\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 51, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/51\hfil Second-order boundary estimates] {Second-order boundary estimates for solutions to singular elliptic equations in borderline cases} \author[C. Anedda, G. Porru \hfil EJDE-2011/51\hfilneg] {Claudia Anedda, Giovanni Porru} % in alphabetical order \address{Claudia Anedda \newline Dipartimento di Matematica e Informatica, Universit\'a di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy} \email{canedda@unica.it} \address{Giovanni Porru \newline Dipartimento di Matematica e Informatica, Universit\'a di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy} \email{porru@unica.it} \thanks{Submitted January 10, 2011. Published April 13, 2011.} \subjclass[2000]{35B40, 35J67} \keywords{Elliptic problems; singular equations; \hfill\break\indent second order boundary approximation} \begin{abstract} Let $\Omega\subset R^N$ be a bounded smooth domain. We investigate the effect of the mean curvature of the boundary $\partial\Omega$ on the behaviour of the solution to the homogeneous Dirichlet boundary value problem for the equation $\Delta u+f(u)=0$. Under appropriate growth conditions on $f(t)$ as $t$ approaches zero, we find asymptotic expansions up to the second order of the solution in terms of the distance from $x$ to the boundary $\partial\Omega$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \section{Introduction} In this paper we study the Dirichlet problem \begin{equation}\label{e1} \begin{gathered} \Delta u+f(u)=0 \quad\text{in }\Omega,\\ u=0\quad\text{on }\partial \Omega, \end{gathered} \end{equation} where $\Omega$ is a bounded smooth domain in ${\mathbb R}^N$, $N\ge 2$, and $f(t)$ is a decreasing and positive smooth function in $(0,\infty)$, which approaches infinity as $t\to 0$. Equation \eqref{e1} arises in problems of heat conduction and in fluid mechanics. Problems of this kind are discussed in many papers; see, for instance, \cite{CGP,GR,Ka,LM1,ZC,ZY} and references therein. For $f(t)=t^{-\gamma}$, $\gamma>0$, in \cite{CRT} it is shown that there exists a positive solution continuous up to the boundary $\partial\Omega$. For $f(t)=t^{-\gamma}$, $\gamma>1$, in \cite{BCP} it is shown that there exists a constant $B>0$ such that $$ \big| u(x)-\Bigl(\frac{\gamma+1} {\sqrt{2(\gamma-1)}}\delta\Bigr)^\frac{2}{1+\gamma}\big|< B\delta ^\frac{2\gamma}{\gamma+1}, $$ where $\delta=\delta(x)$ denotes the distance from $x$ to the boundary $\partial \Omega$. For $f(t)=t^{-\gamma}$, $\gamma>3$, in \cite{ACP} it is proved that $$ u(x)=\Bigl(\frac{\gamma+1} {\sqrt{2(\gamma-1)}}\delta\Bigr)^\frac{2}{1+\gamma} \Bigl[1+\frac{1}{3-\gamma}H\delta+ o(\delta)\Bigr], $$ where $H=H(x)$ is related with the mean curvature of $\partial\Omega$ at the nearest point to $x$. In \cite{An}, more general nonlinearities are discussed. More precisely, let \begin{equation}\label{e2} F(t)=\int_t^1f(\tau)d\tau,\quad \lim_{t\to 0^+}F(t)=\infty,\quad \frac{f'(t)F(t)}{(f(t))^2}=\frac{\gamma}{1-\gamma}+O(1)t^{\beta}, \end{equation} where $\gamma\ge 3$, $\beta>0$ and $O(1)$ denotes a bounded quantity as $t\to 0$. In addition, we suppose there is $M$ finite such that for all $\theta\in (1/2,2)$ and for $t\in(0,1)$ we have \begin{equation}\label{e3} \frac{|f''(\theta t)|t^2}{f(t)}\le M. \end{equation} An example which satisfies these conditions is $f(t)=t^{-\gamma}+t^{-\nu}$ with $0<\nu<\gamma$; here $\beta=\min[\gamma-\nu,\gamma-1]$. Let $\phi(\delta)$ be defined as \begin{equation}\label{e4} \int_0^{\phi(\delta)}\frac{1}{(2F(t))^{1/2}}dt=\delta. \end{equation} For $3<\gamma<\infty$, in \cite{An} it is proved that \begin{equation}\label{e5} u(x)=\phi(\delta)\Bigl[1+\frac{1}{3-\gamma}H\delta +O(1)\delta^{\sigma+1}\Bigr], \end{equation} where $\sigma$ is any number such that $0<\sigma<\min[\frac{\gamma-3}{\gamma+1},\frac{2\beta}{\gamma+1}]$. Note that $\phi$ satisfies the one dimensional problem $$ \phi''+f(\phi)=0,\quad \phi(0)=0. $$ The estimate \eqref{e5} shows that the expansion of $u(x)$ in terms of $\delta$ has the first part which is independent of the geometry of the domain, and the second part which depends on the mean curvature of the boundary as well as on $\gamma$. In the present paper we investigate the borderline cases $\gamma=3$ and $\gamma=\infty$. In the case of $\gamma=3$ we find the expansion \begin{equation}\label{e6} u(x)=\phi(\delta)\Bigl[1+\frac{1}{4}H\delta\log \delta +O(1)\delta(-\log \delta)^\sigma\Bigr], \end{equation} where $0<\sigma<1$ and $O(1)$ is bounded as $\delta\to 0$. To discuss the case $\gamma=\infty$, we make the following assumption \begin{equation}\label{e7} f(t)>0,\quad \frac{f'(t)}{f(t)}=-\frac{\ell}{t^{\beta+1}}\bigl(1+O(1)t^\beta\bigr), \end{equation} with $\ell>0$ and $\beta>0$. Note that the above condition implies \begin{equation}\label{e8} \frac{F(t)}{f(t)}=\frac{t^{\beta+1}}{\ell}\bigl(1+O(1)t^\beta\bigr), \quad F(t)=\int_t^1f(\tau)d\tau. \end{equation} Furthermore, \eqref{e7} together with \eqref{e8} imply \eqref{e2} with $\gamma=\infty$; that is, \begin{equation}\label{e9} \frac{f'(t)F(t)}{(f(t))^2}=-1+O(1)t^{\beta}. \end{equation} Instead of \eqref{e3}, now we suppose that for some $m>2$ and some $\epsilon\in (0,1)$, there is $M>0$ such that \begin{equation}\label{e10} \frac{|f''(\theta