \begin{equation} \label{t1b} \| v(t; g_0)\|^2 + \|z(t; g_0)\|^2 < R_0, \quad \text{for any } t > t_1 (B). \end{equation} Moreover, for any $t \geq 0$, \eqref{vziq} also implies that \begin{equation} \label{vztt} \begin{split} &\int_{t}^{t+1} (\| \nabla v(s) \|^2 + \|\nabla z(s)\|^2) \, ds\\ &\leq \frac{1}{d_2} (\| v(t) \|^2 + \|z(t)\|^2 + b^2 |\Omega |) \\ &\leq \frac{1}{d_2} \Big( e^{- 2\gamma d_2 t} (\| v_0 \|^2 + \|z_0\|^2) + \frac{b^2 |\Omega |}{2\gamma d_2}\Big) + \frac{b^2 |\Omega |}{d_2}. \end{split} \end{equation} which is for later use. From \eqref{yiq} we can deduce that \[ \frac{d}{dt} \left( e^t \| y(t) \|^2 \right) \leq \frac{| d_1 - d_2 |^2}{d_1} \, e^t \| \nabla (v(t) + z(t)) \|^2 + e^t C_1(v_0, z_0, t). \] Integrate this differential inequality to obtain \begin{equation} \label{ey} \begin{split} \| y(t) \|^2 &\leq e^{-t} \| u_0 + v_0 +w_0+z_0 \|^2 \\ &\quad+ \frac{| d_1 - d_2 |^2}{d_1} \, \int_{0}^{t} e^{- (t -\tau)} \| \nabla (v(\tau) + z(\tau))\|^2 \, d\tau + C_5 (v_0, z_0, t), \end{split} \end{equation} where \begin{align*} C_5 (v_0, z_0, t) &= e^{-t} \int_{0}^{t} 4e^{(1 - 2\gamma d_2)\tau}\, d\tau \, (\| v_0 \|^2 + \|z_0\|^2) + \big( \frac{4b^2}{\gamma d_2} + 8a^2 \big) |\Omega | \\ &\leq 4\alpha (t) (\| v_0 \|^2 + \|z_0\|^2) + \big( \frac{4b^2}{\gamma d_2} + 8a^2 \big) |\Omega |, \end{align*} in which \begin{equation} \label{apht} \alpha (t) = e^{-t} \int_{0}^{t} e^{(1 - 2\gamma d_2)\tau}\, d\tau = \begin{cases} \frac{1}{| 1 - 2\gamma d_2 |} | e^{- 2\gamma d_2 t} - e^{-t} |, & \text{if $1 - 2\gamma d_2 \ne 0$;} \\ t e^{-t} \leq 2e^{-1} e^{-t/2}, & \text{if $ 1 - 2\gamma d_2 = 0$.} \end{cases} \end{equation} On the other hand, multiplying \eqref{vziq} by $e^t$ and then integrating each term of the resulting inequality, we obtain $$ \frac{1}{2} \int_{0}^{t} \, e^{\tau} \frac{d}{d\tau} \left(\| v(\tau) \|^2 + \|z(\tau)\|^2 \right) \, d\tau + d_2 \int_{0}^{t} \, e^{\tau} (\| \nabla v(\tau) \|^2 + \|z(\tau)\|^2) \, d\tau \leq \frac{1}{2} b^2 | \Omega | e^t, $$ so that, by integration by parts and using \eqref{vz}, we obtain \begin{equation} \label{evz} \begin{split} &d_2 \int_{0}^{t} \, e^{\tau} (\| \nabla v(\tau) \|^2 + \| \nabla z(\tau) \|^2 )\, d\tau \\ &\leq \frac{1}{2} b^2 | \Omega | e^t - \frac{1}{2} \int_{0}^{t} \, e^{\tau} \frac{d}{d\tau} \left(\| v(\tau) \|^2 + \| \nabla z(\tau) \|^2 \right) \, d\tau \\ & = \frac{1}{2} b^2 | \Omega | e^t - \frac{1}{2} \Big[ e^t (\| v(t) \|^2 + \| z(t) \|^2 ) - (\| v_0 \|^2 + \|z_0\|^2) \\ &\quad - \int_{0}^{t} \, e^{\tau} (\| v(\tau) \|^2 + \|z(\tau)\|^2) \, d\tau \Big] \\ & \leq b^2 | \Omega | e^t + (\| v_0 \|^2 + \|z_0\|^2) + \int_{0}^{t} \, e^{(1 - 2\gamma d_2)\tau} (\| v_0 \|^2 + \|z_0\|^2)\, d\tau + \frac{b^2 |\Omega |}{2\gamma d_2} e^t \\ & \leq \big(1 + \frac{1}{2\gamma d_2} \big) b^2 |\Omega | e^t + \left( 1 + \alpha (t) e^t \right) (\| v_0 \|^2 + \|z_0\|^2), \quad \text{for} \; t \geq 0. \end{split} \end{equation} Substituting \eqref{evz} into \eqref{ey}, we obtain that for $t \geq 0$, \begin{equation} \label{yyf} \begin{split} &\| y(t) \|^2 \\ & \leq e^{-t}\| u_0 + v_0 +w_0+z_0\|^2 + C_5 (v_0, z_0, t) \\[5pt] &\quad+ \frac{2| d_1 - d_2 |^2}{d_1\, d_2} e^{-t} \Big[ \big(1 + \frac{1}{2\gamma d_2} \big) b^2 |\Omega | e^t + \big( 1 + e^t \alpha (t) \big) (\| v_0 \|^2+ \|z_0\|^2)\Big] \\ & \leq e^{-t}\| u_0 + v_0 +w_0 +z_0\|^2 + 4\alpha (t) (\| v_0 \|^2 + \|z_0\|^2) + \big( \frac{4b^2}{\gamma d_2} + 8a^2 \big) |\Omega | \\ &\quad + \frac{2| d_1 - d_2 |^2}{d_1\, d_2} e^{-t} \Big[ \big(1 + \frac{1}{2\gamma d_2} \big) b^2 |\Omega | e^t + \left( 1 + e^t \alpha (t) \right) (\| v_0 \|^2 + \|z_0\|^2) \Big]. \end{split} \end{equation} Note that \eqref{apht} shows $\alpha (t) \to 0$, as $t \to 0$. From \eqref{yyf} we find that \begin{equation} \label{ysup} \limsup_{t \to \infty} \|y(t) \|^2 < R_1 = 1 + \big( \frac{4b^2}{\gamma d_2} + 8a^2 \big) |\Omega | + \frac{2| d_1 - d_2 |^2}{d_1\, d_2} \big(1 + \frac{1}{2\gamma d_2} \big) b^2 |\Omega |. \end{equation} The combination of \eqref{vzsup} and \eqref{ysup} gives us \begin{equation} \label{psup} \limsup_{t \to \infty} \| u(t) + w(t) \|^2 = \limsup_{t \to \infty} \| y(t) - (v(t) + z(t))\|^2 < 4R_0 + 2R_1. \end{equation} Similarly, from the inequality \eqref{psiq} satisfied by $\psi (t) = u(t) + v(t) - w(t) -z(t)$, we obtain \[ \frac{d}{dt} \left( e^t \| \psi(t) \|^2 \right) \leq \frac{| d_1 - d_2 |^2}{d_1} \, e^t \| \nabla (v(t) - z(t)) \|^2 + e^t C_3(v_0, z_0, t). \] Integrate this differential inequality to obtain \begin{equation} \label{epsi} \begin{split} \| \psi(t) \|^2 &\leq e^{-t} \| u_0 + v_0 - w_0 - z_0 \|^2 \\ &\quad + \frac{| d_1 - d_2 |^2}{d_1} \, \int_{0}^{t} e^{- (t -\tau)} \| \nabla (v(\tau) - z(\tau))\|^2 \, d\tau + C_6 (v_0, z_0, t), \end{split} \end{equation} where \begin{align*} C_6 (v_0, z_0, t) &= 2 |1 + 2(D_1 - D_2)|^2 \Big(e^{-t} \int_{0}^{t} e^{(1 - 2\gamma d_2)\tau}\, d\tau \, (\| v_0 \|^2 + \|z_0\|^2) + \frac{b^2}{\gamma d_2} |\Omega| \Big) \\ &\leq 2 |1 + 2(D_1 - D_2)|^2 \Big(\alpha (t) (\| v_0 \|^2 + \|z_0\|^2) + \frac{b^2}{\gamma d_2} |\Omega |\Big). \end{align*} Using \eqref{evz} to treat the integral term in \eqref{epsi}, we obtain that \begin{equation} \label{ppsif} \begin{split} &\| \psi(t) \|^2\\ & \leq e^{-t}\| u_0 + v_0 - w_0 - z_0\|^2 + C_6 (v_0, z_0, t) \\ &\quad + \frac{2| d_1 - d_2 |^2}{d_1\, d_2} e^{-t} \int_0^t e^{\tau} (\| \nabla v(\tau) \|^2+ \|\nabla z(\tau)\|^2) \, d\tau \\ & \leq e^{-t}\| u_0 + v_0 - w_0 - z_0\|^2 + 2 |1 + 2(D_1 - D_2)|^2 \\ &\quad \times \Big(\alpha (t) (\| v_0 \|^2 + \|z_0\|^2) + \frac{b^2}{\gamma d_2} |\Omega |\Big) \\ &\quad + \frac{2| d_1 - d_2 |^2}{d_1\, d_2} e^{-t} \Big[ \big(1 + \frac{1}{2\gamma d_2} \big) b^2 |\Omega | e^t + \left( 1 + e^t \alpha (t) \right) (\| v_0 \|^2 + \|z_0\|^2) \Big], \end{split} \end{equation} for $ t \geq 0$. Therefore, since $\alpha (t) \to 0$ as $t \to 0$, from \eqref{ppsif} we obtain \begin{equation} \label{pssup} \limsup_{t \to \infty} \| \psi (t) \|^2 < R_2 = 1 + 2b^2 |\Omega| \Big[\frac{|1 + 2(D_1 - D_2)|^2}{\gamma d_2} + \frac{| d_1 - d_2 |^2}{d_1\, d_2} \big(1 + \frac{1}{2\gamma d_2}\big) \Big]. \end{equation} The combination of \eqref{vzsup} and \eqref{pssup} gives us \begin{equation} \label{qsup} \limsup_{t \to \infty} \| u(t) - w(t) \|^2 = \limsup_{t \to \infty} \| \psi (t) - (v(t) - z(t))\|^2 < 4R_0 + 2R_2. \end{equation} Finally, putting together \eqref{psup} and \eqref{qsup}, we assert that \begin{equation} \label{uwsup} \limsup_{t \to \infty} (\|u(t)\|^2 + \| w(t) \|^2 ) < 8R_0 + 2(R_1 + R_2). \end{equation} Moreover, from \eqref{vz}, \eqref{yyf} and \eqref{ppsif} we see that for any given bounded set $B \subset H$ and $g_0 \in B$ there is a finite time $t_2 (B) \geq 0$ such that \begin{equation} \label{T2B} \| u(t; g_0)\|^2 + \|w(t; g_0)\|^2 < 8R_0 + 2(R_1 + R_2), \quad \text{for any } t > t_2 (B). \end{equation} Then assembling \eqref{vzsup} and \eqref{uwsup}, we end up with \[ \limsup_{t \to \infty} \|g(t)\|^2 = \limsup_{t \to \infty} (\|u(t)\|^2 + \|v(t)\|^2 + \| w(t) \|^2 + \|z(t)\|^2 ) < 9R_0 + 2(R_1 + R_2). \] Moreover, \eqref{t1b} and \eqref{T2B} show that for any given bounded set $B \subset H$ and $g_0 \in B$ the solution $g(t; g_0)$ satisfies \[ \|g(t; g_0)\|^2 < 9R_0 + 2(R_1 + R_2), \quad \text{for any } t > \max \{t_1 (B), t_2 (B)\}. \] Thus this lemma is proved with $K_1 = 9R_0 + 2(R_1 + R_2)$ in \eqref{bk}. And $K_1$ is a universal positive constant independent of initial data. \end{proof} Next we show the absorbing properties