\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 65, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/65\hfil Scattering for wave equations] {Scattering for wave equations with dissipative terms in layered media} \author[M. Kadowaki, H. Nakazawa, K. Watanabe\hfil EJDE-2011/65\hfilneg] {Mitsuteru Kadowaki, Hideo Nakazawa, Kazuo Watanabe} % in alphabetical order \address{Mitsuteru Kadowaki \newline Department of Mechanical Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, 790-8577, Japan} \email{kadowaki.mitsuteru.mz@ehime-u.ac.jp} \address{Hideo Nakazawa \newline Department of Mathematics, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan} \email{nakazawa.hideo@it-chiba.ac.jp} \address{Kazuo Watanabe \newline Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan} \email{kazuo.watanabe@gakushuin.ac.jp} \thanks{Submitted January 23, 2011. Published May 17, 2011.} \thanks{M. Kadowaki is supported grant 19540189 and K. Watanabe by grant 20540187, from \hfill\break\indent the Ministry of Education, Culture, Sports, Science and Technology, Japan} \subjclass[2000]{35P25, 47A40} \keywords{Layered media; wave equation; dissipative terms; scattering; \hfill\break\indent threshold; Kato's smooth perturbation} \begin{abstract} In this article, we show the existence of scattering solutions to wave equations with dissipative terms in layered media. To analyze the wave propagation in layered media, it is necessary to handle singular points called thresholds in the spectrum. Our main tools are Kato's smooth perturbation theory and some approximate operators. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \section{Introduction} In this article, we study the wave propagation in $\Omega $ (layered media), expressed as \[ \Omega=\{(x,y) : x\in\mathbb{R}^N,\, 0 < y < \pi \}, \] where $N\in\mathbb{N}$ is a fixed number. We consider wave equations with dissipative terms: \begin{equation} \label{e1.1} \begin{gathered} \partial ^2_tu(x,y,t)+b(x,y)\partial_tu(x,y,t)-\varDelta u(x,y,t)=0, \quad (x,y,t)\in\Omega \times[0,\infty),\\ u(x,0,t)=u(x,\pi,t)=0, \quad (x,t)\in\mathbb{R}^N\times[0,\infty), \end{gathered} \end{equation} where $\partial _t=\partial /\partial t$, $\varDelta=\partial^2 /\partial x^2_1+\partial^2 /\partial x^2_2 +\dots+\partial^2 /\partial x_N^2+\partial^2 /\partial y^2$, and $b(x,y)$ is a measurable non-negative function that decays as $|x|\to \infty$. We consider \eqref{e1.1} as a perturbed system for \begin{equation} \label{e1.2} \begin{gathered} \partial ^2_tu(x,y,t)-\varDelta u(x,y,t)=0, \quad (x,y,t)\in\Omega \times(-\infty ,\infty ),\\ u(x,0,t)=u(x,\pi,t)=0, \quad (x,t)\in\mathbb{R}^N\times(-\infty ,\infty ). \end{gathered} \end{equation} The primary purpose of the present paper is to show the existence of scattering solutions for $b(x,y)$ under the following conditions (cf. Mochizuki-Nakazawa \cite{mochizuki-naka}): For $b_0>0$, $\delta\in (0,1]$, and $m\in\mathbb{N}\cup \{0\}$, \begin{equation} \label{e1.3} 0\leq b(x,y)\leq b_0\Big(\prod_{k=0}^{m}\log^{[k]}(e_m+r)\Big)^{-1} \big(\log^{[m]}(e_m+r)\big)^{-\delta}, \end{equation} where $r=|x|$ and \[ e_0=1, \quad e_m=e^{e_{m-1}},\quad \log^{[0]}s=s, \quad \log^{[m]}s=\log\log^{[m-1]}s \quad (m\geq 1). \] For instance, if $m=0$, then \eqref{e1.3} is expressed as \begin{equation} \label{e1.4} 0\leq b(x,y)\leq b_0(1+r)^{-1-\delta}. \end{equation} Moreover, it can be easily observed that \[ \int_0^{\infty}\Big(\prod_{k=0}^{m}\log^{[k]}(e_m+r)\Big)^{-1} \big(\log^{[m]}(e_m+r)\big)^{-\delta}dr < \infty. \] Hence, \eqref{e1.3} represents the short-range condition. To explain the thresholds, we define a self-adjoint operator, $L_0$, in $L^2(\Omega )$ by \[ L_0u=-\varDelta u,\quad D(L_0)=\{u\in H^1_0(\Omega ) : \varDelta u\in L^2(\Omega)\}. \] For $z\not\in {\mathbb{R}}$, we put $R(z)=(L_0-z^2)^{-1}$. Then we have \begin{equation} \label{e1.5} (R(z)\varphi )(x,y)=\frac2{\pi}\sum_{n=1}^{\infty }\sin ny\int_0^{\pi} \sin ny'(r_n(z)\varphi )(x,y')dy', \end{equation} for $\varphi \in C_0^{\infty}(\Omega)$, where $r_n(z)=(-\varDelta_x-(z^2-n^2))^{-1}$ and $\varDelta_x=\sum_{j=1}^N\partial^2 /\partial x_j^2$. Therefore, $\sigma(L_0)=\sigma_{ac}(L_0)= \cup_{n=1}^{\infty}[n^2,\infty)=[1^2,\infty)$. The operator $r_n(z)$ (and accordingly $R(z)$) has singularity at $z^2=n^2$. $\{n^2\}_{n\in\mathbb{N}}$ are called the \emph{thresholds} of $L_0$. The solution of \eqref{e1.2} is represented by the superposition of several modes; that is, the solution $u$ of \eqref{e1.2} is represented as $$ u(x,y,t)=\sum_{n=1}^{\infty}u_n(x,t)\sin ny, $$ where $u_n(x,t)$ is the solution of \[ \partial ^2_tu_n(x,t)-\varDelta_xu_n(x,t)+n^2u_n(x,t)=0, \quad (x,t)\in{\mathbb{R}}^N \times(-\infty ,\infty ). \] To explain the main results, we put $f(t)={}^t\!(u(t),\partial_tu(t))$. Then \eqref{e1.1} and \eqref{e1.2} can be expressed as $$ \partial_tf(t)=-iAf(t)\quad \text{and}\quad\partial_tf(t)=-iA_0f(t),$$ where \begin{equation} \label{e1.6} A_0=i\begin{pmatrix} 0 & \ 1\\ \varDelta & \ 0\end{pmatrix}, \quad B=\begin{pmatrix} 0 & \ 0\\ 0 & \ b(x,y)\end{pmatrix}, \end{equation} and $A=A_0-iB$. Let $\nabla=(\partial/\partial x_1, \partial/\partial x_2, \partial/\partial x_3,\dots, \partial/\partial x_N, \partial /\partial y)$ and $\dot{H}^1_0(\Omega)$ be the completion of $C_0^{\infty}(\Omega)$ with respect to $\|\nabla f\|_{L^2({\Omega})}$. Let $\mathcal{H}=\dot{H}^1_0(\Omega)\times L^2(\Omega )$ be the Hilbert space with the inner product $$ \langle f ,g \rangle= \int_{\Omega }(\nabla f_1(x,y)\cdot \overline{ \nabla g_1(x,y)}+f_2(x,y)\overline{g_2(x,y)})\,dx\,dy, $$ where $f={}^t\!( f_1,f_2)$ and $g={}^t\!(g_1,g_2)$. The norm of $\mathcal{H}$ is denoted by $\|\cdot\|$. We define the domains of $A$ and $A_0$ as \[ D(A)=D(A_0)=\big\{f={}^t\!( f_1,f_2)\in\mathcal{H} : \varDelta f_1\in L^2(\Omega ), f_2\in H^1_0(\Omega )\big\}. \] $A_0$ is self-adjoint, and hence, $U(t)=e^{-itA_0}$ $(t\in\mathbb{R})$ is unitary. Moreover, $-iA$ generates a contraction semi-group $V(t)$, $t\geq 0$; see Reed-Simon \cite[Theorem X-50]{reedsimon1}. We have $\sigma(A_0)=\sigma_{ac}(A_0)= \cup_{n=1}^{\infty}(-\infty, -n]\cup [n,\infty)=(-\infty,-1]\cup [1,\infty)$ (cf. Proposition \ref{prop3.1}). $\{\pm n\}_{n\in\mathbb{N}}$ are called the {\it thresholds} of $A_0$. The main result of this paper can be stated as follows. \begin{theorem} \label{thm1.1} Let us assume \eqref{e1.3}. Then for the above defined $A_0$ and $A$, it holds that \begin{itemize} \item [(1)] $A$ has no real eigenvalues. \item [(2)] The wave operator \[ W=s-\lim_{t\to\infty}U(-t)V(t)\] exists. Moreover, $W$ is not zero as an operator in $\mathcal{H}$. \end{itemize} \end{theorem} \begin{corollary} \label{coro1.2} There exist non-trivial initial data $f\in D(A)$ and $f_+\in D(A_0)$ such that \begin{equation} \label{e1.7} \lim_{t\to\infty}\| V(t)f-U(t)f_+\|=0. \end{equation} \end{corollary} If $V(t)f$ satisfies \eqref{e1.7}, then $V(t)f$ is called the scattering solution to $\partial_tf(t)=-iAf(t)$, $f(0)\in D(A)$. The proof of Corollary \ref{coro1.2} is obtained in the same manner as in Kadowaki \cite[Corollary 2]{kado}; hence, it is omitted here. \begin{remark} \label{rmk1.3} \rm When we assume the Neumann conditions instead of the Dirichlet conditions, we can obtain the same results as in Theorem \ref{thm1.1}. \end{remark} Spectral analysis near the thresholds on layered media has been performed by several authors (e.g., Sveshnikov \cite{sveshnikov1}, \cite{sveshnikov2}, Werner \cite{werner}, and Ramm-Werner \cite{rammwerner}). In \cite{sveshnikov2}, it has been proved that the limiting absorption principle does not hold at the thresholds in the case of $N=1$. In \cite{rammwerner}, it has been shown that the limiting amplitude principle does not hold at the thresholds for $N=1,2$ but holds $N\geq 3$. In the cases of other media, the existence of the thresholds is known. For example, Ben-Artzi \cite{ben-artzi} and Weder \cite{weder1}, \cite{weder2} have derived the limiting absorption principle at the thresholds on inhomogeneous layered media in $\mathbb{R}^2$ and stratified media, respectively. Wave equations with dissipative terms have been studied by Mochizuki \cite{mochizuki2} and Kadowaki \cite{kado}. In \cite{mochizuki2}, the existence of scattering solutions has been shown for wave equations in $\mathbb{R}^N$, $N\not=2$ (for $N=2$, see Nakazawa \cite{naka}). The above proof was based on Kato's smooth perturbation theory (Kato \cite{kato}). In \cite{kado}, the same problem was dealt with for stratified media. In that proof, in addition to the concept employed in \cite{mochizuki2}, an approximate operator employed by Simon \cite{simon} and the well-known properties of compact operators have been used. In \cite{simon}, $(H-i)^{-2}H$ has been used as an approximate operator, where $H$ is the Schr\"odinger operator with absorption (non-self-adjoint operator). Concretely, in that study, the set $$ \{(H-i)^{-2}Hv : v\in D(H)\cap(L^2(\mathbb{R}^N))_b^{\bot}\} $$ was proven to be dense in $(L^2(\mathbb{R}^N))_b^{\bot} $, where $(L^2(\mathbb{R}^N))_b$ is the space generated by the eigenvector of $H$ with real eigenvalues. The reason for using the approximate operator is as follows. For the spectral analysis of non-self-adjoint operators, it is difficult to use localized method for the spectrum because the spectral resolution theory for non-self-adjoint operators has not been established yet. Even if $\Psi(\lambda)$ belongs to $C_0^{\infty}(\mathbb{R})$, it is difficult to define $\Psi (H)$. Hence, an approximate operator was used instead of $\Psi(H)$. We will prove Theorem \ref{thm1.1} using the concept employed in \cite{mochizuki2} and \cite{kado}. The existence of the thresholds makes the proof difficult. To eliminate the difficulty, we use $\sqrt B(A_0^2-n^2)(A_0-i)^{-2}$. This operator plays an important role in the proof (see section 2 (A3) and section 3 ). In addition, we use approximate operators of Simon's type: $\prod_{k=q}^p(A^2-k^2)(A-i)^{-l}$, where $l=1,2$ (see Lemma \ref{lem2.1} and the proofs for Lemma \ref{lem2.5} and Theorem \ref{thm2.3}). There are several other results on scattering problems for dissipative wave (hyperbolic) equations (e.g., Mochizuki-Nakazawa \cite{mochizuki-naka}, Petkov \cite{petkov}, etc.). However, there are no results for dissipative wave equations in layered media. Before concluding this section, we will briefly explain the contents of the present paper. In section 2, we will describe an abstract result (Theorem \ref{thm2.3}) and provide its proof. In section 3, we will prove Theorem \ref{thm1.1} by applying Theorem \ref{thm2.3}. In section 4, we will provide a resolvent estimate. In section 5, we will consider the case where $b(x,y)$ satisfies \eqref{e5.1}. Hence, we will be able to show that the total energy of all solutions of \eqref{e1.1} decays (i.e., \eqref{e1.1} has only dissipative solutions). \section{Abstract result} To prove Theorem \ref{thm1.1}, we prepare an abstract theorem (Theorem \ref{thm2.3}). Let $\mathcal{H}$ be a separable Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and the norm $\| \cdot \|$. Let $A$ be a linear operator in $\mathcal{H}$, and let $\mathcal{H}_b$ be the space generated by the eigenvector of $A$ with real eigenvalues. We assume that $-iA$ generates a contraction semi-group $V(t)$ $(t\geq 0)$. In order to conduct a density argument, we prepare subspaces of Simon's type. \begin{lemma} \label{lem2.1} Let $l, p\in\mathbb{N}$. Let $\alpha_1,\alpha_2,\alpha_3,\dots,\alpha_p\in\mathbb{R}$ be a finite sequence. Then the set $$ \Phi=\{\prod_{k=1}^p(A-\alpha_k)\{(A-i)^{-1}\}^lf : f\in\mathcal{H}_b^{\bot}\} $$ is dense in $\mathcal{H}_b^{\bot}$. \end{lemma} \begin{proof} Let $\alpha\in \mathbb{R}$. Using the same approach as that used by Petkov \cite[Lemma 1.1.6]{petkov}, we can prove that the set $$ \tilde{\Phi}_0=\{(A-\alpha)\{(A-i)^{-1}\}^{l}f : f\in D(A)\cap\mathcal{H}_b^{\bot}\} $$ is dense in $\mathcal{H}_b^{\bot}$. We use $$ \Phi_0=\{(A-\alpha)\{(A-i)^{-1}\}^lf : f\in\mathcal{H}_b^{\bot}\}. $$ Then since $\tilde{\Phi}_0\subset\Phi_0$, $\Phi_0$ is also dense in $\mathcal{H}_b^{\bot}$. Thus, repeating the density argument for $\Phi_0$, we observe that $\Phi$ is also dense in $\mathcal{H}_b^{\perp}$. \end{proof} \begin{remark} \label{rmk2.2} \rm If $A$ is a self-adjoint operator, then the same assertion as that used in Lemma \ref{lem2.1} remains true when $(A-i)^{-1}$ is replaced by $(A+i)^{-1}$. \end{remark} Let $A_0$ and $B$ be self-adjoint operators in $\mathcal{H}$. Let $E(\lambda)$ be the spectral family of $A_0$ and $\{U(t)\}_{t\in\mathbb{R}}$ be the unitary group $\{e^{-itA_0}\}_{t\in\mathbb{R}}$. We assume the following three conditions: \begin{itemize} \item[{(A1)}] $\sigma (A_0)=\sigma _{ac}(A_0)=(-\infty, -m] \cup [m,\infty )$ for some $m \geq 0$; \item[{(A2)}] $B$ is nonnegative and $A_0$-compact; \item[{(A3)}] There exists a sequence: $m=a_1 < a_2 < a_3 < \dots < a_n < \dots$ such that $\lim_{n\to\infty}a_n=\infty$, and $$ \sqrt BF_n(A_0)E_{a_n, a_{n+1}}(A_0) $$ is $A_0$-smooth, where $E_{\alpha, \beta }(A_0)=E((-\beta, -\alpha ) \cup (\alpha, \beta ))$ for $0 < \alpha < \beta$ and $$ F_n(\lambda )=\{(\lambda-a_n)(\lambda -i)^{-1}\} \{(\lambda+a_n)(\lambda-i)^{-1}\} =(\lambda ^2-a_n^2)(\lambda-i)^{-2}. $$ \end{itemize} In this article, we define a bounded operator $K$ to be $A_0$-smooth (Kato \cite{kato}) if there exists a positive constant $C$ such that \[ \int_{-\infty }^{\infty }\| KU(t)f\|^2dt\leq C\| f\|^2 \] for any $f\in\mathcal{H}$ (cf. Reed -Simon \cite[p. 144, Lemma 2]{reedsimon2}). By (A2), $-i(A_0-iB)$ generates a contraction semigroup (see \cite[Theorem X-50]{reedsimon1}). \begin{theorem} \label{thm2.3} Assume {\rm (A1), (A2), (A3)}. Let $A=A_0-iB$. Then the assertion is in Theorem \ref{thm1.1} holds. \end{theorem} To prove the above theorem, we first find the following relations. \begin{equation} \label{e2.1} \| V(t)f\|^2+2\int_0^t\|\sqrt BV(\tau)f\|^2d\tau=\| f\|^2 \end{equation} for $f\in D(A)$. Next, \eqref{e2.1} implies \begin{equation} \label{e2.2} \int_0^{\infty }\|\sqrt BV(\tau)f\|^2d\tau\leq\frac12\| f\|^2. \end{equation} for $f\in D(A)$. We use \[ W(t)=U(-t)V(t),\quad \tilde{F}_n(A_0)=\prod_{j=1}^nF_j(A_0),\quad \tilde{E}_n(A_0)=\sum_{j=1}^{n}E_{a_{j},a_{j+1}}(A_0). \] Next, we prepare the following two lemmas. \begin{lemma} \label{lem2.4} Let $f\in\mathcal{H}$. Then for every $n\in\mathbb{N}$, \[ \lim_{s,t\to\infty}\|\tilde{F}_n(A_0)\tilde{E}_n(A_0)(W(t)-W(s))f\|=0. \] \end{lemma} \begin{proof} Put $M_k=\sup_{\lambda \in\mathbb{R}}|F_k(\lambda)|$. For any $\varepsilon > 0$, there exists $h\in D(A)$ such that \begin{equation} \label{e2.3} \| f-h\| < \frac{\varepsilon}{2\prod_{j=1}^nM_j}. \end{equation} Since \begin{align*} &\|\tilde{F}_n(A_0)\tilde{E}_n(A_0)(W(t)-W(s))h\|\\ &\leq \sum_{k=1}^n\prod_{j=1,j\not=k}^n M_j\| F_k(A_0)E_{a_k,a_{k+1}}(A_0)(W(t)-W(s))h\|, \end{align*} it is sufficient to show that \begin{equation} \label{e2.4} \lim_{s,t\to\infty}\| F_k(A_0)E_{a_k,a_{k+1}}(A_0)(W(t)-W(s))h\|=0 \end{equation} for $k=1,2,3\dots,n$. Indeed, it follows from \eqref{e2.3} and \eqref{e2.4} that \[ \limsup_{s,t\to\infty}\|\tilde{F}_n(A_0)\tilde{E}_n(A_0)(W(t)-W(s))f\|\leq2\varepsilon. \] Thus, we obtain the desired result. Now, we prove \eqref{e2.4}. This is proven using the same approach as that used in Mochizuki \cite{mochizuki2}. Hence, we provide a brief overview of the proof. Let $g\in\mathcal{H}$. Using the equality \begin{align*} &\langle F_k(A_0)E_{a_k,a_{k+1}}(A_0)(W(t)-W(s))h,g\rangle\\ =&-\int_s^t\langle\sqrt BV(\tau)h, \sqrt BU(\tau)F_k(A_0)E_{a_k,a_{k+1}}(A_0)g\rangle d\tau \end{align*} together with (A3) and \eqref{e2.2}, we obtain \eqref{e2.4}. \end{proof} \begin{lemma} \label{lem2.5} Let $f\in\mathcal{H}$. Then $w-\lim_{t\to\infty}V(t)f=0$. \end{lemma} \begin{proof} Let $g\in\mathcal{H}$. For any $\varepsilon > 0$, there exists $h\in \mathcal{H}$ such that \begin{equation} \label{e2.5} \| g-\overline{F}_{1}(A_0)(A_0+i)^{-2}h\| < \frac{\varepsilon}{\| f\|} \end{equation} by Lemma \ref{lem2.1} (and Remark \ref{rmk2.2}) for $l=2$ and $\alpha_1=a_1$ and $\alpha_2=-a_1$. For $\varepsilon$ and $h$, there exists $n\in\mathbb{N}$ such that \begin{equation} \label{e2.6} \sup_{|\lambda| > a_{n+1}}|\overline{F}_1(\lambda )(\lambda^2+i)^{-2}| < \frac{\varepsilon}{\| f\|\| h\|}. \end{equation} Moreover, for $\varepsilon, h$, and $n$, there exists $\varphi\in \mathcal{H}$ such that \begin{equation} \label{e2.7} \| h-\prod_{k=2}^n\overline{F}_{k}(A_0)\varphi\| < \frac{\varepsilon}{M_1\| f\|} \end{equation} by Lemma \ref{lem2.1} (and Remark \ref{rmk2.2}) for $l=1$ and $\alpha_1=a_2$, $\alpha_2=-a_2$, $\alpha_3=a_3$, $\alpha_4=-a_3$ \dots, $M_1=\sup_{\lambda \in\mathbb{R}}|F_1(\lambda)|$. Let $f\in\mathcal{H}$ and $\tau\geq 0$. Using the values of $h$, $\varphi$, and $n$, we decompose $\langle (W(t)-W(s))f,U(-\tau)g \rangle$ into four parts: \[ \langle (W(t)-W(s))f,U(-\tau)g \rangle=\sum_{j=1}^4I_j(s,t), \] where \begin{gather*} I_1(s,t)=\langle (W(t)-W(s))f,U(-\tau) (g-\overline{F}_{1}(A_0)(A_0+i)^{-2}h) \rangle,\\ I_2(s,t)=\langle (W(t)-W(s))f,U(-\tau) (I_d-\tilde{E}_{n}(A_0))\overline{F}_{1}(A_0)(A_0+i)^{-2}h) \rangle,\\ I_3(s,t)=\langle (A_0-i)^{-2}\tilde{E}_{n}(A_0)F_{1}(A_0) (W(t)-W(s))f, U(-\tau)(h-\prod_{k=2}^n\overline{F}_{k}(A_0)\varphi) \rangle, \\ I_4(s,t)=\langle (A_0-i)^{-2}\tilde{E}_{n}(A_0) \tilde{F}_{n}(A_0)(W(t)-W(s))f,U(-\tau)\varphi\rangle. \end{gather*} By \eqref{e2.5}, \eqref{e2.6}, and \eqref{e2.7}, we have $$ |I_1(s,t)|+|I_2(s,t)|+|I_3(s,t)| \leq 6\varepsilon. $$ Hence, we have \begin{equation} \label{e2.8} |\langle (W(t)-W(s))f,U(-\tau)g \rangle|\leq6\varepsilon+ \|(\tilde{E}_{n}\tilde{F}_{n})(A_0)(W(t)-W(s))f\|\|\varphi\| \end{equation} uniformly for $\tau\geq 0$. Put $\tau=0$ in \eqref{e2.8}. Then Lemma 2.4 implies that $$ \limsup_{s,t\to\infty}|\langle (W(t)-W(s))f, g \rangle|\leq6\varepsilon. $$ Since $g\in\mathcal{H}$ is arbitrary, there exists $f_+\in\mathcal{H}$ such that $$ \text{w}-\lim_{t\to\infty}W(t)f=f_+. $$ Now, we return to \eqref{e2.8}. It is noted that $ f_+^{(n)}:=s-\lim_{s\to\infty} (\tilde E_n\tilde F_n)(A_0)W(s)f$ exists by Lemma \ref{lem2.4}. Thus, we have $$ |\langle W(t)f-f_+,U(-\tau)g \rangle|\leq6\varepsilon+ \|(\tilde{E}_{n}\tilde{F}_{n})(A_0)W(t)f-f_+^{(n)}\|\|\varphi\| $$ in \eqref{e2.8} as $s\to\infty$. Substituting $\tau=t$, we have $$ |\langle V(t)f-U(t)f_+,g \rangle|\leq6\varepsilon +\|(\tilde{E}_{n}\tilde{F}_{n})(A_0)W(t)f-f_+^{(n)}\|\|\varphi\|. $$ Further, as $t\to\infty$, we have $$ \limsup_{t\to\infty}|\langle V(t)f-U(t)f_+,g \rangle| \leq6\varepsilon. $$ Since $ w-\lim_{t\to\infty}U(t)f_+=0$ by (A1), we have $$ \limsup_{t\to\infty}|\langle V(t)f,g \rangle|\leq6\varepsilon. $$ Thus, the proof is complete. \end{proof} As an immediate consequence of Lemma \ref{lem2.5}, we see that \begin{equation} \label{e2.9} \sigma_p(A)\cap\mathbb{R}=\emptyset, \end{equation} whose proof can be found in Kadowaki \cite{kado}. \begin{proof}[Proof of Theorem \ref{thm2.3}] By Lemma \ref{lem2.1} and \eqref{e2.9}, the set $$ \{(A-\alpha)\{(A-i)^{-1}\}^lf:f\in \mathcal{H}\} $$ is dense in $\mathcal{H}$. We use $$ F_k(A)=\{(A-a_k)(A-i)^{-1}\}\{(A+a_k)(A-i)^{-1}\}. $$ Let $f\in\mathcal{H}$. Then for any $\varepsilon > 0$, there exists $g\in \mathcal{H}$ such that \begin{equation} \label{e2.10} \| f-F_{1}(A)\{(A-i)^{-1}\}^2g\| < \varepsilon \end{equation} by Lemma \ref{lem2.1}, for $l=2$ and $\alpha_1=a_1$ and $\alpha_2=-a_1$. For $\varepsilon$ and $g$, there exists $n\in\mathbb{N}$ such that \begin{equation} \label{e2.11} \sup_{|\lambda| > a_{n+1}}|F_1(\lambda )(\lambda^2-i)^{-2}| < \varepsilon/\| g\|. \end{equation} Moreover, for $\varepsilon, g$ and $n$, there exists $\varphi\in\mathcal{H}$ such that \begin{equation} \label{e2.12} \| g-\prod_{k=2}^nF_{k}(A)\varphi\| < \frac{\varepsilon}{M_1} \end{equation} by Lemma \ref{lem2.1}, for $l=1$ and $\alpha_1=a_2$, $\alpha_2=-a_2$, $\alpha_3=a_3$, $\alpha_4=-a_3$, \dots, $M_1=\sup_{\lambda \in\mathbb{R}}|F_1(\lambda)|$. Using $g, \varphi$ and $n$, we decompose $(W(t)-W(s))f$ into eight parts: \[ (W(t)-W(s))f=\sum_{j=1}^8J_j(s,t), \] where \begin{gather*} J_1(s,t)=(W(t)-W(s))(f-F_{1}(A)\{(A-i)^{-1}\}^{2}g),\\ J_2(s,t)=U(-t)\left[F_{1}(A)\{(A-i)^{-1}\}^2-F_{1}(A_0)(A_0-i)^{-2}\right]V(t)g,\\ J_3(s,t)=-U(-s)\left[F_{1}(A)\{(A-i)^{-1}\}^2-F_{1}(A_0)(A_0-i)^{-2}\right]V(s)g,\\ J_4(s,t)=(I_d-\tilde{E}_{n}(A_0))F_{1}(A_0)(A_0-i)^{-2}(W(t)-W(s))g,\\ J_5(s,t)= (A_0-i)^{-2}\tilde{E}_{n}(A_0)F_{1}(A_0)(W(t)-W(s)) \Big(g-\prod_{k=2}^nF_{k}(A)\varphi\Big) ,\\ J_6(s,t)= (A_0-i)^{-2}\tilde{E}_{n}(A_0)F_{1}(A_0)U(-t) \Big(\prod_{k=2}^nF_{k}(A)-\prod_{k=2}^nF_{k}(A_0)\Big) V(t)\varphi,\\ J_7(s,t)=-(A_0-i)^{-2}\tilde{E}_{n}(A_0)F_{1}(A_0)U(-s) \Big(\prod_{k=2}^nF_{k}(A)-\prod_{k=2}^nF_{k}(A_0)\Big)V(s)\varphi, \\ J_8(s,t)=(A_0-i)^{-2}\tilde{E}_{n}(A_0)\tilde{F}_{n}(A_0)(W(t)-W(s)) \varphi. \end{gather*} Then \eqref{e2.10}, \eqref{e2.11} and \eqref{e2.12} imply $$ \| J_1(s,t)\|+\| J_4(s,t)\|+\| J_5(s,t)\| \leq 6\varepsilon. $$ From (A2), we find that $F_{1}(A)\{(A-i)^{-1}\}^2-F_{1}(A_0)(A_0-i)^{-2}$ and $\prod_{k=2}^nF_{k}(A)-\prod_{k=2}^nF_{k}(A_0)$ are compact operators. Thus, using Lemma \ref{lem2.5}, we have $$ \lim_{s,t\to\infty}\| J_j(s,t)\|=0, $$ where $j=2,3,6,7$. Lemma \ref{lem2.4} implies that $$ \lim_{s,t\to\infty}\| J_8(s,t)\|=0. $$ Therefore, we have $$ \limsup_{s,t\to\infty}\|(W(t)-W(s))f\|\leq6\varepsilon. $$ This indicates the existence of $W$. Finally, we show that $W\not\equiv0$ using the same argument as that used in \cite{mochizuki2}, section 2. We assume that $W\equiv 0$; i.e., \[ \lim_{t\to\infty}\| V(t)f\|=0 \] for any $f\in\mathcal{H}$. Then using the same argument as that used in \cite{kado}, section 3, it follows that \begin{equation} \label{e2.13} \| G(A_0)f\|^2\leq \| f\|\|(G(A)-G(A_0))f\| +\| f\|\Big(\frac12\int_0^{\infty}\|\sqrt BU(t)G(A_0)f \|^2dt\Big)^{1/2}, \end{equation} where $G(\lambda)=(\lambda-i)^{-1}$. Let $n\in \mathbb{N}$. For any $\alpha, \alpha',\beta$, and $\beta'$ satisfying $a_n < \alpha < \alpha' < \beta' < \beta < a_{n+1}$, we consider $\psi_{\alpha,\beta}(\lambda)\in C_0^{\infty }(\mathbb{R})$, $0\leq \psi_{\alpha,\beta}\leq1$ such that $\psi_{\alpha,\beta}$ has support in $(-\beta,-\alpha)\cup(\alpha,\beta )$ and that $\psi_{\alpha,\beta}=1$ on $[-\beta', -\alpha']\cup[\alpha', \beta']$. We put $f=U(s)\psi_{\alpha,\beta}(A_0)g$ for any $g\in\mathcal{H}$. Hence, it follows from \eqref{e2.13} that \begin{align*} \| G(A_0)\psi_{\alpha,\beta}(A_0)g\|^2 &\leq \| f\|\|(G(A)-G(A_0))U(s)\psi_{\alpha,\beta}(A_0)g\|\\ &\quad +\| f\|\Big(\frac12\int_s^{\infty}\|\sqrt BU(t)G(A_0) \psi_{\alpha,\beta}(A_0)g\|^2dt\Big)^{1/2}. \end{align*} Next, (A1) and (A2) imply \[ \lim_{s\to\infty}\|(G(A)-G(A_0))U(s)\psi_{\alpha,\beta}(A_0)g\|=0. \] Since $G(A_0)F_n(A_0)^{-1}\psi_{\alpha,\beta}(A_0)$ is bounded, $\sqrt BG(A_0)\psi_{\alpha,\beta}(A_0)$ is $A_0$-smooth by (A3). This implies \[ \lim_{s\to\infty}\int_s^{\infty}\|\sqrt BU(t)G(A_0) \psi_{\alpha,\beta}(A_0)g\|^2dt=0. \] Therefore, we obtain $\psi_{\alpha,\beta}(A_0)g\equiv 0$. Using $E(\{\pm a_n\})=E(\{\pm a_{n+1}\})=0$ and the decomposition of the identity on $(-a_{n+1} ,-a_n )\cup(a_n, a_{n+1})$, we have $g\equiv0$. This is a contradiction. \end{proof} \section{Proof of Theorem \ref{thm1.1}} In this section, we will show that $A_0$ and $B$ defined in section 1 satisfy (A1), (A2), and (A3) in section 2. (A2) is obtained from Rellich's theorem. (A1) is discussed as follows. \begin{proposition} \label{prop3.1} For $A_0$ defined in section 1, {\rm (A1)} is satisfied for $m=1$: \[ \sigma(A_0)=\sigma_{ac}(A_0)=(-\infty,-1]\cup[1,\infty). \] \end{proposition} \begin{proof} We put $$ T_0=\frac1{\sqrt2}\begin{pmatrix} \sqrt{L_0}& i\\ \sqrt{L_0} & -i\end{pmatrix}. $$ Hence, $T_0$ is a unitary operator from $\mathcal{H}=\dot{H}_0(\Omega)\times L^2(\Omega )$ onto $L^2(\Omega )\times L^2(\Omega )$. Put \[ B_0=T_0A_0T_0^{-1}=\begin{pmatrix} \sqrt{L_0}& 0\\ 0 & -\sqrt{L_0} \end{pmatrix}. \] $A_0$ and $B_0$ are unitary equivalent. As mentioned in section 1, since $\sigma(L_0)=\sigma_{ac}(L_0)=[1^2,\infty)$, we have \[ \sigma(B_0)=\sigma_{ac}(B_0)=(-\infty, -1]\cup [1,\infty). \] Thus the proof is complete. \end{proof} To discuss (A3), we first give the following definitions. We define weighted $L^2$-spaces in the form \begin{gather*} L^2_{Y_m}(\mathbb{R}^N)= \{f(x): \int_{\mathbb{R}^N} \vert Y_mf(x)\vert ^2 dx<\infty\},\\ L^2_{Y_m^{-1}}(\mathbb{R}^N)= \{f(x): \int_{\mathbb{R}^N} \vert Y_m^{-1}f(x)\vert ^2 dx <\infty\}, \end{gather*} where \[ Y_m=\Big(\prod_{k=0}^{m}\log^{[k]}(e_m+|x|)\Big)^{-1/2} (\log^{[m]}(e_m+|x|))^{-\delta/2} \] for the same $m$ as in \eqref{e1.3}. For the Hilbert space $\mathcal{E}$, we denote the inner product, the norm, and the operator norm from $\mathcal{E}$ to $\mathcal{E}$ by $\langle\cdot, \cdot\rangle_{\mathcal{E}}$, $\|\cdot\|_{\mathcal{E}}$, and $\|\cdot\|_{\mathcal B(\mathcal{E})}$, respectively. If $\mathcal{E}=\mathcal{H}$ defined in section 1, then we omit the suffix $\mathcal{H}$. \begin{lemma} \label{lem3.2} Let $n\in\mathbb{N}$. Then for every $\lambda \in (-\infty,-n)\cup(n,\infty)$, there exist limits $r_n(\lambda \pm i0)\in\mathcal B(L^2_{Y_m^{-1}}(\mathbb{R}^N), L^2_{Y_m}(\mathbb{R}^N))$ such that \begin{equation} \label{e3.1} \langle r_n(\lambda \pm i0)Y_mu,Y_mv\rangle_{L^2(\mathbb{R}^N)} =\lim_{\kappa \downarrow 0}\langle r_n(z)Y_mu,Y_mv \rangle_{L^2(\mathbb{R}^N)}, \end{equation} for any $u,v\in L^2(\mathbb{R}^N)$, where $z=\lambda \pm i\kappa $ with $\kappa > 0$. Moreover, there exists a positive constant $C$ such that \begin{equation} \label{e3.2} \| Y_mr_n(\lambda \pm i0)Y_m\|_{\mathcal B(L^2(\mathbb{R}^N))} \leq C|\lambda ^2-n^2|^{-1/2}, \end{equation} where $C$ is independent of $\lambda $. \end{lemma} The above lemma will be proved in section 4. Using this lemma, we demonstrate the following proposition. \begin{proposition} \label{prop3.3} Let $n\in\mathbb{N}$ and $\varepsilon\in(0,1)$; further, let $f\in\mathcal{H}$. Then the following is observed: \begin{itemize} \item [(1)] For any $\lambda\in(-n-\varepsilon,-n)\cup(n,n+\varepsilon)$, there exists a positive constant $C_1$, independent of $\lambda$, such that \[ \frac{d}{d\lambda }\| E(\lambda )\sqrt Bf\|^2\leq C_1(\lambda^2-n^2)^{-1/2}\| f\|^2 . \] \item[(2)] For any $\lambda\in(-n-1,-n-\varepsilon)\cup(n+\varepsilon,n+1)$, there exists a positive constant $C_2$, independent of $\lambda$, such that \[ \frac{d}{d\lambda }\| E(\lambda )\sqrt Bf\|^2\leq C_2\| f\|^2. \] \end{itemize} \end{proposition} \begin{proof} Put $\rho (z)=R(z)-R(\overline{z})$ with $z=\lambda +i\kappa $, $\kappa > 0$, and \[ (\rho (\lambda )\varphi)(x,y)=\frac2{\pi} \sum_{k=1}^{n}\sin ky\int_0^{\pi} \sin ky'((r_k(\lambda +i0)-r_k(\lambda -i0))\varphi)(x,y')dy', \] for $\varphi\in C_0^{\infty}(\Omega)$. Therefore, by Lemma \ref{lem3.2}, \[ \lim_{\kappa \downarrow 0}\langle (\rho (z)-\rho (\lambda ))Y_mu,Y_mv\rangle_{L^2(\mathbb{R}^N)}=0 \] holds for any $u,v\in L^2(\mathbb{R}^N)$. Let $f\in\mathcal{H}$. