\documentclass[reqno]{amsart}
\usepackage{hyperref}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2011 (2011), No. 54, pp. 1--10.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2011 Texas State University - San Marcos.}
\vspace{8mm}}
\begin{document}
\title[\hfilneg EJDE-2011/54\hfil Nonhomogeneous singular elliptic equation]
{Nonhomogeneous elliptic equations with decaying cylindrical potential
and critical exponent}
\author[M. Bouchekif, M. E. O. El Mokhtar\hfil EJDE-2011/54\hfilneg]
{Mohammed Bouchekif, Mohammed El Mokhtar Ould El Mokhtar} % in alphabetical order
\address{Mohammed Bouchekif \newline
University of Tlemcen, Departement of Mathematics, BO 119, 13 000
Tlemcen, Algeria}
\email{m\_bouchekif@yahoo.fr}
\address{Mohammed El Mokhtar Ould El Mokhtar \newline
University of Tlemcen, Departement of Mathematics, BO 119, 13 000
Tlemcen, Algeria}
\email{med.mokhtar66@yahoo.fr}
\thanks{Submitted February 23, 2011. Published April 27, 2011.}
\subjclass[2000]{35J20, 35J70}
\keywords{Hardy-Sobolev-Maz'ya inequality; Palais-Smale condition;
\hfill\break\indent Nehari manifold; critical exponent}
\begin{abstract}
We prove the existence and multiplicity of solutions for a
nonhomogeneous elliptic equation involving decaying cylindrical
potential and critical exponent.
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{definition}[theorem]{Definition}
\section{Introduction}
In this article, we consider the problem
\begin{equation} \label{eP}
\begin{gathered}
-\operatorname{div}(|y|^{-2a}\nabla u)-\mu |y|^{-2(a+1)}u
= h|y|^{-2_{\ast }b}|u|^{2_{\ast }-2}u+\lambda g\quad
\text{in }\mathbb{R}^N, \quad y\neq 0\\
u\in \mathcal{D}_0^{1,2},
\end{gathered}
\end{equation}
where each point in $\mathbb{R}^N$ is written as a pair
$(y,z)\in \mathbb{R}^k \times \mathbb{R}^{N-k}$, $k$ and $N$
are integers such that $N\geq 3$ and $k$ belongs
to $\{1,\dots ,N\}$;
$-\infty 0$ and $\delta_0>0$ such that
$g(x)\geq \nu_0$, for all $x$ in $B(0,2\delta_0)$;
\item[(H)] $\lim_{|y|\to 0}h(y)=\lim_{|y|\to \infty }h(y)=h_0>0$,
$h(y)\geq h_0$, $y\in \mathbb{R}^k $.
\end{itemize}
Here, $B(a,r)$ denotes the ball centered at $a$ with radius $r$.\bigskip
Under some conditions on the coefficients of \eqref{eP},
we split $\mathcal{N}$ in two disjoint subsets
$\mathcal{N}^{+}$ and $\mathcal{N}^{-}$, thus we consider the
minimization problems on $\mathcal{N}^{+}$ and $\mathcal{N}^{-}$.
\begin{remark}\label{rmk1} \rm
Note that all solutions of \eqref{eP} are nontrivial.
\end{remark}
We shall state our main results.
\begin{theorem}\label{thm1}
Assume that $3\leq k\leq N$, $-10$ such that the \eqref{eP} has at
least one nontrivial solution on $\mathcal{H}_{\mu }$ for all
$\lambda \in (0,\Lambda_1)$.
\end{theorem}
\begin{theorem}\label{thm2}
In addition to the assumptions of the Theorem \ref{thm1}, if
{\rm (H)} holds, then there exists $\Lambda_{2}>0$ such that
\eqref{eP} has at least two nontrivial solutions
on $\mathcal{H}_{\mu }$ for all $\lambda \in (0,\Lambda_{2})$.
\end{theorem}
This article is organized as follows.
In Section 2, we give some preliminaries. Section 3 and 4 are
devoted to the proofs of Theorems \ref{thm1} and \ref{thm2}.
\section{Preliminaries}
We list here a few integral inequalities. The first one that we need is the
Hardy inequality with cylindrical weights \cite{m1}. It states that
\[
\bar{\mu}_{a,k}\int_{\mathbb{R}^N}|y|^{-2(a+1)}v^2 \,dx
\leq \int_{\mathbb{R}^N}|y|^{-2a}|\nabla v|^2 \,dx,\quad
\text{for all }v\in \mathcal{H}_{\mu },
\]
The starting point for studying \eqref{eP} is the
Hardy-Sobolev-Maz'ya inequality that is particular to the
cylindrical case $k0.