of the $(v, z)$ components of this Brusselator semiflow in the product Banach spaces $[L^{2p} (\Omega)]^2$, for any integer $1 \leq p \leq 3$. \begin{lemma} \label{L:absbp} For any given integer $1 \leq p \leq 3$, there exists a positive constant $K_p$ such that the absorbing inequality \begin{equation} \label{lsupp} \limsup_{t \to \infty} \, \|(v(t), z(t))\|_{L^{2p}}^{2p} < K_p \end{equation} is satisfied by the $(v, z)$ components of the Brusselator semiflow $\{S(t)\}_{t \geq 0}$ for any initial data $g_0 \in H$. \end{lemma} \begin{proof} The case $p = 1$ has been shown in Lemma \ref{L:absb}. According to the solution property \eqref{soln} satisfied by all the global weak solutions on $[0, \infty)$, we know that for any given initial status $g_0 \in H$ there exists a time $t_0 \in (0, 1)$ such that \begin{equation} \label{tog} S(t_0) g_0 \in E = [H_0^1 (\Omega)]^6 \hookrightarrow \mathbb{L}^6 (\Omega) \hookrightarrow \mathbb{L}^4 (\Omega). \end{equation} Then the weak solution $g(t) = S(t)g_0$ becomes a strong solution on $[t_0, \infty)$ and satisfies \begin{equation} \label{esf} S(\cdot) g_0 \in C([t_0, \infty); E) \cap L^2 (t_0, \infty; \Pi) \subset C([t_0, \infty); \mathbb{L}^6 (\Omega)) \subset C([t_0, \infty); \mathbb{L}^4 (\Omega)), \end{equation} for $n \leq 3$. Based on this observation, without loss of generality, we can simply \emph{assume} that $g_0 \in \mathbb{L}^6 (\Omega)$ for the purpose of studying the long-time dynamics. Thus parabolic regularity \eqref{esf} of strong solutions implies the $S(t)g_0 \in E \subset \mathbb{L}^6 (\Omega), t \geq 0$. Then by the bootstrap argument, again without loss of generality, one can \emph{assume} that $g_0 \in \Pi \subset \mathbb{L}^8 (\Omega)$ so that $S(t)g_0 \in \Pi \subset \mathbb{L}^8 (\Omega), t \geq 0$. Take the $L^2$ inner-product $\inpt{\eqref{eqv},v^5}$ and $\inpt{\eqref{eqz},z^5}$ and sum up to obtain \begin{equation} \label{vz6} \begin{split} & \frac{1}{6} \frac{d}{dt} \left(\|v(t)\|_{L^6}^6 + \|z(t)\|_{L^6}^6\right) + 5d_2 \left(\|v(t)^2 \nabla v(t)\|^2 + \|z(t)^2 \nabla z(t)\|^2\right) \\ &= \int_{\Omega} \left(bu(t,x)v^5 (t,x) - u^2(t,x)v^6(t,x) + bw(t,x)z^5(t,x) - w^2(t, x) z^6(t,x)\right) dx\\ & + D_2 \int_{\Omega} \left[(z(t,x) - v(t,x))v^5(t,x) + (v(t,x) - z(t,x))z^5(t,x)\right] dx. \end{split} \end{equation} By Young's inequality, we have \begin{align*} &\int_{\Omega} \left[\left(buv^5 - u^2v^6\right) + \left(bwz^5 - w^2z^6\right)\right] dx\\ &\leq \frac{1}{2} \Big(\int_{\Omega} b^2 (v^4 + z^4)\, dx - \int_{\Omega} (u^2 v^6 + w^2 z^6)\, dx \Big), \end{align*} and \[ \int_{\Omega} \left[(z - v)v^5 + (v - z)z^5\right] dx \leq \int_{\Omega} \Big[- v^6 + \big(\frac{1}{6} z^6 + \frac{5}{6} v^6 \big) + \big(\frac{1}{6} v^6 + \frac{5}{6} z^6 \big) - z^6 \Big] dx = 0. \] Substitute the above two inequalities into \eqref{vz6} and use Poincar\'{e} inequality, we obtain the following inequality relating $\|(v, z)\|_{L^6}^6$ to $\|(v, z)\|_{L^4}^4$, \begin{align*} &\frac{d}{dt} \left(\|v(t)\|_{L^6}^6 + \|z(t)\|_{L^6}^6\right) + 10\gamma d_2 \left(\|v(t)\|_{L^6}^6 + \|z(t)\|_{L^6}^6 \right) \\ & \leq \frac{d}{dt} \left(\|v(t)\|_{L^6}^6 + \|z(t)\|_{L^6}^6\right) + 10 d_2 \left(\|\nabla v^3 (t)\|^2 + \| \nabla z^3(t)\|^2\right)\\ & \leq 3b^2 (\|(v(t))\|_{L^4}^4 + \|(z(t))\|_{L^4}^4). \end{align*} Similarly we can get the corresponding inequality relating $\|(v, z)\|_{L^4}^4$ to $\|(v, z)\|^2$, \begin{align*} &\frac{d}{dt} \left(\|(v(t))\|_{L^4}^4 + \|(z(t))\|_{L^4}^4\right) + 6\gamma d_2 \left(\|(v(t))\|_{L^4}^4 + \|(z(t))\|_{L^4}^4 \right) \\ & \leq \frac{d}{dt} \left(\|(v(t))\|_{L^4}^4 + \|(z(t))\|_{L^4}^4\right) + 6 d_2 \left(\|\nabla v^2 (t)\|^2 + \| \nabla z^2(t)\|^2\right)\\ & \leq 2b^2 (\|v(t)\|^2 + \|z(t)\|^2). \end{align*} Applying Gronwall inequality to the above two inequalities and using \eqref{vz}, we obtain \begin{align*} &\|(v(t))\|_{L^4}^4 + \|(z(t))\|_{L^4}^4\\ & \leq e^{-6\gamma d_2 t} \left(\|v_0\|_{L^4}^4 + \|z_0\|_{L^4}^4\right) \\ &\quad + \int_0^t e^{-6\gamma d_2 (t-\tau)} 2b^2 (\|v(\tau)\|^2 + \|z(\tau)\|^2)d\tau \\ &\leq e^{-6\gamma d_2 t} \left(\|v_0\|_{L^4}^4 + \|z_0\|_{L^4}^4\right) + \int_{\Omega} e^{-6\gamma d_2(t-\tau)-2\gamma d_2 \tau}2b^2(\|v_0\|^2 + \|z_0\|^2)\, d\tau + \frac{b^4 |\Omega |}{6\gamma^2 d_2^2} \\ & \leq e^{-2\gamma d_2 t} C_7 \left(\|v_0\|_{L^6}^6 + \|z_0\|_{L^6}^6\right) + \frac{b^4 |\Omega |}{6\gamma^2 d_2^2}, \quad t \geq 0, \end{align*} where $C_7$ is a uniform positive constant, and then \begin{align*} &\|v(t)\|_{L^6}^6 + \|z(t)\|_{L^6}^6\\ &\leq e^{- 10\gamma d_2 t} \left(\|v_0\|_{L^6}^6 + \|z_0\|_{L^6}^6\right) + \int_0^t e^{- 10\gamma d_2 (t-\tau)} 3b^2 (\|v(\tau)\|_{L^4}^4 + \|z(\tau)\|_{L^4}^4)d\tau \\ &\leq e^{- 10\gamma d_2 t} \left(\|v_0\|_{L^6}^6 + \|z_0\|_{L^6}^6\right) + \int_{\Omega} e^{- 10\gamma d_2(t-\tau)-2\gamma d_2 \tau}3b^2 C_7(\|v_0\|_{L^6}^6 + \|z_0\|_{L^6}^6)\, d\tau\\ &\quad + \frac{b^6 |\Omega |}{20\gamma^3 d_2^3} \\ &\leq e^{-2\gamma d_2 t} \Big(1 + \frac{3b^2 C_7}{8\gamma d_2} \Big) \left(\|v_0\|_{L^6}^6 + \|z_0\|_{L^6}^6\right) + \frac{b^6 |\Omega |}{20\gamma^3 d_2^3}, \quad t \geq 0. \end{align*} It follows that \begin{gather} \limsup_{t \to \infty} \left(\|v(t)\|_{L^4}^4 + \|z(t)\|_{L^4}^4\right) < K_2 = 1 + \frac{b^4 |\Omega |}{6\gamma^2 d_2^2}, \label{vz4sup} \\ \limsup_{t \to \infty} \left(\|v(t)\|_{L^6}^6 + \|z(t)\|_{L^6}^6\right) < K_3 = 1 + \frac{b^6 |\Omega |}{20\gamma^3 d_2^3}. \label{vz6sup} \end{gather} Thus \eqref{lsupp} is proved. \end{proof} \section{Asymptotic compactness} The lack of inherent dissipation and the appearance of cross-cell coupling make the attempt of showing the asymptotic compactness of the two-cell Brusselator semiflow also challenging. In this section we shall prove this asymptotic compactness through the following two lemmas. Since $H_0^1 (\Omega) \hookrightarrow L^4 (\Omega)$ and $H_0^1 (\Omega) \hookrightarrow L^6 (\Omega)$ are continuous embeddings, there are constants $\delta > 0$ and $\eta > 0$ such that $\| \cdot \|_{L^4}^2 \leq \delta \|\nabla (\cdot)\|^2$ and $\| \cdot \|_{L^6}^2 \leq \eta \|\nabla (\cdot)\|^2$. We shall use the notation $\|(y_1, y_2)\|^2 = \|y_1\|^2 + \|y_2\|^2$ and $\|\nabla (y_1, y_2)\|^2 = \|\nabla y_1\|^2 + \|\nabla y_2\|^2$ for conciseness. The following proposition is about the uniform Gronwall inequality, which is an instrumental tool in the analysis of asymptotic compactness, cf. \cite{MK05, SY02, rT88}. \begin{proposition} \label{P:uGw} Let $\beta, \zeta$, and $h$ be nonnnegative functions in $L_{loc}^1 ([0, \infty); \mathbb{R})$. Assume that $\beta$ is absolutely continuous on $(0, \infty)$ and the following differential inequality is satisfied, $$ \frac{d\beta}{dt} \leq \zeta \beta + h, \quad \text{for } t > 0. $$ If there is a finite time $t_1 > 0$ and some $r > 0$ such that $$ \int_t^{t+r} \zeta (\tau)\, d\tau \leq A, \quad \int_t^{t+r} \beta (\tau)\, d\tau \leq B, \quad \int_t^{t+r} h(\tau)\, d\tau \leq C, $$ for any $t > t_1$, where $A, B$, and $C$ are some positive constants, then $$ \beta (t) \leq \big(\frac{B}{r} + C\big) e^{A}, \quad \text{for any } t > t_1 + r. $$ \end{proposition} \begin{lemma} \label{L:uwc} For any given initial data $g_0 \in B_0$, the $(u, w)$ components of the solution trajectories $g(t) = S(t)g_0$ of the IVP \eqref{eveq} satisfy \begin{equation} \label{uwq} \|\nabla (u(t), w(t)) \|^2 \leq M_1, \quad \text{for } t > T_1, \end{equation} where $M_1 > 0$ is a uniform constant depending on $K_1$ and $|\Omega |$ but independent of initial data, and $T_1 > 0$ is finite and only depends on the absorbing ball $B_0$. \end{lemma} \begin{proof} Take the inner-products $\inpt{\eqref{equ}, -\Delta u(t)}$ and $\inpt{\eqref{eqw}, -\Delta w(t)}$ and then sum up the two equalities to obtain \begin{align*} &\frac{1}{2} \frac{d}{dt} \|\nabla(u, w)\|^2 + d_1 \|\Delta (u,w)\|^2 + (b+ 1)\|\nabla(u, w)\|^2 \\ &= - \int_\Omega a (\Delta u +\Delta w)\, dx - \int_\Omega (u^2 v \Delta u + w^2 z \Delta w)\, dx \\ &\quad - D_1 \int_\Omega (|\nabla u |^2 - 2 \nabla u \cdot \nabla w + |\nabla w |^2 )\, dx \\ &\leq \big(\frac{d_1}{4} + \frac{d_1}{4} + \frac{d_1}{2}\big) \|\Delta (u, w)\|^2 + \frac{a^2}{d_1} |\Omega | + \frac{1}{2d_1} \int_\Omega \left(u^4 v^2 + w^4 v^2 \right) dx. \end{align*} It follows that \begin{equation} \label{nuw} \begin{split} &\frac{d}{dt} \|\nabla(u, w)\|^2 + 2(b+ 1)\|\nabla(u, w)\|^2\\ &\leq \frac{2 a^2 }{d_1} |\Omega | + \frac{1}{d_1} \left(\|u^2\|^2 \| v\|^2 + \|w^2\|^2 \| z\|^2 \right) \\ & \leq \frac{2 a^2 }{d_1} |\Omega | + \frac{\delta^2}{d_1} \left(\|v\|^2 \|\nabla u \|^4 + \|z\|^2 \|\nabla w \|^4 \right). \end{split} \end{equation} By the absorbing property shown in Lemma \ref{L:absb}, there is a finite time $T_0 = T_0 (B_0) \geq 0$ such that $S(t) B_0 \subset B_0$ for all $t > T_0$. Therefore, for any $g_0 \in B_0$, by \eqref{bk} we have \begin{equation} \label{vzvp} \| (u(t), w(t))\|^2 + \| (v(t), z(t))\|^2 \leq K_1, \quad \text{for } t > T_0. \end{equation} Substitute \eqref{vzvp} into \eqref{nuw} to obtain \begin{equation} \label{nuwiq} \begin{split} \frac{d}{dt} \|\nabla (u, w)\|^2 &\leq \frac{d}{dt} \|\nabla (u, w)\|^2 + 2(b+ 1)\|\nabla(u, w)\|^2\\ &\leq \frac{\delta^2 K_1}{d_1}\|\nabla (u, w)\|^4 + \frac{2 a^2}{d_1} |\Omega |, \end{split} \end{equation} which can be written as the inequality \begin{equation} \label{ugi} \frac{d \rho}{dt} \leq \beta \rho + \frac{2 a^2}{d_1} |\Omega |, \end{equation} where $$ \rho (t) = \|\nabla (u(t), w(t))\|^2 \quad \text{and} \quad \beta (t) = \frac{\delta^2 K_1}{d_1} \rho (t). $$ In view of the inequality \eqref{nyiq}, \eqref{vztt} and \eqref{vzvp}, we have \begin{equation} \label{ytt} \begin{split} &\int_t^{t+1} \|\nabla y(\tau)\|^2 \, d\tau \\ &\leq \frac{2|d_1 - d_2|^2}{d_1^2} \int_t^{t+1} \|\nabla (v + z)\|^2 d\tau \\ &\quad + \frac{1}{d_1} \Big(\|y(t)\|^2 + \int_t^{t+1} \frac{8}{\gamma} (\|v(\tau)\|^2 +\|z(\tau)\|^2 + 2a^2 |\Omega |)\, d\tau \Big) \leq C_{8}, \end{split} \end{equation} for $t> T_0$, where $$ C_{8} = \frac{4|d_1 - d_2|^2}{d_1^2 d_2} \big[K_1 + \big(1 + \frac{1}{2\gamma d_2}\big)b^2 |\Omega |\big] + \frac{1}{d_1} \Big(K_1 + \frac{8}{\gamma}(K_1 + 2a^2 |\Omega|)\Big). $$ From the inequality \eqref{psiq}, \eqref{vztt} and \eqref{vzvp} and with a similar estimation, there exists a uniform constant $C_{9} > 0$ such that \begin{equation} \label{ptt} \int_t^{t+1} \|\nabla \psi(\tau)\|^2 \,d\tau \leq C_{9}, \quad \text{for } t > T_0. \end{equation} Then we can put together \eqref{vztt}, \eqref{ytt} and \eqref{ptt} to get \begin{equation} \label{rtt} \begin{split} &\int_t^{t+1} \rho (\tau) \, d\tau\\ &= \int_t^{t+1} (\|\nabla u(\tau)\|^2 + \|\nabla w(\tau)\|^2)\, d\tau \\ &\leq \frac{1}{2} \int_t^{t+1} \left(\|\nabla (y(\tau) - (v(\tau) + z(\tau))\|^2 + \|\nabla (\psi(\tau) - (v(\tau) - z(\tau))\|^2 \right) d\tau \\ &\leq \int_t^{t+1} \left(\|\nabla y(\tau)\|^2 + \|\nabla \psi(\tau)\|^2 + \|\nabla (v + z)\|^2 + \|\nabla (v - z)\|^2\right) d\tau \\ &\leq C_{8} + C_{9} + \frac{4}{d_2} \big[K_1 + \big(1 + \frac{1}{2\gamma d_2}\big)b^2 |\Omega|\big] \overset{\rm def}{=} C_{10}, \quad \text{for } t > T_0. \end{split} \end{equation} Now we can apply the uniform Gronwall inequality in Proposition \ref{P:uGw} where $r =1$ to \eqref{ugi} and use \eqref{rtt} to reach the conclusion \eqref{uwq} with $$ M_1 = \Big(C_{10} + \frac{2 a^2}{d_1} |\Omega | \Big) e^{\delta^2 K_1C_{10}/d_1} $$ and $T_1 = T_0 (B_0) + 1$. The proof is completed. \end{proof} \begin{lemma} \label{L:vzc} For any given initial data $g_0 \in B_0$, the $(v, z)$ components of the trajectory $g(t) = S(t)g_0$ of the IVP \eqref{eveq} satisfy \begin{equation} \label{q2} \|\nabla (v(t), z(t)) \|^2 \leq M_2, \quad \text{for } t > T_2, \end{equation} where $M_2 > 0$ is a uniform constants depending on $K_1$ and $|\Omega |$ but independent of initial data, and $T_2\, (> T_1 > 0)$ is finite and only depends on the absorbing ball $B_0$. \end{lemma} \begin{proof} Take the inner-products $\inpt{\eqref{eqv}, -\Delta v(t)}$ and $\inpt{\eqref{eqz}, -\Delta z(t)}$ and sum up the two equalities to obtain \begin{align*} &\frac{1}{2} \frac{d}{dt} \|\nabla (v, z)\|^2 + d_2 \|\Delta (v, z)\|^2 \\ &= -\int_\Omega b(u\Delta v + w \Delta z)\, dx \\ &\quad + \int_\Omega (u^2 v \Delta v + w^2 z \Delta z )\, dx - D_2 \int_\Omega [(z - v)\Delta v + (v - z) \Delta z ]\, dx \\ & \leq \frac{d_2}{2} \|\Delta (v, z)\|^2 + \frac{b^2}{d_2} \|(u, w)\|^2 + \frac{1}{d_2} \int_\Omega (u^4 v^2 + w^4 z^2) \, dx \\ &\quad - D_2 \int_\Omega (|\nabla v |^2 - 2 \nabla v \cdot \nabla z + |\nabla z |^2 )\, dx \\ &\leq \frac{d_2}{2} \|\Delta (v, z)\|^2 + \frac{b^2}{d_2} \|(u, w)\|^2 + \frac{1}{d_2} \int_\Omega (u^4 v^2 + w^4 z^2) \, dx, \quad t > T_0. \end{align*} Since \begin{align*} &\|\nabla (v(t), z(t))\|^2 \\ &= - (\inpt{v, \Delta v} + \inpt{z, \Delta z}) \leq \frac{1}{2} \Big(\|v(t)\|^2 +\|z(t)|^2 \| + \|\Delta v(t)\|^2 + \|\Delta z(t)\|^2 \Big), \end{align*} by using H\"{o}lder inequality and the embedding inequality mentioned in the beginning of this section and by Lemma \ref{L:uwc}, from the above inequality we obtain \begin{equation} \label{nbvz} \begin{split} &\frac{d}{dt}\|\nabla (v, z)\|^2 + d_2 \|\nabla (v, z)\|^2 \\ &\leq d_2 \|(v, z)\|^2+ \frac{2b^2}{d_2} \|(u, w)\|^2 + \frac{2}{d_2} (\|u\|_{L^6}^4 \|v\|_{L^6}^2 + \|w\|_{L^6}^4 \|z\|_{L^6}^2 ) \\ &\leq \big(d_2 + \frac{2b^2}{d_2}\big)K_1 + \frac{2\eta^6}{d_2} (\|\nabla u \|^4 + \|\nabla w \|^4)\|\nabla (v, z)\|^2 \\ & \leq K_1 \big(d_2 + \frac{2b^2}{d_2} \big) + \frac{2\eta^6 M_1^2}{d_2} \|\nabla (v, z)\|^2, \, t > T_1. \end{split} \end{equation} Applying the uniform Gronwall inequality in Proposition \ref{P:uGw} to \eqref{nbvz} and using \eqref{vztt}, we can assert that \begin{equation} \label{nvziq} \|\nabla (v(t), z(t))\|^2 \leq M_2, \quad \text{for } t > T_1 + 1, \end{equation} where $$ M_2 = \Big(\frac{1}{d_2} \big[K_1 + \big(1 + \frac{1}{2\gamma d_2}\big) b^2 |\Omega |\big] + K_1 \big[d_2 + \frac{2b^2}{d_2} \big]\Big) e^{2 \eta^6 M_1^2/d_2} . $$ Thus \eqref{q2} is proved with this $M_2$ and $T_2 = T_1 + 1$. \end{proof} \section{{The existence of a global attractor and its properties}} In this section we finally prove Theorem \ref{Mthm} on the existence of a global attractor, which will be denoted by $\mathscr{A}$, for the Brusselator semiflow $\{S(t)\}_{t\geq0}$ and we shall investigate the properties of $\mathscr{A}$, including its finite fractal dimensionality. \begin{proof}[Proof of Theorem \ref{Mthm}] In Lemma \ref{L:absb}, we have shown that the Brusselator semiflow $\{S(t)\}_{t\geq0}$ has a bounded absorbing set $B_0$ in $H$. Combining Lemma \ref{L:uwc} and Lemma \ref{L:vzc} we proved that $$ \| S(t) g_0 \|_E^2 \leq M_1 + M_2, \quad \text{for } t > T_2 \text{ and for } g_0 \in B_0, $$ which implies that $\{S(t) B_0: t > T_2\}$ is a bounded set in space $E$ and consequently a precompact set in space $H$. Therefore, the Brusselator semiflow $\{S(t)\}_{t\geq0}$ is asymptotically compact in $H$. Finally we apply Proposition \ref{P:kpac} to reach the conclusion that there exists a global attractor $\mathscr{A}$ in $H$ for this Brusselator semiflow $\{S(t)\}_{t\geq0}$. \end{proof} Now we show that the global attractor $\mathscr{A}$ of the Brusselator semiflow is an $(H, E)$ global attractor with the regularity $\mathscr{A} \subset \mathbb{L}^\infty (\Omega)$. The concept of $(H, E)$ global attractor was introduced in \cite{BV83}. \begin{definition} \label{D:hea} \rm Let $\{\Sigma (t)\}_{t\geq 0}$ be a semiflow on a Banach space $X$ and let $Y$ be a compactly imbedded subspace of $X$. A subset $\mathcal{A}$ of $Y$ is called an $(X, Y)$ global attractor for this semiflow if $\mathcal{A}$ has the following properties, \begin{itemize} \item[(i)] $\mathcal{A}$ is a nonempty, compact, and invariant set in $Y$. \item[(ii)] $\mathcal{A}$ attracts any bounded set $B \subset X$ with respect to the $Y$-norm; namely, there is a $\tau = \tau (B)$ such that $\Sigma (t)B \subset Y$ for $t > \tau$ and $\operatorname{dist}_Y (\Sigma (t)B, \mathcal{A}) \to 0$, as $t \to \infty$. \end{itemize} \end{definition} \begin{lemma} \label{L:ste} Let $\{g_m\}$ be a sequence in $E$ such that $\{g_m\}$ converges to $g_0 \in E$ weakly in $E$ and $\{g_m\}$ converges to $g_0$ strongly in $H$, as $m \to \infty$. Then $$ \lim_{m \to \infty} S(t) g_m = S(t) g_0 \quad \text{strongly in } E, $$ where the convergence is uniform with respect to $t$ in any given compact interval $[t_0, t_1] \subset (0, \infty)$. \end{lemma} The proof of this lemma is found in \cite[Lemma 10]{yY10}. \begin{theorem} \label{Thm2} The global attractor $\mathscr{A}$ in $H$ for the Brusselator semiflow $\{S(t)\}_{t\geq0}$ is indeed an $(H, E)$ global attractor and $\mathscr{A}$ is a bounded subset in $\mathbb{L}^\infty (\Omega)$. \end{theorem} \begin{proof} By Lemmas \ref{L:absb}, \ref{L:uwc} and \ref{L:vzc}, we can assert that for the Brusselator semiflow $\{S(t)\}_{t\geq0}$ defined on $H$ there exists a bounded absorbing set $B_1 \subset E$ and this absorbing is in the $E$-norm. Indeed, $$ B_1 = \{g \in E: \| g \|_E^2 = \|\nabla g \|^2 \leq M_1 + M_2\}. $$ Now we show that the Brusselator semiflow $\{S(t)\}_{t\geq0}$ is asymptotically compact with respect to the strong topology in $E$. For any time sequence $\{t_n \}, t_n \to \infty$, and any bounded sequence $\{g_n \} \subset E$, there exists a finite time $t_0 \geq 0$ such that $S(t) \{g_n\} \subset B_0$, for any $t > t_0$. Then for an arbitrarily given $T > t_0 + T_2$, where $T_2$ is the time specified in Lemma \ref{L:vzc}, there is an integer $n_0 \geq 1$ such that $t_n > 2T$ for all $n > n_0$. By Lemma \ref{L:uwc} and Lemma \ref{L:vzc}, $$ \{S(t_n - T) g_n\}_{n > n_0} \; \text{is a bounded set in}\; E. $$ Since $E$ is a Hilbert space, there is an increasing sequence of integers $\{n_j\}_{j=1}^\infty$ with $n_1 > n_0$, such that $$ \lim_{j \to \infty} S(t_{n_j} - T) g_{n_j} = g^* \quad \text{weakly in } E. $$ By the compact imbedding $E \hookrightarrow H$, there is a further subsequence of $\{n_j\}$, but relabeled as the same as $\{n_j\}$, such that $$ \lim_{j \to \infty} S(t_{n_j} - T) g_{n_j} = g^* \quad \text{strongly in } H. $$ Then by Lemma \ref{L:ste}, we have the following convergence with respect to the $E$-norm, $$ \lim_{j \to \infty} S(t_{n_j}) g_{n_j} = \lim_{j \to \infty} S(T) S(t_{n_j} - T) g_{n_j} = S(T) g^* \quad \text{strongly in } E. $$ This proves that $\{S(t)\}_{t\geq0}$ is asymptotically compact in $E$. Therefore, by Proposition \ref{P:kpac}, there exists a global attractor $\mathscr{A}_E$ for the extended Brusselator semiflow $\{S(t)\}_{t\geq0}$ in the space $E$. According to Definition \ref{D:hea} and the fact that $B_1$ attracts $B_0$ in the $E$-norm due to the combination of Lemma \ref{L:uwc} and Lemma \ref{L:vzc}, we see that this global attractor $\mathscr{A}_E$ is an $(H, E)$ global attractor. Moreover, the invariance and the boundedness of $\mathscr{A}$ in $H$ and the invariance and boundedness of $\mathscr{A}_E$ in $E$ imply that \begin{quote} $\mathscr{A}_E$ attracts $\mathscr{A}$ in $E$, so that $\mathscr{A} \subset \mathscr{A}_E$, and \\ $\mathscr{A}$ attracts $\mathscr{A}_E$ in $H$, so that $\mathscr{A}_E \subset \mathscr{A}$. \end{quote} Therefore, $\mathscr{A} = \mathscr{A}_E$ and we proved that the global attractor $\mathscr{A}$ in $H$ is itself an $(H, E)$ global attractor for this Brusselator semiflow. Next we show that $\mathscr{A}$ is a bounded subset in $\mathbb{L}^\infty (\Omega)$. By the $(L^p, L^\infty)$ regularity of the analytic $C_0$-semigroup $\{e^{At}\}_{t\geq 0}$ stated in \cite[Theorem 38.10]{SY02}, one has $e^{At}: \mathbb{L}^p (\Omega) \to \mathbb{L}^\infty (\Omega)$ for $t > 0$, and there is a constant $C(p) > 0$ such that \begin{equation} \label{cp} \| e^{At} \|_{\mathcal{L} (\mathbb{L}^p, \mathbb{L}^\infty)} \leq C(p) \, t^{- \frac{n}{2p}}, \;\; t > 0, \quad \text{where } n = \dim \Omega. \end{equation} By the variation-of-constant formula satisfied by the mild solutions (of course by strong solutions), for any $g \in \mathscr{A} \, (\subset E)$, we have \begin{equation} \label{mld} \begin{split} \|S(t) g\|_{L^\infty} & \leq \|e^{At} \|_{\mathcal{L} (L^2,L^\infty)} \|g\| + \int_0^t \|e^{A(t- \sigma)}\|_{\mathcal{L} (L^2, L^\infty)} \| f(S(\sigma)g) \| \, d\sigma \\ &\leq C(2) t^{-3/4} \|g\| + \int_0^t C(2) (t-\sigma)^{-3/4} L(M_1, M_2) \|S(\sigma) g\|_E \, d\sigma, \end{split} \end{equation} $t \geq 0$, where $C(2)$ is in the sense of \eqref{cp} with $p = 2$, and $L(M_1, M_2)$ is the Lipschitz constant of the nonlinear map $f$ on the closed, bounded ball with radius $M_1 + M_2$ in $E$. By the invariance of the global attractor $\mathscr{A}$, surely we have $$ \{S(t) \mathscr{A}: t \geq 0\} \subset B_0 \, (\subset H) \quad\text{and} \quad \{S(t) \mathscr{A}: t \geq 0\} \subset B_1 \, (\subset E). $$ Then from \eqref{mld} we obtain \begin{equation} \label{bdift} \begin{split} \|S(t) g\|_{L^\infty} &\leq C(2) K_1 t^{-3/4} + \int_0^t C(2) L(M_1, M_2) (M_1 + M_2) (t- \sigma)^{-3/4} \, d\sigma \\ &= C(2) [K_1 t^{-3/4} + 4 L(M_1, M_2) (M_1 + M_2) t^{1/4}], \quad \text{for } t > 0. \end{split} \end{equation} Specifically one can take $t = 1$ in \eqref{bdift} and use the invariance of $\mathscr{A}$ to obtain $$ \| g \|_{L^\infty} \leq C(2)( K_1 + 4 L(M_1, M_2) (M_1 + M_2)), \quad \text{for any } g \in \mathscr{A}. $$ Thus the global attractor $\mathscr{A}$ is a bounded subset in $\mathbb{L}^\infty (\Omega)$. \end{proof} Now consider the Hausdorff dimension and fractal dimension of the global attractor of the Brusselator semiflow $\{S(t)\}_{t\geq0}$ in $H$. Let $q_{m} = \limsup_{t \to \infty} \, q_{m} (t)$, where \begin{equation} \label{trq} q_{m} (t) = \sup_{g_0 \in \mathscr{A}} \; \sup_{\substack{g_{i} \in H, \|g_{i} \| = 1\\ i = 1, \dots, m}} \Big( \frac{1}{t} \int_{0}^{t} \operatorname{Tr} \left( A + F' (S(\tau) g_0 ) \right) \circ Q_{m} (\tau) \, d\tau \Big), \end{equation} in which $\operatorname{Tr} \, (A + F' (S(\tau)g_0))$ is the trace of the linear operator $A + F' (S(\tau)g_0)$, with $F(g)$ being the nonlinear map in \eqref{eveq}, and $Q_{m} (t)$ stands for the orthogonal projection of space $H$ on the subspace spanned by $G_1 (t), \dots, G_{m} (t)$, with \begin{equation} \label{Frder} G_{i} (t) = L(S(t), g_0)g_{i}, \quad i = 1, \dots, m. \end{equation} Here $F'(S(\tau)g_0)$ is the Fr\'{e}chet derivative of the map $F$ at $S(\tau)g_0$, and $L(S(t), g_0)$ is the Fr\'{e}chet derivative of the map $S(t)$ at $g_0$, with $t$ being fixed. Next we study Hausdorff and fractal dimensions of the global attractor $\mathscr{A}$. The following proposition is seen in \cite[Chapter 5]{rT88}. \begin{proposition} \label{P:HFd} If there is an integer $m$ such that $q_{m} < 0$, then the Hausdorff dimension $d_{H} (\mathscr{A})$ and the fractal dimension $d_{F} (\mathscr{A})$ of $\mathscr{A}$ satisfy \begin{equation} \label{hfd} d_{H} (\mathscr{A}) \leq m, \quad \text{and} \quad d_{F} (\mathscr{A}) \leq m \max_{1 \leq j \leq m - 1} \Big( 1 + \frac{(q_{j})_{+}}{| q_{m} |} \Big) \leq 2m. \end{equation} \end{proposition} It is standard to show that for any given $t > 0$, $S(t)$ on $H$ is Fr\'{e}chet differentiable and its Fr\'{e}chet derivative at $g_0$ is the bounded linear operator $L(S(t), g_0)$ given by $$ L(S(t), g_0)G_0 \overset{\rm def}{=} G(t) = (U(t), V(t), W(t), Z(t)), $$ for any $G_0 = (U_0, V_0, W_0, Z_0) \in H$, where $(U(t), V(t), W(t), Z(t))$ is the strong solution of the following initial-boundary value problem of the variational equations \begin{equation} \label{vareq} \begin{gathered} \frac{\partial U}{\partial t} = d_1 \Delta U + 2u(t)v(t) U + u^2 (t) V - (b + 1) U + D_1 (W - U), \\ \frac{\partial V}{\partial t} = d_2 \Delta V - 2u(t)v(t) U - u^2 (t) V + b U + D_2 (Z - V), \\ \frac{\partial W}{\partial t} = d_1 \Delta W + 2w(t)z(t) W + w^2 (t) Z - (b + 1) W + D_1 (U - W), \\ \frac{\partial Z}{\partial t} = d_2 \Delta Z - 2w(t)z(t) W - w^2 (t) Z + b W + D_2 (V - Z), \\ U\mid_{\partial \Omega} = V\mid_{\partial \Omega} = W\mid_{\partial \Omega} = Z\mid_{\partial \Omega} = 0, \quad t > 0, \\ U(0) = U_0, \quad V(0) = V_0, \quad W(0) = W_0, \quad Z(0) = Z_0. \end{gathered} \end{equation} Here $g(t) = (u(t), v(t), w(t), z(t)) = S(t)g_0$ is the solution of \eqref{eveq} with the initial condition $g(0) = g_0$. The initial-boundary value problem \eqref{vareq} can be written as \begin{equation} \label{vareveq} \frac{dG}{dt} = (A + F' (S(t)g_0))G, \quad G(0) = G_0. \end{equation} From Lemma \ref{L:uwc}, Lemma \ref{L:vzc} and the invariance of $\mathscr{A}$ it follows that \begin{equation} \label{mbd} \sup_{g_0 \in \mathscr{A}} \| S(t)g_0 \|_E^2 \leq M_1 + M_2. \end{equation} \begin{theorem} \label{Dmn} The global attractors $\mathscr{A}$ for the Brusselator semiflow $\{S(t)\}_{t\geq0}$ has a finite Hausdorff dimension and a finite fractal dimension. \end{theorem} \begin{proof} By Proposition \ref{P:HFd}, we shall estimate $\operatorname{Tr} (A + F' (S(\tau)g_0 )) \circ Q_{m}(\tau)$. At any given time $\tau > 0$, let $\{\varphi_{j} (\tau): j = 1, \dots , m\}$ be an $H$-orthonormal basis for the subspace $$ Q_m(\tau) H = \operatorname{span} \{G_1(\tau), \dots , G_,(\tau) \}, $$ where $G_1 (t), \dots , G_{m} (t)$ satisfy \eqref{vareveq} with the respective initial values $G_{1,0},\dots, G_{m,0}$ and, without loss of generality, assuming that $G_{1,0}, \dots, G_{m,0}$ are linearly independent in $H$. By Gram-Schmidt orthogonalization scheme, $$ \varphi_{j}(\tau) = (\varphi_{j}^1 (\tau), \varphi_{j}^2 (\tau), \varphi_{j}^3 (\tau), \varphi_{j}^4 (\tau) ) \in E, \quad j = 1, \dots , m, $$ and $\varphi_{j} (\tau)$ are strongly measurable in $\tau$. Let $d_0 = \min \{d_1, d_2 \}$. Then \begin{equation} \label{Trace} \begin{split} & \operatorname{Tr} (A + F' (S(\tau)g_0 )\circ Q_m(\tau)\\ & = \sum_{j=1}^{m} \left( \langle A \varphi_{j}(\tau), \varphi_{j}(\tau) \rangle + \langle F' (S(\tau)g_0 ) \varphi_{j}(\tau), \varphi_{j}(\tau) \rangle\right) \\ & \leq - d_0 \sum_{j=1}^{m} \, \| \nabla \varphi_{j}(\tau) \|^2 + J_1 + J_2 + J_3, \end{split} \end{equation} where \begin{align*} J_1 & = \sum_{j=1}^{m} \int_{\Omega} 2 u(\tau) v(\tau) \left( |\varphi_{j}^1 (\tau) |^2 - \varphi_{j}^1 (\tau) \varphi_{j}^2 (\tau) \right) dx \\ &\quad+ \sum_{j=1}^{m} \, \int_{\Omega} 2 w(\tau) z(\tau) \left( |\varphi_{j}^3 (\tau) |^2 - \varphi_{j}^3 (\tau) \varphi_{j}^4 (\tau) \right) dx, \end{align*} \begin{align*} J_2 &= \sum_{j=1}^{m} \int_{\Omega} \left( u^2(\tau) \left( \varphi_{j}^1 (\tau) \varphi_{j}^2 (\tau) - | \varphi_{j}^2 (\tau) |^2 \right) + w^2(\tau) \left( \varphi_{j}^3 (\tau) \varphi_{j}^4 (\tau) - | \varphi_{j}^4 (\tau) |^2 \right)\right) dx \\ &\leq \sum_{j=1}^{m} \int_{\Omega} \left( u^2(\tau) | \varphi_{j}^1 (\tau) | |\varphi_{j}^2 (\tau)| + w^2(\tau) | \varphi_{j}^3 (\tau) | |\varphi_{j}^4 (\tau)| \right) dx, \end{align*} and \begin{align*} J_3 & = \sum_{j=1}^{m} \int_{\Omega} \left( - (b + 1) (|\varphi_{j}^1 (\tau) |^2 + |\varphi_{j}^3 (\tau) |^2) + b (\varphi_{j}^1 (\tau) \varphi_{j}^2 (\tau) + \varphi_{j}^3 (\tau) \varphi_{j}^4 (\tau)) \right) dx \\ &\quad - \sum_{j=1}^{m} \int_{\Omega} \left(D_1 \left(\varphi_j^1 (\tau) - \varphi_j^3 (\tau)\right)^2 + D_2 \left(\varphi_j^3 (\tau) - \varphi_j^4 (\tau)\right)^2 \right) dx \\ & \leq \sum_{j=1}^{m} \int_{\Omega} b \left(\varphi_{j}^1 (\tau) \varphi_{j}^2 (\tau) + \varphi_{j}^3 (\tau) \varphi_{j}^4 (\tau) \right) dx. \end{align*} By the generalized H\"{o}lder inequality and the Sobolev embedding $H_0^1 (\Omega) \hookrightarrow L^4 (\Omega)$ for $n \leq 3$, and using \eqref{mbd}, we obtain \begin{equation} \label{J1eq} \begin{split} J_1& \leq 2 \sum_{j=1}^{m} \| u(\tau) \|_{L^4} \| v(\tau) \|_{L^4} \left( \| \varphi_{j}^1 (\tau) \|_{L^4}^2 + \| \varphi_{j}^1(\tau) \|_{L^4} \| \varphi_{j}^2 (\tau) \|_{L^4} \right) \\ &\quad + 2 \sum_{j=1}^{m} \| w(\tau) \|_{L^4} \| z(\tau) \|_{L^4} \left( \| \varphi_{j}^3 (\tau) \|_{L^4}^2 + \| \varphi_{j}^3(\tau) \|_{L^4} \| \varphi_{j}^4 (\tau) \|_{L^4} \right) \\ & \leq 4 \sum_{j=1}^{m} \| S(\tau)g_0 \|_{L^4}^2 \| \varphi_{j} (\tau) \|_{L^4}^2 \leq 4 \delta (M_1 + M_2) \sum_{j=1}^{m} \| \varphi_{j} (\tau) \|_{L^4}^2, \end{split} \end{equation} where $\delta$ is the Sobolev embedding coefficient given at the beginning of Section 3. Now we apply the Garliardo-Nirenberg interpolation inequality, cf. \cite[Theorem B.3]{SY02}, \begin{equation} \label{GNineq} \| \varphi \|_{W^{k,p}} \leq C \| \varphi \|_{W^{m,q}}^{\theta} \| \varphi \|_{L^{r}}^{1 - \theta}, \quad \text{for } \varphi \in W^{m,q}(\Omega), \end{equation} provided that $p, q, r \geq 1, 0 < \theta \leq 1$, and $$ k - \frac{n}{p} \leq \theta \big( m - \frac{n}{q} \big) - (1 - \theta ) \frac{n}{r}, \quad \text{where } n = \dim \Omega. $$ Here let $W^{k, p}(\Omega) = L^4(\Omega), W^{m, q}(\Omega) = H_{0}^{1}(\Omega), L^{r}(\Omega) = L^2(\Omega)$, and $\theta = n/4 \leq 3/4$. It follows from \eqref{GNineq} that \begin{equation} \label{inter} \| \varphi_{j} (\tau) \|_{L^4} \leq C \| \nabla \varphi_{j} (\tau) \|^{n/4} \| \varphi_{j} (\tau) \|^{1 - \frac{n}{4}} = C \| \nabla \varphi_{j} (\tau) \|^{n/4}, \quad j = 1, \dots , m, \end{equation} since $\| \varphi_{j}(\tau) \| = 1$, where $C$ is a uniform constant. Substitute \eqref{inter} into \eqref{J1eq} to obtain \begin{equation} \label{J1est} J_1 \leq 4\delta (M_1 + M_2) C^2 \sum_{j=1}^{m} \| \nabla \varphi_{j} (\tau) \|^{n/2}. \end{equation} Similarly, by the generalized H\"{o}lder inequality, we can get \begin{equation} \label{J2est} J_2 \leq \delta (M_1 + M_2) \sum_{j=1}^{m} \| \varphi_{j} (\tau) \|_{L^4}^2 \leq \delta (M_1 + M_2) C^2 \sum_{j=1}^{m} \| \nabla \varphi_{j} (\tau) \|^{n/2}. \end{equation} Moreover, we have \begin{equation} \label{J3est} J_3 \leq \sum_{j=1}^{m} b \| \varphi_{j} (\tau) \|^2 = b m. \end{equation} Substituting \eqref{J1est}, \eqref{J2est} and \eqref{J3est} into \eqref{Trace}, we obtain \begin{equation} \label{Trest} \begin{split} &\operatorname{Tr} (A + F' (S(\tau)g_0 )\circ Q_m(\tau)\\ & \leq - d_0 \sum_{j=1}^{m} \| \nabla \varphi_{j}(\tau) \|^2 + 5\delta (M_1 + M_2) C^2 \sum_{j=1}^{m} \| \nabla \varphi_{j}(\tau) \|^{n/2} + b m. \end{split} \end{equation} By Young's inequality, for $n \leq 3$, we have $$ 5 \delta (M_1 + M_2) C^2 \sum_{j=1}^{m} \| \nabla \varphi_{j}(\tau) \|^{n/2} \leq \frac{d_0}{2} \sum_{j=1}^{m} \|\nabla \varphi_{j}(\tau) \|^2 + \Gamma (n) m, $$ where $\Gamma (n)$ is a uniform constant depending only on $n = \dim (\Omega)$ and the involved constants $\delta, C, d_0, M_1$ and $M_2$. Hence, \[ \operatorname{Tr} (A + F' (S(\tau)g_0 )\circ Q_m(\tau) \leq - \frac{d_0}{2} \sum_{j=1}^{m} \| \nabla \varphi_{j}(\tau) \|^2 + \left(\Gamma (n) + b \right) m, \quad \tau > 0, \, g_0 \in \mathscr{A}. \] According to the generalized Sobolev-Lieb-Thirring inequality \cite[Appendix, Cor. 4.1]{rT88}, since $\{ \varphi_1 (\tau), \dots , \varphi_{m} (\tau) \}$ is an orthonormal set in $H$, so there exists a constant $\Psi > 0$ only depending on the shape and dimension of $\Omega$, such that \begin{equation} \label{SLTineq} \sum_{j=1}^{m} \| \nabla \varphi_{j}(\tau) \|^2 \geq \frac{\Psi \, m^{1 + \frac{2}{n}}}{|\Omega |^{2/n}}. \end{equation} Therefore, we end up with \begin{equation} \label{finest} \operatorname{Tr} (A + F' (S(\tau)g_0 )\circ Q_m(\tau) \leq - \frac{d_0 \Psi}{2 |\Omega |^{2/n}} m^{1 + \frac{2}{n}} + \left(\Gamma (n) + b \right) m, \end{equation} for $\tau > 0$ and $g_0 \in \mathscr{A}$. Then we can conclude that \begin{equation} \label{qmt} \begin{split} q_{m}(t) & = \sup_{g_0 \in \mathscr{A}} \; \sup_{\substack{g_{i} \in H, \|g_{i} \| = 1\\ i = 1, \dots, m}} \Big( \frac{1}{t} \int_{0}^{t} \operatorname{Tr} \left( A + F' (S(\tau) g_0 ) \right) \circ Q_{m} (\tau) \, d\tau \Big) \\ & \leq - \frac{d_0 \Psi}{2 |\Omega |^{2/n}} m^{1 + \frac{2}{n}} + \left(\Gamma (n) + b\right) m, \quad \text{for any} \, \; t > 0, \end{split} \end{equation} so that \begin{equation} \label{qm} q_m = \limsup_{t \to \infty} \, q_m (t) \leq - \frac{d_0 \Psi}{2 |\Omega |^{2/n}} m^{1 + \frac{2}{n}} + \left(\Gamma (n) + b\right) m < 0, \end{equation} if the integer $m$ satisfies the condition \begin{equation} \label{dimc} m - 1 \leq \Big( \frac{2(\Gamma (n) + b)}{d_0 \Psi} \Big)^{n/2} | \Omega | < m. \end{equation} According to Proposition \ref{P:HFd}, we have shown that the Hausdorff dimension and the fractal dimension of the global attractor $\mathscr{A}$ are finite and their upper bounds are given by $$ d_{H} (\mathscr{A}) \leq m \quad \text{and} \quad d_{F} (\mathscr{A}) \leq 2m, $$ respectively, where $m$ satisfies \eqref{dimc}. \end{proof} \section{Existence of an exponential attractor} In this final section, we shall prove the existence of an exponential attractor for the Brusselator semiflow $\{S(t)\}_{t\ge 0}$. \begin{definition}\label{D:exatr} \rm Let $X$ be a real Banach space and $\{\Sigma (t)\}_{t\ge 0}$ be a semiflow on $X$. A set $\mathscr{E}\subset X$ is an exponential attractor for the semiflow $\{\Sigma (t)\}_{t\ge 0}$ in $X$, if the following conditions are satisfied: \begin{itemize} \item[(i)] $\mathscr{E}$ is a nonempty, compact, positively invariant set in $X$, \item[(ii)] $\mathscr{E}$ has a finite fractal dimension, and \item[(iii)] $\mathscr{E}$ attracts every bounded set $B\subset X$ exponentially: there exist positive constants $\mu$ and $C(B)$ which depends on $B$, such that $$ \operatorname{dist}_X(\Sigma (t)B,\mathscr{E}) \leq C(B)e^{-\mu t},\quad\text{for } t\ge 0. $$ \end{itemize} \end{definition} The basic theory and construction of exponential attractors were established in \cite{EFNT94} for discrete and continuous semiflows on Hilbert spaces. The existence theory was generalized to semiflows on Banach spaces in \cite{DN01} and extended to some nonlinear reaction-diffusion equations on unbounded domains and other equations including chemotaxis equations and some quasilinear parabolic equations. Global attractors, exponential attractors, and inertial manifolds are the three major research topics in the area of infinite dimensional dynamical systems. For a continuous semiflow on a Hilbert space, if all the three objects (a global attractor $\mathscr{A}$, an exponential attractor $\mathscr{E}$, and an inertial manifold $\mathscr{M}$ of the same exponential attraction rate) exist, then the following inclusion relationship holds, $$ \mathscr{A}\subset\mathscr{E}\subset\mathscr{M}. $$ Here we shall tackle the existence of exponential attractor for the Brusselator semiflow by the argument of squeezing property \cite{EFNT94,MK05}. \begin{definition}\label{D:sqpy} \rm For a spectral (orthogonal) projection $P_N$ relative to a nonnegative, self-adjoint, linear operator $\Lambda:D(\Lambda)\to\mathcal{H}$ with a compact resolvent, which maps the Hilbert space $\mathcal{H}$ onto the $N$-dimensional subspace $\mathcal{H}_N$ spanned by a set of the first $N$ eigenvectors of the operator $\Lambda$, we defined a cone $$ \mathscr{C}_{P_N} =\{y\in X:\|(I-P_N)(y)\|_{\mathcal{H}}\leq\|P_N(y)\|_{\mathcal{H}}\}. $$ A continuous mapping $S_*$ satisfies the \emph{discrete squeezing property} relative to a set $B\subset\mathcal{H}$ if there exist a constant $\kappa \in(0,1/2)$ and a spectral projection $P_{N}$ on $\mathcal{H}$ such that for any pair of points $y_0,z_0\in B$, if $$ S_*(y_0)-S_*(z_0)\notin\mathscr{C}_{P_N}, $$ then $$ \|S_*(y_0)-S_*(z_0)\|_{\mathcal{H}}\leq\kappa \|y_0-z_0\|_{\mathcal{H}}. $$ \end{definition} We first present the following lemma, which is a modified version of the basic result \cite[Theorem 4.5]{MK05} on the sufficient conditions for the existence of an exponential attractor of a semiflow on a Hilbert space. In some sense, this lemma provides a more accessible way to check these sufficient conditions if we are sure there exists an $(X, Y)$ global attractor, such as the $(H, E)$ global attractor for the Brusselator semiflow here. The following lemma was proved in \cite[Lemma 6.1]{yY10a}. \begin{lemma}\label{L:EXatr} Let $X$ be a real Banach space and $Y$ be a compactly embedded subspace of $X$. Consider a semilinear evolutionary equation \begin{equation} \label{eveqig} \frac{d\varphi}{dt}+\Lambda \varphi = g(\varphi),\quad t>0, \end{equation} where $\Lambda:D(\Lambda)\to X$ is a nonnegative, self-adjoint, linear operator with compact resolvent, and $g:Y=D(\Lambda^{1/2})\to W$ is a locally Lipschitz continuous mapping. Suppose that the weak solution of \eqref{eveqig} for each initial point $w(0)=w_0\in W$ uniquely exists for all $t\ge 0$, which turn out to be a strong solution for $t > 0$ and altogether form a semiflow denoted by $\{\Sigma (t)\}_{t\ge 0}$. Assume that the following four conditions are satisfied: \begin{itemize} \item[(i)] There exist a compact, positively invariant, absorbing set $\mathcal{B}_c$ in $X$. \item[(ii)] There is a positive integer $N$ such that the norm quotient $Q(t)$ defined by \begin{equation} \label{qn} Q(t)=\frac{\|\Lambda^{1/2}\left(\varphi_1(t)-\varphi_2(t)\right)\|_X^2}{\|\varphi_1(t)-\varphi_2(t)\|_X^2} \end{equation} for any two trajectories $\varphi_1(\cdot)$ and $\varphi_2(\cdot)$ of \eqref{eveqig} starting from the set $\mathcal{B}_c\backslash\mathscr{C}_{P_N}$ satisfies a differential inequality $$ \frac{dQ}{dt}\le\rho\left(\mathcal{B}_c\right)Q(t),\quad t>0, $$ where $\rho\left(\mathcal{B}_c\right)$ is a positive constant only depending on $\mathcal{B}_c$. \item[(iii)] For any given finite $T>0$ and any given $\varphi \in\mathcal{B}_c$, $\Sigma (\cdot)\varphi:[0,T]\to\mathcal{B}_c$ is H\"{o}lder continuous with exponent $\theta=1/2$ and the coefficient of H\"{o}lder continuity, $K(\varphi):\mathcal{B}_c\to(0,\infty)$, is a bounded function. \item[(iv)] For any $t\in[0,T]$, where $T>0$ is arbitrarily given, $\Sigma (t)(\cdot):\mathcal{B}_c\to\mathcal{B}_c$ is a Lipschitz continuous mapping and the Lipschitz constant $L(t):[0,T]\to(0,\infty)$ is a bounded function. \end{itemize} Then there exists an exponential attractor $\mathscr{E}$ in $X$ for this semiflow $\{\Sigma (t)\}_{t\ge 0}$. \end{lemma} The next theorem is another main result in this paper and it shows the existence of an exponential attractor for the solution semiflow $\{S(t)\}_{t\ge 0}$ in $H$ by the approach through the existence of an $(H, E)$ global attractor and Lemma \ref{L:EXatr}. \begin{theorem}\label{T:exstexp} For any positive parameters $d_1, d_2, a, b, D_1$ and $D_2$, there exists an exponential attractor $\mathscr{E}$ in $H$ for the solution semiflow $\{S(t)\}_{t\ge 0}$ generated by the Brusselator evolutionary equation \eqref{eveq}. \end{theorem} \begin{proof} By Theorem \ref{Thm2}, there exists an $(H,E)$ global attractor $\mathscr{A}$, which is exactly the global attractor of the Brusselator semiflow $\{S(t)\}_{t\ge 0}$ in $H$. Consequently, by \cite[Corollary 5.7]{yY10a}, there exists a compact, positively invariant, absorbing set $\mathcal{B}_E$ in $H$, which is a bounded set in $E$, for this semiflow. Next we prove that the second condition in Lemma \ref{L:EXatr} is satisfied by this Brusselator semiflow. Consider any two points $g_1(0), g_2(0)\in\mathcal{B}_E$ and let $g_i(t)=\left(u_i(t),v_i(t),w_i (t), z_i (t)\right)$, $i=1,2$, be the corresponding solutions, respectively. Let $y(t)=g_1(t)-g_2(t)$, $t\geq 0$. The associated norm quotient of the difference $g_1 - g_2$ of two trajectories, where $g_1(0)\ne g_2(0)$, is given by $$ Q(t)=\frac{\|(-A)^{1/2}y(t)\|^2}{\|y(t)\|^2},\quad t\geq 0. $$ Directly we can calculate \begin{equation} \label{qnest} \begin{split} &\frac12 \frac{d}{dt}Q(t)\\ & =\frac1{\|y(t)\|^4}\left[\inpt{(-A)^{1/2}y(t),(-A)^{1/2}y_t}\|y(t)\|^2 -\|(-A)^{1/2}y(t)\|^2 \inpt{y(t),y_t}\right] \\ &=\frac1{\|y(t)\|^2}\left[\inpt{(-A)y(t),y_t}-Q(t) \inpt{y(t),y_t}\right] \\ &=\frac1{\|y(t)\|^2}\inpt{(-A)y(t)-Q(t)y(t),Ay(t) +F\left(g_1(t)\right)-F\left(g_2(t)\right)} \\ &=\frac1{\|y(t)\|^2}\inpt{(-A)y(t)-Q(t)y(t),Ay(t) +Q(t)y(t)+F\left(g_1(t)\right)-F \left(g_2(t)\right)} \\ &=\frac1{\|y(t)\|^2}\left[-\|Ay(t)+Q(t)y(t)\|^2 -\inpt{Ay(t)+Q(t)y(t),F \left(g_1(t)\right)-F \left(g_2(t)\right)}\right] \\ &\leq\frac1{\|y(t)\|^2} \Big(-\frac12\|Ay(t)+Q(t)y(t)\|^2+\frac12\|F \left(g_1(t)\right)-F \left(g_2(t)\right)\|\Big) \end{split} \end{equation} where we used the identity $- \inpt{Ay(t)+Q(t)y(t),Q(t)y(t)}=0$. Note that $\mathcal{B}_E$ is a bounded set in $E$ and that $E\hookrightarrow [L^6(\Omega)]^4$ is a continuous imbedding so that there is a uniform constant $R>0$ only depending on $\mathcal{B}_E$ such that \begin{equation} \label{bR6} \|(u,v, w, z)\|_{L^6(\Omega)}^2\leq R,\quad\text{for any}\;(u,v, w, z)\in\mathcal{B}_E. \end{equation} It is seen that \begin{equation} \label{fw} \begin{split} &\|F\left(g_1(t)\right)-F\left(g_2(t)\right)\| \\ &\leq \|-(b+1)\left(u_1-u_2\right) +\left(u_1^2v_1-u_2^2v_2\right)-D_1\left((u_1-u_2) - (w_1 - w_2)\right)\| \\ &\quad +\|b\left(u_1-u_2\right)-\left(u_1^2v_1-u_2^2v_2\right) -D_2\left((v_1 - v_2) - (z_1 - z_2)\right)\| \\ &\quad + \|-(b+1)\left(w_1-w_2\right) +\left(w_1^2z_1-w_2^2z_2\right)+D_1\left((u_1-u_2) - (w_1 - w_2)\right)\| \\ &\quad +\|b\left(w_1-w_2\right)-\left(w_1^2z_1-w_2^2z_2\right)+D_2\left((v_1 - v_2) - (z_1 - z_2)\right)\|. \end{split} \end{equation} Using the H\"{o}lder inequality, the imbedding inequality $\|\cdot \|_{L^6}^2 \leq \eta \|\cdot \|_E^2$, and Poincar\'{e} inequality orderly, we have \begin{align*} \|u_1-u_2\|^2 &\leq |\Omega|^{2/3}\|u_1-u_2\|_{L^6(\Omega)}^2\\ &\leq|\Omega|^{2/3}\eta\|\nabla(u_1-u_2)\|^2\\ &=c_1\|(-A)^{1/2}\left(g_1-g_2\right)\|^2, \end{align*} where $c_1=|\Omega|^{2/3} \eta\,d_1$. Similarly, we have $$ \|w_1-w_2\|^2\leq c_1\|(-A)^{1/2}\left(g_1-g_2\right)\|^2, $$ and $$ \|v_1-v_2\|^2\leq c_2\|(-A)^{1/2}\left(g_1-g_2\right)\|^2, \quad \|z_1-z_2\|^2\leq c_2\|(-A)^{1/2}\left(g_1-g_2\right)\|^2, $$ where $c_2=|\Omega|^{2/3} \eta\,d_2$. By the generalized H\"{o}lder inequality and \eqref{bR6}, we have \begin{align*} &\|u_1^2v_1-u_2^2v_2\|^2\\ &\leq 2\|u_1-u_2\|_{L^6 (\Omega)}^2 \|u_1+u_2\|_{L^6(\Omega)}^2\|v_2\|_{L^6(\Omega)}^2 +2\|v_1-v_2\|_{L^6(\Omega)}^2\|u_1\|_{L^6(\Omega)}^4 \\ &\leq 8R^2\|u_1-u_2\|_{L^6(\Omega)}^2+2R^2 \|v_1-v_2\|_{L^6(\Omega)}^2 \\ & \leq c_3(R)\|(-A)^{1/2}\left(g_1-g_2\right)\|^2, \end{align*} and similarly, $$ \|w_1^2 z_1-w_2^2 z_2\|^2 \leq c_3(R)\|(-A)^{1/2}\left(g_1-g_2\right)\|^2, $$ where $c_3(R)=2 \eta \left(4d_1+d_2\right)R^2$. Substituting these inequalities into \eqref{fw}, we obtain \begin{equation}\label{Fw} \begin{split} &\|F\left(g_1(t)\right)-F\left(g_2(t)\right)\|\\ &\leq 2\left(\sqrt{c_1 (b + 1 + D_1)} + \sqrt{c_2\,D_2} + \sqrt{c_3(R)}\right)\|(-A)^{1/2}y(t)\|. \end{split} \end{equation} Then substitution of \eqref{Fw} into \eqref{qnest} yields \begin{equation} \label{QN} \frac{d}{dt}\,Q(t)\leq \frac1{\|y(t)\|^2}\|F \left(g_1(t)\right)-F\left(g_2(t)\right)\| \leq\rho(\mathcal{B}_E) Q(t),\quad t>0, \end{equation} where $$ \rho(\mathcal{B}_E)= 2\left(\sqrt{c_1 (b + 1 + D_1)} + \sqrt{c_2\,D_2} + \sqrt{c_3(R)}\right) $$ is a positive constant only depending on $R$ which depends on $\mathcal{B}_E$. Thus the second condition in Lemma \ref{L:EXatr} is satisfied. Now check the H\"{o}lder continuity of $S(\cdot)g:[0,T]\to\mathcal{B}_E$ for any given $g\in\mathcal{B}_E$ and any given compact interval $[0,T]$. By the mild solution formula, for any $0\le t_10$ such that for any $g\in\mathcal{B}_E$, we have $$ \| S(t)g \|_E\leq K_{\mathcal{B}_E},\quad t\geq 0. $$ Since $F:E\to H$ is locally Lipschitz continuous, there is a Lipschitz constant $L_{\mathcal{B}_E}>0$ of $F$ relative to this positively invariant set $\mathcal{B}_E$. Moreover, by \cite[Theorem 37.5]{SY02}, for the analytic, contracting, linear semigroup $\{e^{At}\}_{t\ge 0}$, there exist positive constants $N_0$ and $N_1$ such that $$ \|e^{At}g-g\|_H\leq N_0 \, t^{1/2}\|g\|_E,\quad \text{for }t\geq 0,\; w\in E, $$ and $$ \|e^{At}\|_{\mathcal{L}(H,E)}\leq N_1 t^{-1/2},\quad\text{for } t>0. $$ It follows that $$ \|\big(e^{A(t_2-t_1)}-I\big)e^{At_1}g\| \le N_0 (t_2-t_1)^{1/2}K_{\mathcal{B}_E} $$ and $$ \int_{t_1}^{t_2}\|e^{A\left(t_2-\sigma\right)}F(S(\sigma)g)\|d\sigma \le\int_{t_1}^{t_2}\frac{N_1 L_{\mathcal{B}_E}K_{\mathcal{B}_E}}{\sqrt{t_2-\sigma}}\, d\sigma =2K_{\mathcal{B}_E}L_{\mathcal{B}_E}N_1 (t_2-t_1)^{1/2}. $$ Moreover, \begin{align*} \int_0^{t_1}\|\big(e^{A(t_2-t_1)}-I\big)e^{A\left(t_1-\sigma\right)} F(S(\sigma)g)\| d\sigma &\leq N_0 (t_2-t_1)^{1/2}\int_0^{t_1} \frac{N_1 L_{\mathcal{B}_E}K_{\mathcal{B}_E}}{\sqrt{t_1-\sigma}}\, d\sigma \\ &=2K_{\mathcal{B}_E}L_{\mathcal{B}_E}N_0 N_1 \sqrt{T}(t_2-t_1)^{1/2}. \end{align*} Substituting the above three inequalities into \eqref{vocs}, we obtain \begin{equation} \label{holc} \|S(t_2)g-S\left(t_1\right)g\| \le K_{\mathcal{B}_E}\left(N_0 + 2L_{\mathcal{B}_E}N_1 (1+N_0 \sqrt{T})\right) (t_2-t_1)^{1/2}, \end{equation} for $0\le t_10$, the mapping $S(\cdot)g:[0,T]\to\mathcal{B}_E$ is H\"{o}lder continuous with the exponent $1/2$ and with a uniformly bounded coefficient independent of $g\in\mathcal{B}_E$. We can use Theorem 47.8 (specifically (47.20) therein) in \cite{SY02} to confirm the Lipschitz continuity of the mapping $S(t)(\cdot):\mathcal{B}_E\to\mathcal{B}_E$ for any $t\in[0,T]$ where $T>0$ is arbitrarily given. Thus the fourth condition in Lemma \ref{L:EXatr} is also satisfied. Finally, we apply Lemma \ref{L:EXatr} to reach the conclusion of this theorem. \end{proof} \subsection*{Acknowledgments} The author is partly supported by the National Science Foundation under the grant NSF-DMS-1010998. \begin{thebibliography}{00} \bibitem{AO78} M. Ashkenazi and H. G. Othmer, \emph{Spatial patterns in coupled biochemical oscillators}, J. Math. Biology, \textbf{5} (1978), 305-350. \bibitem{AN75} J. F. G. Auchmuty and G. Nicolis, \emph{Bifurcation analysis of nonlinear reaction-diffusion equations I: Evolution equations and the steady state solutions}, Bull. Math. Biology, \textbf{37} (1975), 323-365. \bibitem{BV83} A. V. Babin and M. I. Vishik, \emph{Regular attarctors of semigroups and evolution equations}, J. Math. Pures Appl., \textbf{62} (1983), 441-491. \bibitem{BGMLF00} A. Yu. Berezin, A. Gainoval, Yu. G. Matushkin, V. A. Likhoshval, and S. I. Fadeev, \emph{Numerical study of mathematical models described dynamics of gene nets functioning: software package STEP}. BGRS 2000, 243-245. \bibitem{BD95} K. J. Brown and F. A. Davidson, \emph{Global bifurcation in the Brusselator system}, Nonlinear Analysis, \textbf{24} (1995), 1713-1725. \bibitem{CQ07} X. Chen and Y. Qi, \emph{Sharp estimates on minimum traveling wave speed of reaction-diffusion systems modeling autocatalysis}, SIAM J. Math. Anal., \textbf{39} (2007), 437--448. \bibitem{CV02} V. V. Chepyzhov and M. I. Vishik, \emph{Attractors for Equations of Mathematical Physics}, AMS Colloquium Publications, Vol. 49, AMS, Providence, RI, 2002. \bibitem{DKZ97} A. Doelman, T. J. Kaper, and P. A. Zegeling, \emph{Pattern formation in the one-dimensional Gray-Scott model}, Nonlinearity, \textbf{10} (1997), 523-563. \bibitem{DN01} L. Dung and B. Nicolaenko, \emph{Exponential attractors in Banach spaces}, J. Dynamics and Diff. Eqns., \textbf{13} (2001), 791--806. \bibitem{EFNT94} A. Eden, C. Foias, B. Nicolaenko and R. Temam, \emph{Exponential Attractors for Dissipative Evolution Equations}, John Wiley \& Sons, Chichester; Masson, Paris, 1994. \bibitem{ER83} T. Erneux and E. Reiss, \emph{Brusselator isolas}, SIAM J. Appl. Math., \textbf{43} (1983), 1240-1246. \bibitem{GLI07} P. Gormley, K. Li, and G. W. Irwin, \emph{Modeling molecular interaction pathways using a two-stage identification algorithm} Systems and Synthetic Biology, \textbf{1} (2007), 145-160. \bibitem{GS83} P. Gray and S. K. Scott, \emph{Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability}, Chem. Eng. Sci., \textbf{38} (1983), 29--43. \bibitem{GS84} P. Gray and S. K. Scott, \emph{Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system $A + 2B \to 3B, B \to C$}, Chem. Eng. Sci., \textbf{39} (1984), 1087--1097. \bibitem{jH88} J. K. Hale, \emph{Asymptotic Behavior of Dissipative Systems}, Amer. Math. Soc., Providence, RI, 1988. \bibitem{KCD97} I. Karafyllis, P. D. Christofides and P. Daoutidis, \emph{Dynamical analysis of a reaction-diffusion system with Brusselator kinetics under feedback control}, Proc. Amer. Control Conference, Albuquerque, NM, June 1997, 2213-2217. \bibitem{KS80} M. Kawato and R. Suzuki, \emph{Two coupled neural oscillators as a model of the circadian pacemaker}, J. Theor. Biol., \textbf{86} (1980), 547-575. \bibitem{hK02} H. Kitano, \emph{Systems biology: a brief overview}, Science, \textbf{295} (2002), 1662-1664. \bibitem{aK83} A. Kli\u{c}, \emph{Period doubling bifurcations in a two-box model of the Brusselator}, Aplikace Matematiky, \textbf{28} (1983), 335-343 \bibitem{KEW06} T. Kolokolnikov, T. Erneux, and J. Wei, \emph{Mesa-type patterns in one-dimensional Brusselator and their stability}, Physica D, \textbf{214}(1) (2006), 63-77. \bibitem{LMOS93} K. J. Lee, W. D. McCormick, Q. Ouyang, and H. Swinney, \emph{Pattern formation by interacting chemical fronts}, Science, \textbf{261} (1993), 192-194. \bibitem{jL69} J. L. Lions, \emph{Quelques M\'{e}thodes de R\'{e}solution des Probl\`{e}mes aux Limites non Lin\'{e}aires}, Gauthier Villars, Paris, 1969. \bibitem{MK05} A. J. Milani and N.J. Koksch, "An Introduction to Semiflows", Chapman \& Hall/CRC, 2005. \bibitem{jP93} J. E. Pearson, \emph{Complex patterns in a simple system}, Science, \textbf{261} (1993), 189-192. \bibitem{PW05} R. Peng and M. Wang, \emph{Pattern formation in the Brusselator system}, J. Math. Anal. Appl., \textbf{309} (2005), 151-166. \bibitem{PL68} I. Prigogine and R. Lefever, \emph{Symmetry-breaking instabilities in dissipative systems}, J. Chem. Physics, \textbf{48} (1968), 1665-1700. \bibitem{PPG01} B. Pe\~{n}a and C. P\'{e}rez-Garc\'{i}a, \emph{Stability of Turing patterns in the Brusselator model}, Phys. Review E, \textbf{64}(5), 2001. \bibitem{RR95} T. Rauber and G. Runger, \emph{Aspects of a distributed solution of the Brusselator equation}, Proc. of the First Aizu International Symposium on Parallel Algorithms and Architecture Syntheses, (1995), 114-120. \bibitem{RPP97} W. Reynolds, J.E. Pearson, and S. Ponce-Dawson, \emph{Dynamics of self-replicating patterns in reaction-diffusion systems}, Phys. Rev. E, \textbf{56} (1997), 185--198. \bibitem{SM82} I. Schreiber and M. Marek, \emph{Strange attractors in coupled reaction-diffusion cells}, Physica D, \textbf{5} (1982), 258-272. \bibitem{SS95} S. K. Scott and K. Showalter, \emph{Simple and complex reaction-diffusion fronts}, in "Chemical Waves and Patterns", R. Kapral and K. Showalter (eds), Kluwer Acad. Publ., Dordrecht, 1995, 485--516. \bibitem{eS68} E. E. Sel'kov, \emph{Self-oscillations in glycolysis: a simple kinetic model}, Euro. J. Biochem., \textbf{4} (1968), 79--86. \bibitem{SY02} G. R. Sell and Y. You, \emph{Dynamics of Evolutionary Equations}, Springer, New York, 2002. \bibitem{rT88} R. Temam, \emph{Infinite Dimensional Dynamical Systems in Mechanics and Physics}, Springer-Verlag, New York, 1988. \bibitem{TCN01} J. J. Tyson, K. Chen and B. Novak, \emph{Network dynamics and cell physiology}, Nature Reviews: Molecular Cell Biology, \textbf{2} (2001), 908-916. \bibitem{WW03} J. Wei and M. Winter, \emph{Asymmetric spotty patterns for the Gray-Scott model in $\Re^2$}, Stud. Appl. math., \textbf{110} (2003), 63-102. \bibitem{Wet96} A. De Wit, D. Lima, G. Dewel, and P. Borckmans, \emph{Spatiotemporal dynamics near a codimension-two point}, Phys. Review E, \textbf{54} (1), 1996. \bibitem{yY07} Y. You, \emph{Global dynamics of the Brusselator equations}, Dynamics of PDE, \textbf{4} (2007), 167--196. \bibitem{yY09a} Y. You, \emph{Asymptotical dynamics of Selkov equations}, Discrete and Continuous Dynamical Systems, Series S, \textbf{2} (2009), 193--219. \bibitem{yY09b} Y. You, \emph{Asymptotical dynamics of the modified Schnackenberg equations}, Discrete and Continuous Dynamical Systems, Supplemental (2009), 857--868. \bibitem{yY10} Y. You, \emph{Global dissipation and attraction of three-component Schnackenberg systems}, Proceedings of the International Workshop on Nonlinear and Modern mathematical Physics, edit. W.X. Ma, X.B. Hu, and Q.P. Liu, American Institute of Physics, CP 1212, Melville, New York, 2010, 293--311. \bibitem{yY10a} Y. You \emph{Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems}, Comm. Pure Appl. Anal., to appear. \end{thebibliography} \end{document}