t)|t^{2}}{f(t)}\le M \frac{1}{t^{2\beta}}(F(t))^{1/m},\quad \forall t\in (0,1/2),\; \forall\theta\in (1-\epsilon,1+\epsilon). \end{equation} The function $f(t)=e^\frac{\ell}{\beta t^\beta}$ satisfies all these conditions. Under assumptions \eqref{e7} and \eqref{e10}, we find the estimate $$ u(x)=\phi(\delta)\Bigr[1-\frac{1}{\ell}H\delta \bigl(\phi(\delta)\bigr)^\beta+O(1)\delta \bigl(\phi(\delta)\bigr)^{2\beta}\Bigr], $$ where $\phi$ is defined as in \eqref{e4}. Throughout this paper, the boundary $\partial\Omega$ is smooth in the sense that it belongs to $C^4$. \section{Preliminary results} \begin{lemma} \label{lem2.1} Let $A(\rho,R)\subset \mathbb R^N$, $N\ge 2$, be the annulus with radii $\rho$ and $R$ centered at the origin. Let $f(t)>0$ smooth, decreasing for $t>0$, and such that $\int_t^1(F(\tau))^{1/2}d\tau\to\infty$ as $t\to 0^+$, where $F(t)=\int_t^1f(\tau)d\tau$. We also suppose that the function $s\mapsto (F(s))^{-1}\int_s^1(F(t))^{1/2}dt$ is increasing for $s$ close to $0$. If $u(x)$ is a solution to problem \eqref{e1} in $\Omega=A(\rho,R)$ and $v(r)=u(x)$ for $r=|x|$, then \begin{equation}\label{e2.1} v(r)>\phi(R-r)-C\frac{\int_v^1(F(t))^{1/2}dt}{(F(v))^{1/2}}(R-r), \quad \tilde r1$ then $F(v_0)<0$. We claim that $$ (N-1)\int_{r_0}^r\frac{(v')^2}{s}ds+F(v_0)>0 $$ for $r$ close to $R$. Indeed, by \eqref{e2.7} and \eqref{e2.8} it follows that $|v'|>(F(v))^{1/2}$ for $r\in(r_2,R)$. Hence, $$ \int_{r_2}^r\frac{(v')^2}{s}ds>\frac{1}{R}\int_{r_2}^r(F(v))^{1/2}(-v') ds= \frac{1}{R}\int_{v(r)}^{v(r_2)}(F(\tau))^{1/2}d\tau. $$ By using the assumption $\int_t^1(F(\tau))^{1/2}d\tau\to\infty$ as $t\to 0$, the latter inequality implies that $\int_{r_2}^r\frac{(v')^2}{s}ds\to\infty$ as $r\to R$, and the claim follows. Equation \eqref{e2.8} yields \begin{equation}\label{e2.9} \frac{-v'}{(2F(v))^{1/2}}=1-\Gamma(r), \end{equation} where $$ \Gamma(r)=1-\Bigl[1-\frac{(N-1)\int_{r_0}^r\frac{(v')^2}{s}ds +F(v_0)}{F(v)}\Bigr]^{1/2}. $$ Since $$ 1-[1-\epsilon]^{1/2}< \epsilon,\quad \forall\epsilon\in(0,1), $$ using \eqref{e2.6} we find a constant $M$ such that, for $r$ close to $R$, \begin{equation}\label{e2.10} 0\le \Gamma(r)\le \frac{(N-1)\int_{r_0}^r\frac{(v')^2}{s}ds+F(v_0)}{F(v)}\le M\frac{\int_v^{v_0}(F(t))^{1/2}dt}{F(v)}. \end{equation} Note that, by \eqref{e2.10} and \eqref{e2.7} we have $\Gamma(r)\to 0$ as $r\to R$. The inverse function of $\phi$ is $$ \psi(s)=\int_0^s\frac{1}{(2F(t))^{1/2}}dt. $$ Integration of \eqref{e2.9} over $(r,R)$ yields $$ \psi(v)=R-r-\int_r^R\Gamma(s)ds, $$ from which we find \begin{equation}\label{e2.11} v(r)=\phi\bigl(R-r-\int_r^R\Gamma(s)ds\bigr). \end{equation} By \eqref{e2.11}, we have \begin{equation}\label{e2.12} v(r)=\phi(R-r)-\phi'(\omega)\int_r^R\Gamma(s)ds, \end{equation} with $$ R-r -\int_r^R\Gamma(s)ds<\omega\phi(R-r)-(2F(v))^{1/2}\int_r^R\Gamma(s)ds. $$ Using \eqref{e2.10}, we find \begin{equation}\label{e2.13} v(r)>\phi(R-r)-(2F(v))^{1/2}M \int_r^R\frac{\int_{v(s)}^{v_0}(F(\tau))^{1/2}d\tau}{F(v(s))}ds. \end{equation} Since $(F(t))^{-1}\int_t^1(F(\tau))^{1/2}d\tau$ is increasing and since $v(s)$ is decreasing, for $s$ close to $R$ the function $$ s\mapsto \frac{\int_{v(s)}^{v_0}(F(\tau))^{1/2}d\tau}{F(v(s))} $$ is decreasing. Using the monotonicity of this function, inequality \eqref{e2.1} follows from \eqref{e2.13}. To prove \eqref{e2.2}, we observe that \eqref{e2.4} also holds for $\rho0$ for $r\in(\rho,r_0)$, by \eqref{e2.3} we have $v''(r)<0$. Hence, by \cite[Lemma 2.1]{LM2}, we have $$ \lim_{r\to\rho}\frac{\int_r^{r_0}\frac{(v')^2}{t}dt}{(v'(r))^2}=0. $$ Using this result and \eqref{e2.14} we find $00 $$ for $r$ close to $\rho$. Equation \eqref{e2.17} yields \begin{equation}\label{e2.18} \frac{v'}{(2F(v))^{1/2}}=1+\tilde\Gamma(r),\end{equation} where $$ \tilde\Gamma(r)=\Bigl[1+\frac{(N-1)\int_r^{r_0} \frac{(v')^2}{s}ds-F(v_0)}{F(v)}\Bigr]^{1/2}-1. $$ Since $$ [1+\epsilon]^{1/2}-1<\epsilon,\quad \forall\epsilon>0, $$ using \eqref{e2.15} one finds, for $r$ close to $\rho$, \begin{equation}\label{e2.19} 0\le \tilde\Gamma(r)\le \frac{(N-1)\int_r^{r_0}\frac{(v')^2}{s}ds-F(v_0)}{F(v)}\le \tilde M\frac{\int_v^{v_0}(F(t))^{1/2}dt}{F(v)}.\end{equation} Integration of \eqref{e2.18} over $(\rho,r)$ yields $$ \psi(v)=r-\rho+\int_\rho^r\tilde\Gamma (s)ds, $$ from which we find \begin{equation}\label{e2.20} v(r)=\phi(r-\rho)+\phi'(\omega_1)\int_\rho^r\tilde\Gamma(s)ds, \end{equation} with $$ r-\rho<\omega_10$ there are $r_\epsilon$ and $\tilde r_\epsilon$ such that \begin{gather}\label{e2.22} \phi(R-r)>v(r)>(1-\epsilon)\phi(R-r), \quad r_\epsilon\Bigl[1-C\frac{\int_v^1(F(t))^{1/2}dt}{(F(v))^{1/2}} \frac{R-r}{\phi(R-r)}\Bigr]\phi(R-r). $$ Since $F(t)$ is decreasing we find $$ \frac{\int_v^1(F(t))^{1/2}dt}{(F(v))^{1/2}}\le 1. $$ Moreover, putting $R-r=\psi(s)$ we have $$ 0\le\lim_{r\to R}\frac{R-r}{\phi(R-r)}=\lim_{s\to 0} \frac{\psi(s)}{s}\le \lim_{s\to 0}\frac{1}{(2F(s))^{1/2}}=0. $$ The right hand side of \eqref{e2.22} follows from these estimates. By \eqref{e2.18} we have $$ \frac{v'}{(2F(v))^{1/2}}>1. $$ Integrating over $(\rho,r)$, we find $\psi(v)>r-\rho$, from which the left hand side of \eqref{e2.23} follows. By \eqref{e2.2} we have $$ v(r)<\Bigl[1+C\phi'(r-\rho)\frac{\int_v^1(F(t))^{1/2}dt}{F(v)} \frac{r-\rho}{\phi(r-\rho)}\Bigr]\phi(r-\rho). $$ We find $$ 0\le\lim_{r\to \rho}\frac{\int_v^1(F(t))^{1/2}dt}{F(v)}\le \lim_{r\to \rho}\frac{1}{(F(v))^{1/2}}=0. $$ Moreover, putting $r-\rho=\psi(s)$, we have $$ \frac{(r-\rho)\phi'(r-\rho)}{\phi(r-\rho)} =\frac{\psi(s)(2F(s))^{1/2}}{s}\le 1. $$ The right hand side of \eqref{e2.23} follows from these estimates. The proof is complete. \end{proof} \section{The case $\gamma=3$} Let $f(t)$ be a smooth, decreasing and positive function in $(0,\infty)$. Assume \eqref{e2} with $\gamma=3$; that is, \begin{equation}\label{e3.1} F(t)=\int_t^1f(\tau)d\tau,\quad \lim_{t\to 0^+}F(t)=\infty,\quad \frac{f'(t)F(t)}{(f(t))^2}=-\frac{3}{2}+O(1)t^{\beta}, \end{equation} where $\beta>0$ and $O(1)$ denotes a bounded quantity as $t\to 0$. This condition implies, for $t$ small, $$ -\frac{f'(t)}{f(t)}=\Bigl(\frac{3}{2}+O(1)t^\beta\Bigr) \frac{f(t)}{F(t)}>\frac{5}{4}\frac{f(t)}{F(t)}. $$ Integration over $(t,t_0)$, $t_0$ small, yields $$ \log\frac{f(t)}{f(t_0)}>\frac{5}{4}\log\frac{F(t)}{F(t_0)},\quad \frac{f(t)}{F(t)}>\frac{f(t_0)}{(F(t_0))^{5/4}}(F(t))^{1/4}. $$ It follows that \begin{equation}\label{e3.2} \lim_{t\to 0}\frac{F(t)}{f(t)}= 0. \end{equation} Let us rewrite \eqref{e3.1} as \begin{equation}\label{e3.3} (F(t))^{-1/2}\Bigl(\frac{(F(t)) ^{3/2}}{f(t)}\Bigr)'=O(1)t^{\beta}.\end{equation} Integrating by parts over $(0,t)$ and using \eqref{e3.2} we find \begin{equation}\label{e3.4} \frac{F(t)}{t f(t)}=\frac{1}{2}+O(1)t^{\beta}.\end{equation} Using the latter estimate and \eqref{e3.1} again we find \begin{equation}\label{e3.5} \frac{t f'(t)}{f(t)}=-3+O(1)t^{\beta}.\end{equation} Let us write \eqref{e3.5} as $$\frac{f'(t)}{f(t)}=-\frac{3}{t}+O(1)t^{\beta-1}.$$ Integration over $(t,1)$ yields $$\log\frac{f(1)}{f(t)}=\log t^3+O(1).$$ Therefore, we can find two positive constants $C_1$, $C_2$ such that \begin{equation}\label{e3.6} C_1t^{-3}0$ be smooth, decreasing and satisfy \eqref{e3.1} with $\beta>0$. If $u(x)$ is a solution to problem \eqref{e1} then \begin{equation}\label{e3.12} \phi(\delta)\bigl[1-C\delta(-\log\delta)]0. $$ Therefore, we can use Lemma 2.1 and Corollary 2.2. By \eqref{e2.1}, we have \begin{equation}\label{e3.13} v(r)>\phi(R-r)-C_1\frac{\int_v^1(F(t))^{1/2}dt} {(F(v))^{1/2}}(R-r),\ \ \ \tilde r\phi(R-r)-C_2v(r)(R-r)\log(R-r)^{-1}. $$ By \eqref{e2.22}, $v(r)<\phi(R-r)$, hence \begin{equation}\label{e3.15} v(r)>\phi(R-r)\bigl(1-C_2(R-r)\log(R-r)^{-1}\bigr). \end{equation} For $x$ near to $P$ we have $\delta=R-r$; therefore, \eqref{e3.15} and the inequality $u(x)\ge v(x)$ yield the left hand side of \eqref{e3.12}. Consider a new annulus of radii $\rho$ and $R$ containing $\Omega$ and such that its internal boundary is tangent to $\partial\Omega$ in $P$. If $w(x)$ is the solution of problem \eqref{e1} in this annulus, by using the comparison principle for elliptic equations we have $u(x)\le w(x)$ for $x$ belonging to $\Omega$. Choose the origin in the center of the annulus and put $w(x)=w(r)$ for $r=|x|$. By \eqref{e2.2} of Lemma 2.1 (with $w$ in place of $v$) we have \begin{equation}\label{e3.16} w(r)<\phi(r-\rho)+C_3(r-\rho)\phi'(r-\rho)\frac{\int_w^1 (F(t)^{1/2}dt}{F(w)}, \quad \rho0$ be smooth, decreasing and satisfy \eqref{e3.1}, as well as \eqref{e3}. If $u(x)$ is a solution to problem \eqref{e1}, then $$ \phi(\delta)\Bigl[1+\frac{1}{4}H\delta\log \delta -C\delta(-\log \delta)^\sigma\Bigr]0$, \eqref{e3.26} holds for $\alpha$ fixed and $\delta$ small enough. Using Lemma 3.2 we find $$ w(x)-u(x)\ge \phi(\delta)\bigl(-\log \delta \bigr)^{-1}\bigl[-A\delta(\log\delta)^2 +\alpha\delta(-\log \delta)^{1+\sigma} -C\delta(\log \delta)^2\bigr]. $$ If $\alpha$ and $\delta$ are such that \eqref{e3.22} and \eqref{e3.26} hold, define $q=\alpha\delta(-\log\delta)^{1+\sigma}$ and decrease $\delta$ (increasing $\alpha$) so that $\alpha\delta(-\log\delta)^{1+\sigma}=q$ until $$ -A\delta(\log\delta)^2+q-C\delta(\log \delta)^2>0 $$ for $\delta(x)=\delta_1$. Then, applying the comparison principle to \eqref{e3.25} and \eqref{e1} we find $$ w(x)\ge u(x),\quad x\in\Omega:\delta(x)<\delta_1. $$ By a similar argument one finds a sub-solution of the kind $$ w(x)=\phi(\delta)\Bigl(1+A\delta\log\delta -\alpha\delta(-\log \delta)^\sigma\Bigr), $$ where $A$ and $\sigma$ are the same as before and $\alpha$ is a suitable positive constant. The theorem follows. \end{proof} \section{The case $\gamma=\infty$} Let $f(t)$ be a smooth, decreasing and positive function in $(0,\infty)$. In this section we assume conditions \eqref{e7} and \eqref{e10}. By \eqref{e7} one finds positive constants $c_1$, $c_2$, $\ell_1$ and $\ell_2$ such that \begin{equation}\label{e4.1} c_1e^{\ell_1/t^\beta}0. \end{equation} Similarly, by \eqref{e8} (which follows from \eqref{e7}), one finds \begin{equation}\label{e4.2} c_3e^{\ell_1/t^\beta}\ell_2 2^{\beta+1}/\ell_1$, we find \begin{equation}\label{e4.3} \sup_{00$ be smooth, decreasing and satisfying \eqref{e7}$. If $u(x)$ is a solution to problem \eqref{e1}$ then \begin{equation}\label{e4.7} \phi\bigl[1-C\delta \phi^\beta\bigr]0. $$ Indeed, using \eqref{e9}, for $s$ close to $0$ we have \begin{align*} (F(s))^{3/2}(f(s))^{-1} &=-\int_s^1\Bigl((F(t))^{3/2}(f(t))^{-1}\Bigr)'dt\\ &=\int_s^1(F(t))^{1/2}\Bigl(\frac{3}{2}+F(t)f'(t)(f(t))^{-2}\Bigr)dt\\ &>\frac{1}{4}\int_s^1(F(t))^{1/2}dt. \end{align*} The above estimate and \eqref{e4.2} yield $$ \lim_{s\to 0}(F(s))^{3/2}(f(s))^{-1}=+\infty. $$ Using de l'H\^opital rule and \eqref{e9} we find $$ \lim_{s\to 0}\frac{\int_s^1(F(\tau))^{1/2}d\tau} {(F(s))^{3/2}(f(s))^{-1}}=\lim_{s\to 0}\frac{1} {\frac{3}{2}+F(s)(f(s))^{-2}f'(s)}=2. $$ It follows that $$ \frac{d}{ds}\Bigl[(F(s))^{-1}\int_s^1(F(t))^{1/2}dt\Bigr]>0, $$ as claimed. Now we can use Lemma 2.1 and its Corollary. By \eqref{e2.1}, \begin{equation}\label{e4.8} v(r)>\phi(R-r)-C\frac{\int_v^1(F(t))^{1/2}dt} {(F(v))^{1/2}}(R-r),\quad \tilde r\phi(R-r)-C_1(v(r))^{\beta+1}(R-r). $$ By \eqref{e2.22}, $v(r)<\phi(R-r)$. Hence, \begin{equation}\label{e4.10} v(r)>\phi(R-r)\bigl[1-C_1(\phi(R-r))^\beta(R-r)\bigr]. \end{equation} Arguing as in the proof of Lemma 3.2, one proves that \eqref{e4.10} implies the left hand side of \eqref{e4.7}. By \eqref{e2.2} of Lemma 2.1 (with $w$ in place of $v$) we have \begin{equation}\label{e4.11} w(r)<\phi(r-\rho)+C\phi'(r-\rho)\frac{\int_w^1 (F(t))^{1/2}dt}{F(w)}(r-\rho), \quad \rho2$ we find \begin{align*} 0\le \lim_{\delta\to 0}\frac{\delta^2(F(\phi))^{1/m}} {\delta \phi^\beta}=& \lim_{\delta\to 0}\frac{\delta}{\phi^\beta (F(\phi))^{-1/m}}=\lim_{t\to 0}\frac{\psi(t)}{t^\beta (F(t))^{-1/m}}\\ &=\lim_{t\to 0}\frac{(2F(t))^{-1/2}}{\beta t^{\beta-1}(F(t))^{-1/m}+\frac{1}{m}t^\beta (F(t))^{-\frac{1}{m}-1}f(t)}\\ & \le \frac{m}{\sqrt 2}\lim_{t\to 0}\frac{F(t)}{f(t)}\frac{1}{t^\beta (F(t))^{\frac{1}{2}-\frac{1}{m}}}=0. \end{align*} Hence, we can find positive constants $M_3$, $M_4$, $M_5$ such that $$ f(w)\phi^{\beta+1}(F(\phi))^{-1/m}\Bigl[-A\delta(F(\phi))^{1/m} +\alpha\delta \phi^{\beta}(F(\phi))^{1/m}- C\delta\frac{(F(\phi))^{\frac{1}{2}+\frac{1}{m}}} {(F(2\phi))^{1/2}} \Bigr]. $$ Take $\alpha_1$ large and $\delta_1$ small so that \eqref{e4.22} and \eqref{e4.24} hold for $\{x\in\Omega:\delta(x)<\delta_1\}$, and define $$ q=\alpha_1\delta_1 \phi^{\beta}(F(\phi))^{1/m}. $$ Let us show that we can decrease $\delta$ increasing $\alpha$ according to $\alpha\delta \phi^\beta(F(\phi))^{1/m}=q$ until \begin{equation}\label{e4.25} -A\delta(F(\phi))^{1/m} +q- C\delta\frac{(F(\phi))^{\frac{1}{2}+\frac{1}{m}}} {(F(2\phi))^{1/2}} >0 \end{equation} for $\{x\in\Omega: \delta(x)=\delta_2\}$. Indeed, we have $$ 0\le \lim_{\delta\to 0}\delta(F(\phi))^{1/m}=\lim_{t\to 0}\psi(t)(F(t))^{1/m}\le \lim_{t\to 0}(F(t))^{-\frac{1}{2}+\frac{1}{m}}=0. $$ Furthermore, using \eqref{e4.3} we find $$ 0\le\lim_{\delta\to 0}\delta\frac{(F(\phi))^{\frac{1}{2} +\frac{1}{m}}}{(F(2\phi))^{1/2}}= \lim_{t\to 0}\frac{\psi(t)(F(t))^{\frac{1}{2} +\frac{1}{m}}} {(F(2t))^{1/2}}\le \lim_{t\to 0}\frac{t(F(t))^{1/m}} {(F(2t))^{1/2}}=0. $$ If \eqref{e4.25} holds, then $w-u>0$ for $\delta(x)=\delta_2$. Since $w-u=0$ on $\partial\Omega$, by \eqref{e4.23} and \eqref{e1} we have $w-u\ge 0$ on $\{x\in\Omega: \delta(x)<\delta_2\}$. We have proved that, for $C$ large, $$ u(x)<\phi\Bigl[1-\frac{1}{\ell}H\delta \phi^{\beta}+C\delta \phi^{2\beta}\Bigr]. $$ In a very similar manner, using the left hand side of \eqref{e4.7}, one finds that $$ v=\phi-\frac{1}{\ell}H\delta \phi^{\beta+1}-\alpha \delta \phi^{2\beta+1}, $$ satisfies $v-u\le 0$ in a neighborhood of $\partial\Omega$ provided $\alpha$ is large enough. The proof is complete. \end{proof} \begin{thebibliography}{00} \bibitem{An} C. Anedda; \emph{Second order boundary estimates for solutions to singular elliptic equations}, Electronic Journal of Differential Equations, Vol 2011 (2011), no. 90, 1-15. \bibitem{ACP} C. Anedda, F. Cuccu and G. Porru; \emph{Boundary estimates for solutions to singular elliptic equations}, Le Matematiche, LX (2005), 339-352. \bibitem{BCP} S. Berhanu, F. Cuccu and G. Porru; \emph{On the boundary behaviour, including second order effects, of solutions to singular elliptic problems}, Acta Math. Sin. (Engl. Ser.), 23 (2007), 479-486. \bibitem{CRT} M. G. Crandall, P. H. Rabinowitz and L. Tartar; \emph{On a Dirichlet problem with a singular nonlinearity}, Comm. Part. Diff. Eq., 2 (1997), 193-222. \bibitem{CGP} F. Cuccu, E. Giarrusso and G. Porru; \emph{Boundary behaviour for solutions of elliptic singular equations with a gradient term}, Nonlinear Analysis 69 (2008), 4550-4566. \bibitem{GR} M. Ghergu and V. R\u{a}dulescu; \emph{On a class of sublinear singular elliptic problems with convection term}, J. Math. Anal. Appl., 311 (2005), 635-646. \bibitem{GT} D. Gilbarg and N. S. Trudinger; \emph{Elliptic Partial Differential Equations of Second Order}, Springer Verlag, Berlin (1977). \bibitem{Ka} B. Kawohl; \emph{On a class of singular elliptic equations}, Progress in PDE: elliptic and parabolic problems, Pitman Res. Notes Math. Series, 266, Longman (1992), 156-163. \bibitem{LM1} A. Lazer and P. J. McKenna; \emph{On a singular nonlinear elliptic boundary value problem}, Proc. American. Math. Soc., 111 (1991), 721-730. \bibitem{LM2} A. Lazer and P. J. McKenna; \emph{Asymptotic behaviour of solutions of boundary blow-up problems}, Differential and Integral Equations, 7 (1994), 1001-1019. \bibitem{ZC} Z. Zhang and J. Cheng; \emph{Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems}, Nonlinear Analysis, 57 (2004), 473-484. \bibitem{ZY} Z. Zhang and J. Yu; \emph{On a singular nonlinear Dirichlet problem with a convection term}, SIAM J. Math. Anal. 32 (2000), 916-927. \end{thebibliography} \end{document}