\]
Thus, $I$ is coercive and bounded from below on $\mathcal{N}$.
\end{proof}
Define
\[
\Psi_{\lambda }(u)=\langle I'(u),u\rangle .
\]
Then, for $u\in \mathcal{N}$,
\begin{equation}
\begin{aligned} \label{e16}
\langle \Psi_{\lambda }'(u),u\rangle
&= 2\| u\|_{a,\mu }^2 -2_{\ast }\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u|
^{2_{\ast }}\,dx-\lambda \int_{\mathbb{R}^N}gu\,dx \\
&= \| u\|_{a,\mu }^2 -(2_{\ast }-1)\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u|
^{2_{\ast }}\,dx \\
&= \lambda (2_{\ast }-1)\int_{\mathbb{R}^N}gu\,dx-(2_{\ast }-2)
\| u\|_{a,\mu }^2.
\end{aligned}
\end{equation}
Now, we split $\mathcal{N}$ in three parts:
\begin{gather*}
\mathcal{N}^{+}=\{u\in \mathcal{N}:\langle \Psi_{\lambda}'(u),u\rangle >0\},\quad
\mathcal{N}^{0}=\{u\in \mathcal{N}\langle \Psi_{\lambda}'(u),u\rangle =0\}, \\
\mathcal{N}^{-}=\{u\in \mathcal{N}:\langle \Psi_{\lambda }'(u),u\rangle <0\}
\end{gather*}
We have the following results.
\begin{lemma}\label{lem5}
Suppose that there exists a local minimizer $u_0$ for $I$ on
$\mathcal{N}$ and $u_0\notin \mathcal{N}^{0}$. Then,
$I'(u_0)=0$ in $\mathcal{H}_{\mu }'$.
\end{lemma}
\begin{proof}
If $u_0$ is a local minimizer for $I$ on $\mathcal{N}$,
then there exists $\theta \in \mathbb{R}$ such that
\[
\langle I'(u_0),\varphi \rangle
=\theta \langle \Psi_{\lambda }'(u_0),\varphi \rangle
\]
for any $\varphi \in \mathcal{H}_{\mu }$.
If $\theta =0$, then the lemma is proved. If not, taking
$\varphi \equiv u_0$ and using the assumption $u_0\in \mathcal{N}$,
we deduce
\[
0=\langle I'(u_0),u_0\rangle =\theta
\langle \Psi_{\lambda }'(u_0),u_0\rangle .
\]
Thus
\[
\langle \Psi_{\lambda }'(u_0),u_0\rangle =0,
\]
which contradicts that $u_0\notin \mathcal{N}^{0}$.
\end{proof}
Let
\begin{equation}
\Lambda_1:=(2_{\ast }-2)(2_{\ast }-1)^{-(
2_{\ast }-1)/(2_{\ast }-2)}[(h_0)
^{-1}S_{\mu ,2_{\ast }}]^{2_{\ast }/2(2_{\ast }-2)
}\| g\|_{\mathcal{H}_{\mu }'}^{-1}.
\label{e20}
\end{equation}
\begin{lemma}\label{lem6}
We have $\mathcal{N}^{0}=\emptyset $ for all
$\lambda \in (0,\Lambda_1)$.
\end{lemma}
\begin{proof}
Let us reason by contradiction.
Suppose $\mathcal{N}^{0}\neq \emptyset $ for some
$\lambda \in (0,\Lambda_1)$. Then, by \eqref{e16} and for $u\in
\mathcal{N}^{0}$, we have
\begin{equation} \label{e18}
\begin{aligned}
\| u\|_{a,\mu }^2
&= (2_{\ast }-1)\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u|
^{2_{\ast }}\,dx \\
&= \lambda ((2_{\ast }-1)/(2_{\ast }-2))\int_{\mathbb{R}
^N}gu\,dx.
\end{aligned}
\end{equation}
Moreover, by (G), the H\"{o}lder inequality and the Sobolev
embedding theorem, we obtain
\begin{equation}
\Big[\big((h_0)^{-1}S_{\mu ,2_{\ast }}\big)^{2_{\ast
}/2}/(2_{\ast }-1)\Big]^{1/(2_{\ast }-2)}
\leq \| u\|_{a,\mu }
\leq \big[\lambda \big((2_{\ast
}-1)\| g\|_{\mathcal{H}_{\mu }'}/(
2_{\ast }-2)\big)\big]. \label{e19}
\end{equation}
This implies that $\lambda \geq \Lambda_1$, which is a contradiction
to $\lambda \in (0,\Lambda_1)$.
\end{proof}
Thus $\mathcal{N}=\mathcal{N}^{+}\cup \mathcal{N}^{-}$ for
$\lambda \in (0,\Lambda_1)$.
Define
\[
c:=\inf_{u\in \mathcal{N}}I(u),\quad
c^{+}:=\inf_{u\in \mathcal{N}^{+}}I(u), \quad
c^{-}:=\inf_{u\in \mathcal{N}^{-}}I(u).
\]
We need also the following Lemma.
\begin{lemma}\label{lem7}
(i) If $\lambda \in (0,\Lambda_1)$, then
$c\leq c^{+}<0$.
(ii) If $\lambda \in (0,(1/2)\Lambda
_1)$, then $c^{-}>C_1$, where
\begin{align*}
C_1 = C_1(\lambda ,S_{\mu ,2_{\ast }}\| g\|_{ \mathcal{H}_{\mu }'})
&=\big((2_{\ast }-2)/2_{\ast }2\big)(2_{\ast }-1)^{2/(2_{\ast }-2)
}(S_{\mu ,2_{\ast }})^{2_{\ast }/(2_{\ast }-2)}\\
&\quad -\lambda (1-(1/2_{\ast }))(2_{\ast }-1)^{2/(2_{\ast }-2)}
\| g\|_{\mathcal{H}_{\mu }'}.
\end{align*}
\end{lemma}
\begin{proof}
(i) Let $u\in \mathcal{N}^{+}$. By \eqref{e16},
\[
[1/(2_{\ast }-1)]\| u\|_{a,\mu
}^2 >\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u|
^{2_{\ast }}\,dx
\]
and so
\begin{align*}
I(u)&= (-1/2)\| u\|_{a,\mu }^2 +(1-(1/2_{\ast }))\int_{
\mathbb{R}^N}h|y|^{-2_{\ast }b}|u|^{2_{\ast }}\,dx \\
&< [(-1/2)+(1-(1/2_{\ast }))
(1/(2_{\ast }-1))]\| u\|_{a,\mu }^2 \\
&= -((2_{\ast }-2)/2_{\ast }2)\|u\|_{a,\mu }^2 ;
\end{align*}
we conclude that $c\leq c^{+}<0$.
(ii) Let $u\in \mathcal{N}^{-}$. By \eqref{e16},
\[
[1/(2_{\ast }-1)]\| u\|_{a,\mu}^2
<\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u|^{2_{\ast }}\,dx.
\]
Moreover, by Sobolev embedding theorem, we have
\[
\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}|u|
^{2_{\ast }}\,dx\leq (S_{\mu ,2_{\ast }})^{-2_{\ast
}/2}\| u\|_{a,\mu }^{2_{\ast }}.
\]
This implies
\[
\| u\|_{a,\mu }>[(2_{\ast }-1)]
^{-1/(2_{\ast }-2)}(S_{\mu ,2_{\ast }})^{2_{\ast
}/2(2_{\ast }-2)},\quad \text{for all }u\in \mathcal{N}^{-}.
\]
By \eqref{e14},
\[
I(u)\geq ((2_{\ast }-2)/2_{\ast }2)
\| u\|_{a,\mu }^2 -\lambda (1-(1/2_{\ast
}))\| u\|_{a,\mu }\| g\|_{\mathcal{H}_{\mu }'}.
\]
Thus, for all $\lambda \in (0,(1/2)\Lambda_1)$,
we have $I(u)\geq C_1$.
\end{proof}
For each $u\in \mathcal{H}_{\mu }$, we write
\[
t_{m}:=t_{\rm max}(u)=[\frac{\| u\|
_{a,\mu }}{(2_{\ast }-1)\int_{
\mathbb{R}
^N}h|y|^{-2_{\ast }b}|u|
^{2_{\ast }}\,dx}]^{1/(2_{\ast }-2)}>0.
\]
\begin{lemma}\label{lem8}
Let $\lambda \in (0,\Lambda_1)$. For each $u\in
\mathcal{H}_{\mu }$, one has the following:
(i) If $\int_{\mathbb{R}^N}g(x)u\,dx\leq 0$, then there exists
a unique $t^{-}>t_{m}$ such that $t^{-}u\in \mathcal{N}^{-}$ and
\[
I(t^{-}u)=\sup_{t\geq 0}I(tu).
\]
(ii) If $\int_{\mathbb{R}^N}g(x)u\,dx>0$, then there exist
unique $t^{+}$ and $t^{-}$ such that $0<$ $t^{+}0,
\]
there exists $t_0^{+}0$ such that for $\lambda \in (0,\Lambda_{\ast })$,
one has
\[
\sup_{t\geq 0}I(tv)0\text{ for }x_0\in\mathbb{R}^N \\
-\omega_{\varepsilon }(x) & \text{if }g(x)
\leq 0\text{ for all }x\text{ }\in
\mathbb{R}^N
\end{cases}
\]
where $\omega_{\varepsilon }$ satisfies \eqref{nr3}. Then, we
claim that there exists $\varepsilon_0>0$ such that
\begin{equation}
\lambda \int_{\mathbb{R}^N}g(x)\varphi_{\varepsilon }(x)\,dx>0\quad
\text{for any }\varepsilon \in (0,\varepsilon_0). \label{55}
\end{equation}
In fact, if $g(x)\geq 0$ or $g(x)\leq 0$ for all
$x\in \mathbb{R}^N$, \eqref{55} obviously holds.
If there exists $x_0\in \mathbb{R}^N$ such that $g(x_0)>0$,
then by the continuity of $g(x)$, there exists $\eta >0$
such that $g(x)>0$ for all $x\in B(x_0,\eta )$.
Then by the definition of $\omega_{\varepsilon }(x-x_0)$,
it is easy to see that there exists an $\varepsilon_0$ small
enough such that
\[
\lambda \int_{\mathbb{R}^N}g(x)\omega_{\varepsilon }(x-x_0)\,dx>0
,\quad \text{for any }\varepsilon \in (0,\varepsilon_0).
\]
Now, we consider the functions
\[
f(t)=I(t\varphi_{\varepsilon }),\quad
\tilde{f}(t)=(t^2 /2)\| \varphi_{\varepsilon }\|_{a,\mu }^2
-(t^{2_{\ast }}/2_{\ast })\int_{\mathbb{R}^N}h|y|^{-2_{\ast }b}
|\varphi_{\varepsilon}|^{2_{\ast }}\,dx.
\]
Then, for all $\lambda \in (0,\Lambda_1)$,
\[
f(0)=00$ small enough such that
\[
f(t)0$ such that
\[
-\lambda t_0\int_{\mathbb{R}^N}g\varphi_{\varepsilon }\,dx
<-C_0\lambda ^2 ,
\]
and by \eqref{55}, we obtain
\[
0<\lambda <(t_0/C_0)\Big(\int_{
\mathbb{R}
^N}g\varphi_{\varepsilon }\Big),\quad \text{for }\varepsilon
<<\varepsilon_0.
\]
Set
\[
\Lambda_{\ast }=\min \{\Lambda_1,\text{ }(t_0/C_0)
(\int_{\mathbb{R}^N}g\varphi_{\varepsilon })\}.
\]
We deduce that
\begin{equation}
\sup_{t\geq 0}I(t\varphi_{\varepsilon })0.
\]
Combining this with Lemma \ref{lem8} and from the definition
of $c^{-}$ and \eqref{60}, we obtain that there exists
$t_{n}>0$ such that $t_{n}w_{n}\in \mathcal{N}^{-}$ and for
all $\lambda \in (0,\Lambda_{\ast })$,
\[
c^{-}\leq I(t_{n}w_{n})\leq \sup_{t\geq 0}I(
tw_{n})0$ such that for
$\lambda \in (0,\Lambda_{2})$, the functional $I$ has a
minimizer $u_{2}$ in $\mathcal{N}^{-}$ and satisfies
\begin{itemize}
\item[(i)] $I(u_{2})=c^{-}$,
\item[(ii)] $u_{2}$ is a solution of \eqref{eP} in
$\mathcal{H}_{\mu }$,
\end{itemize}
where $\Lambda_{2}=\min \{(1/2)\Lambda_1,\Lambda_{\ast }\}$
with $\Lambda_1$ defined as in \eqref{e20} and $\Lambda_{\ast }$
defined as in the proof of Lemma \ref{lem11}.
\end{proposition}
\begin{proof}
By Proposition \ref{prop1} (ii), there exists a
$(PS)_{c^{-}}$ sequence for $I$, $(u_{n})_{n}$ in
$\mathcal{N}^{-}$ for all $\lambda \in (0,(1/2)\Lambda_1)$.
From Lemmas \ref{lem10}, \ref{lem11} and \ref{lem7} (ii),
for $\lambda \in (0,\Lambda_{\ast })$, $I$
satisfies $(PS)_{c^{-}}$ condition and $c^{-}>0$. Then, we get
that $(u_{n})_{n}$ is bounded in $\mathcal{H}_{\mu }$.
Therefore, there exist a subsequence of $(u_{n})_{n}$ still
denoted by $(u_{n})_{n}$ and $u_{2}\in \mathcal{N}^{-}$ such
that $u_{n}$ converges to $u_{2}$ strongly in $\mathcal{H}_{\mu }$
and $I(u_{2})=c^{-}$ for all $\lambda \in (0,\Lambda_{2})$.
Finally, by using the same arguments as in the proof of the
Proposition \ref{prop2}, for all $\lambda \in (0,\Lambda_1)$,
we have that $u_{2}$ is a solution of \eqref{eP}.
\end{proof}
Now, we complete the proof of Theorem \ref{thm2}.
By Propositions \ref{prop2} and \ref{prop3}, we obtain that \eqref{eP}
has two solutions $u_1$ and $u_{2}$ such that
$u_1\in \mathcal{N}^{+}$ and $u_{2}\in \mathcal{N}^{-}$.
Since $\mathcal{N}^{+}\cap \mathcal{N}^{-}=\emptyset $,
this implies that $u_1$ and $u_{2}$ are distinct.
\begin{thebibliography}{00}
\bibitem{b1} M. Badiale, M. Guida, S. Rolando;
\emph{Elliptic equations with decaying cylindrical potentials
and power-type nonlinearities}, Adv.
Differential Equations, 12 (2007) 1321-1362.
\bibitem{b2} M. Bouchekif, A. Matallah;
\emph{On singular nonhomogeneous elliptic
equations involving critical Caffarelli-Kohn-Nirenberg exponent},
Ric. Mat., 58 (2009) 207-218.
\bibitem{b3} M. Bouchekif, M. E. O. El Mokhtar;
\emph{On nonhomogeneous singular elliptic equations with cylindrical
weight}, preprint Universit\'{e} de Tlemcen, (2010).
\bibitem{b4} H. Br\'{e}zis, E. Lieb;
\emph{A Relation between point convergence of
functions and convergence of functional},
Proc. Amer. Math. Soc., 88 (1983) 486-490.
\bibitem{b5} K. J. Brown, Y. Zang;
\emph{The Nehari manifold for a semilinear elliptic equation
with a sign-changing weight function}, J. Differential
Equations, 193 (2003) 481-499.
\bibitem{g1} M. Gazzini, R. Musina;
\emph{On the Hardy-Sobolev-Maz'ja inequalities:
symmetry and breaking symmetry of extremal functions},
Commun. Contemp. Math., 11 (2009) 993-1007.
\bibitem{m1} R. Musina;
\emph{Ground state solutions of a critical problem
involving cylindrical weights}, Nonlinear Anal., 68 (2008) 3972-3986.
\bibitem{t1} G. Tarantello;
\emph{On nonhomogeneous elliptic equations involving
critical Sobolev exponent}, Ann. Inst. H. Poincar\'{e} Anal. Non. Lin\'{e}
aire, 9 (1992) 281-304.
\bibitem{t2} S. Terracini;
\emph{On positive entire solutions to a class of
equations with singular coefficient and critical exponent},
Adv. Differential Equations, 1 (1996) 241-264.
\bibitem{w1} Z. Wang, H. Zhou;
\emph{Solutions for a nonhomogeneous elliptic
problem involving critical Sobolev-Hardy exponent in
$\mathbb{R}^N$}. Acta Math. Sci., 26 (2006) 525--536.
\bibitem{x1} B. Xuan, S. Su, Y. Yan;
\emph{Existence results for Br\'{e} zis-Nirenberg problems
with Hardy potential and singular coefficients}.
Nonlinear Anal., 67 (2007) 2091--2106.
\end{thebibliography}
\end{document}