\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 54, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2011/54\hfil Nonhomogeneous singular elliptic equation] {Nonhomogeneous elliptic equations with decaying cylindrical potential and critical exponent} \author[M. Bouchekif, M. E. O. El Mokhtar\hfil EJDE-2011/54\hfilneg] {Mohammed Bouchekif, Mohammed El Mokhtar Ould El Mokhtar} % in alphabetical order \address{Mohammed Bouchekif \newline University of Tlemcen, Departement of Mathematics, BO 119, 13 000 Tlemcen, Algeria} \email{m\_bouchekif@yahoo.fr} \address{Mohammed El Mokhtar Ould El Mokhtar \newline University of Tlemcen, Departement of Mathematics, BO 119, 13 000 Tlemcen, Algeria} \email{med.mokhtar66@yahoo.fr} \thanks{Submitted February 23, 2011. Published April 27, 2011.} \subjclass[2000]{35J20, 35J70} \keywords{Hardy-Sobolev-Maz'ya inequality; Palais-Smale condition; \hfill\break\indent Nehari manifold; critical exponent} \begin{abstract} We prove the existence and multiplicity of solutions for a nonhomogeneous elliptic equation involving decaying cylindrical potential and critical exponent. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \section{Introduction} In this article, we consider the problem \begin{equation} \label{eP} \begin{gathered} -\operatorname{div}(|y|^{-2a}\nabla u)-\mu |y|^{-2(a+1)}u = h|y|^{-2_{\ast }b}|u|^{2_{\ast }-2}u+\lambda g\quad \text{in }\mathbb{R}^N, \quad y\neq 0\\ u\in \mathcal{D}_0^{1,2}, \end{gathered} \end{equation} where each point in $\mathbb{R}^N$ is written as a pair $(y,z)\in \mathbb{R}^k \times \mathbb{R}^{N-k}$, $k$ and $N$ are integers such that $N\geq 3$ and $k$ belongs to $\{1,\dots ,N\}$; $-\infty 0$ and $\delta_0>0$ such that $g(x)\geq \nu_0$, for all $x$ in $B(0,2\delta_0)$; \item[(H)] $\lim_{|y|\to 0}h(y)=\lim_{|y|\to \infty }h(y)=h_0>0$, $h(y)\geq h_0$, $y\in \mathbb{R}^k $. \end{itemize} Here, $B(a,r)$ denotes the ball centered at $a$ with radius $r$.\bigskip Under some conditions on the coefficients of \eqref{eP}, we split $\mathcal{N}$ in two disjoint subsets $\mathcal{N}^{+}$ and $\mathcal{N}^{-}$, thus we consider the minimization problems on $\mathcal{N}^{+}$ and $\mathcal{N}^{-}$. \begin{remark}\label{rmk1} \rm Note that all solutions of \eqref{eP} are nontrivial. \end{remark} We shall state our main results. \begin{theorem}\label{thm1} Assume that $3\leq k\leq N$, $-10$ such that the \eqref{eP} has at least one nontrivial solution on $\mathcal{H}_{\mu }$ for all $\lambda \in (0,\Lambda_1)$. \end{theorem} \begin{theorem}\label{thm2} In addition to the assumptions of the Theorem \ref{thm1}, if {\rm (H)} holds, then there exists $\Lambda_{2}>0$ such that \eqref{eP} has at least two nontrivial solutions on $\mathcal{H}_{\mu }$ for all $\lambda \in (0,\Lambda_{2})$. \end{theorem} This article is organized as follows. In Section 2, we give some preliminaries. Section 3 and 4 are devoted to the proofs of Theorems \ref{thm1} and \ref{thm2}. \section{Preliminaries} We list here a few integral inequalities. The first one that we need is the Hardy inequality with cylindrical weights \cite{m1}. It states that \[ \bar{\mu}_{a,k}\int_{\mathbb{R}^N}|y|^{-2(a+1)}v^2 \,dx \leq \int_{\mathbb{R}^N}|y|^{-2a}|\nabla v|^2 \,dx,\quad \text{for all }v\in \mathcal{H}_{\mu }, \] The starting point for studying \eqref{eP} is the Hardy-Sobolev-Maz'ya inequality that is particular to the cylindrical case $k0. \] Thus, $I$ is coercive and bounded from below on $\mathcal{N}$. \end{proof} Define \[ \Psi_{\lambda }(u)=\langle I'(u),u\rangle . \] Then, for $u\in \mathcal{N}$, \begin{equation} \begin{aligned} \label{e16} \langle \Psi_{\lambda }'(u),u\rangle &= 2\| u\|_{a,\mu }^2 -2_{\ast }\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u| ^{2_{\ast }}\,dx-\lambda \int_{\mathbb{R}^N}gu\,dx \\ &= \| u\|_{a,\mu }^2 -(2_{\ast }-1)\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u| ^{2_{\ast }}\,dx \\ &= \lambda (2_{\ast }-1)\int_{\mathbb{R}^N}gu\,dx-(2_{\ast }-2) \| u\|_{a,\mu }^2. \end{aligned} \end{equation} Now, we split $\mathcal{N}$ in three parts: \begin{gather*} \mathcal{N}^{+}=\{u\in \mathcal{N}:\langle \Psi_{\lambda}'(u),u\rangle >0\},\quad \mathcal{N}^{0}=\{u\in \mathcal{N}\langle \Psi_{\lambda}'(u),u\rangle =0\}, \\ \mathcal{N}^{-}=\{u\in \mathcal{N}:\langle \Psi_{\lambda }'(u),u\rangle <0\} \end{gather*} We have the following results. \begin{lemma}\label{lem5} Suppose that there exists a local minimizer $u_0$ for $I$ on $\mathcal{N}$ and $u_0\notin \mathcal{N}^{0}$. Then, $I'(u_0)=0$ in $\mathcal{H}_{\mu }'$. \end{lemma} \begin{proof} If $u_0$ is a local minimizer for $I$ on $\mathcal{N}$, then there exists $\theta \in \mathbb{R}$ such that \[ \langle I'(u_0),\varphi \rangle =\theta \langle \Psi_{\lambda }'(u_0),\varphi \rangle \] for any $\varphi \in \mathcal{H}_{\mu }$. If $\theta =0$, then the lemma is proved. If not, taking $\varphi \equiv u_0$ and using the assumption $u_0\in \mathcal{N}$, we deduce \[ 0=\langle I'(u_0),u_0\rangle =\theta \langle \Psi_{\lambda }'(u_0),u_0\rangle . \] Thus \[ \langle \Psi_{\lambda }'(u_0),u_0\rangle =0, \] which contradicts that $u_0\notin \mathcal{N}^{0}$. \end{proof} Let \begin{equation} \Lambda_1:=(2_{\ast }-2)(2_{\ast }-1)^{-( 2_{\ast }-1)/(2_{\ast }-2)}[(h_0) ^{-1}S_{\mu ,2_{\ast }}]^{2_{\ast }/2(2_{\ast }-2) }\| g\|_{\mathcal{H}_{\mu }'}^{-1}. \label{e20} \end{equation} \begin{lemma}\label{lem6} We have $\mathcal{N}^{0}=\emptyset $ for all $\lambda \in (0,\Lambda_1)$. \end{lemma} \begin{proof} Let us reason by contradiction. Suppose $\mathcal{N}^{0}\neq \emptyset $ for some $\lambda \in (0,\Lambda_1)$. Then, by \eqref{e16} and for $u\in \mathcal{N}^{0}$, we have \begin{equation} \label{e18} \begin{aligned} \| u\|_{a,\mu }^2 &= (2_{\ast }-1)\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u| ^{2_{\ast }}\,dx \\ &= \lambda ((2_{\ast }-1)/(2_{\ast }-2))\int_{\mathbb{R} ^N}gu\,dx. \end{aligned} \end{equation} Moreover, by (G), the H\"{o}lder inequality and the Sobolev embedding theorem, we obtain \begin{equation} \Big[\big((h_0)^{-1}S_{\mu ,2_{\ast }}\big)^{2_{\ast }/2}/(2_{\ast }-1)\Big]^{1/(2_{\ast }-2)} \leq \| u\|_{a,\mu } \leq \big[\lambda \big((2_{\ast }-1)\| g\|_{\mathcal{H}_{\mu }'}/( 2_{\ast }-2)\big)\big]. \label{e19} \end{equation} This implies that $\lambda \geq \Lambda_1$, which is a contradiction to $\lambda \in (0,\Lambda_1)$. \end{proof} Thus $\mathcal{N}=\mathcal{N}^{+}\cup \mathcal{N}^{-}$ for $\lambda \in (0,\Lambda_1)$. Define \[ c:=\inf_{u\in \mathcal{N}}I(u),\quad c^{+}:=\inf_{u\in \mathcal{N}^{+}}I(u), \quad c^{-}:=\inf_{u\in \mathcal{N}^{-}}I(u). \] We need also the following Lemma. \begin{lemma}\label{lem7} (i) If $\lambda \in (0,\Lambda_1)$, then $c\leq c^{+}<0$. (ii) If $\lambda \in (0,(1/2)\Lambda _1)$, then $c^{-}>C_1$, where \begin{align*} C_1 = C_1(\lambda ,S_{\mu ,2_{\ast }}\| g\|_{ \mathcal{H}_{\mu }'}) &=\big((2_{\ast }-2)/2_{\ast }2\big)(2_{\ast }-1)^{2/(2_{\ast }-2) }(S_{\mu ,2_{\ast }})^{2_{\ast }/(2_{\ast }-2)}\\ &\quad -\lambda (1-(1/2_{\ast }))(2_{\ast }-1)^{2/(2_{\ast }-2)} \| g\|_{\mathcal{H}_{\mu }'}. \end{align*} \end{lemma} \begin{proof} (i) Let $u\in \mathcal{N}^{+}$. By \eqref{e16}, \[ [1/(2_{\ast }-1)]\| u\|_{a,\mu }^2 >\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u| ^{2_{\ast }}\,dx \] and so \begin{align*} I(u)&= (-1/2)\| u\|_{a,\mu }^2 +(1-(1/2_{\ast }))\int_{ \mathbb{R}^N}h|y|^{-2_{\ast }b}|u|^{2_{\ast }}\,dx \\ &< [(-1/2)+(1-(1/2_{\ast })) (1/(2_{\ast }-1))]\| u\|_{a,\mu }^2 \\ &= -((2_{\ast }-2)/2_{\ast }2)\|u\|_{a,\mu }^2 ; \end{align*} we conclude that $c\leq c^{+}<0$. (ii) Let $u\in \mathcal{N}^{-}$. By \eqref{e16}, \[ [1/(2_{\ast }-1)]\| u\|_{a,\mu}^2 <\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u|^{2_{\ast }}\,dx. \] Moreover, by Sobolev embedding theorem, we have \[ \int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u| ^{2_{\ast }}\,dx\leq (S_{\mu ,2_{\ast }})^{-2_{\ast }/2}\| u\|_{a,\mu }^{2_{\ast }}. \] This implies \[ \| u\|_{a,\mu }>[(2_{\ast }-1)] ^{-1/(2_{\ast }-2)}(S_{\mu ,2_{\ast }})^{2_{\ast }/2(2_{\ast }-2)},\quad \text{for all }u\in \mathcal{N}^{-}. \] By \eqref{e14}, \[ I(u)\geq ((2_{\ast }-2)/2_{\ast }2) \| u\|_{a,\mu }^2 -\lambda (1-(1/2_{\ast }))\| u\|_{a,\mu }\| g\|_{\mathcal{H}_{\mu }'}. \] Thus, for all $\lambda \in (0,(1/2)\Lambda_1)$, we have $I(u)\geq C_1$. \end{proof} For each $u\in \mathcal{H}_{\mu }$, we write \[ t_{m}:=t_{\rm max}(u)=[\frac{\| u\| _{a,\mu }}{(2_{\ast }-1)\int_{ \mathbb{R} ^N}h|y|^{-2_{\ast }b}|u| ^{2_{\ast }}\,dx}]^{1/(2_{\ast }-2)}>0. \] \begin{lemma}\label{lem8} Let $\lambda \in (0,\Lambda_1)$. For each $u\in \mathcal{H}_{\mu }$, one has the following: (i) If $\int_{\mathbb{R}^N}g(x)u\,dx\leq 0$, then there exists a unique $t^{-}>t_{m}$ such that $t^{-}u\in \mathcal{N}^{-}$ and \[ I(t^{-}u)=\sup_{t\geq 0}I(tu). \] (ii) If $\int_{\mathbb{R}^N}g(x)u\,dx>0$, then there exist unique $t^{+}$ and $t^{-}$ such that $0<$ $t^{+}0, \] there exists $t_0^{+}0$ such that for $\lambda \in (0,\Lambda_{\ast })$, one has \[ \sup_{t\geq 0}I(tv)0\text{ for }x_0\in\mathbb{R}^N \\ -\omega_{\varepsilon }(x) & \text{if }g(x) \leq 0\text{ for all }x\text{ }\in \mathbb{R}^N \end{cases} \] where $\omega_{\varepsilon }$ satisfies \eqref{nr3}. Then, we claim that there exists $\varepsilon_0>0$ such that \begin{equation} \lambda \int_{\mathbb{R}^N}g(x)\varphi_{\varepsilon }(x)\,dx>0\quad \text{for any }\varepsilon \in (0,\varepsilon_0). \label{55} \end{equation} In fact, if $g(x)\geq 0$ or $g(x)\leq 0$ for all $x\in \mathbb{R}^N$, \eqref{55} obviously holds. If there exists $x_0\in \mathbb{R}^N$ such that $g(x_0)>0$, then by the continuity of $g(x)$, there exists $\eta >0$ such that $g(x)>0$ for all $x\in B(x_0,\eta )$. Then by the definition of $\omega_{\varepsilon }(x-x_0)$, it is easy to see that there exists an $\varepsilon_0$ small enough such that \[ \lambda \int_{\mathbb{R}^N}g(x)\omega_{\varepsilon }(x-x_0)\,dx>0 ,\quad \text{for any }\varepsilon \in (0,\varepsilon_0). \] Now, we consider the functions \[ f(t)=I(t\varphi_{\varepsilon }),\quad \tilde{f}(t)=(t^2 /2)\| \varphi_{\varepsilon }\|_{a,\mu }^2 -(t^{2_{\ast }}/2_{\ast })\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b} |\varphi_{\varepsilon}|^{2_{\ast }}\,dx. \] Then, for all $\lambda \in (0,\Lambda_1)$, \[ f(0)=00$ small enough such that \[ f(t)0$ such that \[ -\lambda t_0\int_{\mathbb{R}^N}g\varphi_{\varepsilon }\,dx <-C_0\lambda ^2 , \] and by \eqref{55}, we obtain \[ 0<\lambda <(t_0/C_0)\Big(\int_{ \mathbb{R} ^N}g\varphi_{\varepsilon }\Big),\quad \text{for }\varepsilon <<\varepsilon_0. \] Set \[ \Lambda_{\ast }=\min \{\Lambda_1,\text{ }(t_0/C_0) (\int_{\mathbb{R}^N}g\varphi_{\varepsilon })\}. \] We deduce that \begin{equation} \sup_{t\geq 0}I(t\varphi_{\varepsilon })0. \] Combining this with Lemma \ref{lem8} and from the definition of $c^{-}$ and \eqref{60}, we obtain that there exists $t_{n}>0$ such that $t_{n}w_{n}\in \mathcal{N}^{-}$ and for all $\lambda \in (0,\Lambda_{\ast })$, \[ c^{-}\leq I(t_{n}w_{n})\leq \sup_{t\geq 0}I( tw_{n})0$ such that for $\lambda \in (0,\Lambda_{2})$, the functional $I$ has a minimizer $u_{2}$ in $\mathcal{N}^{-}$ and satisfies \begin{itemize} \item[(i)] $I(u_{2})=c^{-}$, \item[(ii)] $u_{2}$ is a solution of \eqref{eP} in $\mathcal{H}_{\mu }$, \end{itemize} where $\Lambda_{2}=\min \{(1/2)\Lambda_1,\Lambda_{\ast }\}$ with $\Lambda_1$ defined as in \eqref{e20} and $\Lambda_{\ast }$ defined as in the proof of Lemma \ref{lem11}. \end{proposition} \begin{proof} By Proposition \ref{prop1} (ii), there exists a $(PS)_{c^{-}}$ sequence for $I$, $(u_{n})_{n}$ in $\mathcal{N}^{-}$ for all $\lambda \in (0,(1/2)\Lambda_1)$. From Lemmas \ref{lem10}, \ref{lem11} and \ref{lem7} (ii), for $\lambda \in (0,\Lambda_{\ast })$, $I$ satisfies $(PS)_{c^{-}}$ condition and $c^{-}>0$. Then, we get that $(u_{n})_{n}$ is bounded in $\mathcal{H}_{\mu }$. Therefore, there exist a subsequence of $(u_{n})_{n}$ still denoted by $(u_{n})_{n}$ and $u_{2}\in \mathcal{N}^{-}$ such that $u_{n}$ converges to $u_{2}$ strongly in $\mathcal{H}_{\mu }$ and $I(u_{2})=c^{-}$ for all $\lambda \in (0,\Lambda_{2})$. Finally, by using the same arguments as in the proof of the Proposition \ref{prop2}, for all $\lambda \in (0,\Lambda_1)$, we have that $u_{2}$ is a solution of \eqref{eP}. \end{proof} Now, we complete the proof of Theorem \ref{thm2}. By Propositions \ref{prop2} and \ref{prop3}, we obtain that \eqref{eP} has two solutions $u_1$ and $u_{2}$ such that $u_1\in \mathcal{N}^{+}$ and $u_{2}\in \mathcal{N}^{-}$. Since $\mathcal{N}^{+}\cap \mathcal{N}^{-}=\emptyset $, this implies that $u_1$ and $u_{2}$ are distinct. \begin{thebibliography}{00} \bibitem{b1} M. Badiale, M. Guida, S. Rolando; \emph{Elliptic equations with decaying cylindrical potentials and power-type nonlinearities}, Adv. Differential Equations, 12 (2007) 1321-1362. \bibitem{b2} M. Bouchekif, A. Matallah; \emph{On singular nonhomogeneous elliptic equations involving critical Caffarelli-Kohn-Nirenberg exponent}, Ric. Mat., 58 (2009) 207-218. \bibitem{b3} M. Bouchekif, M. E. O. El Mokhtar; \emph{On nonhomogeneous singular elliptic equations with cylindrical weight}, preprint Universit\'{e} de Tlemcen, (2010). \bibitem{b4} H. Br\'{e}zis, E. Lieb; \emph{A Relation between point convergence of functions and convergence of functional}, Proc. Amer. Math. Soc., 88 (1983) 486-490. \bibitem{b5} K. J. Brown, Y. Zang; \emph{The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function}, J. Differential Equations, 193 (2003) 481-499. \bibitem{g1} M. Gazzini, R. Musina; \emph{On the Hardy-Sobolev-Maz'ja inequalities: symmetry and breaking symmetry of extremal functions}, Commun. Contemp. Math., 11 (2009) 993-1007. \bibitem{m1} R. Musina; \emph{Ground state solutions of a critical problem involving cylindrical weights}, Nonlinear Anal., 68 (2008) 3972-3986. \bibitem{t1} G. Tarantello; \emph{On nonhomogeneous elliptic equations involving critical Sobolev exponent}, Ann. Inst. H. Poincar\'{e} Anal. Non. Lin\'{e} aire, 9 (1992) 281-304. \bibitem{t2} S. Terracini; \emph{On positive entire solutions to a class of equations with singular coefficient and critical exponent}, Adv. Differential Equations, 1 (1996) 241-264. \bibitem{w1} Z. Wang, H. Zhou; \emph{Solutions for a nonhomogeneous elliptic problem involving critical Sobolev-Hardy exponent in $\mathbb{R}^N$}. Acta Math. Sci., 26 (2006) 525--536. \bibitem{x1} B. Xuan, S. Su, Y. Yan; \emph{Existence results for Br\'{e} zis-Nirenberg problems with Hardy potential and singular coefficients}. Nonlinear Anal., 67 (2007) 2091--2106. \end{thebibliography} \end{document}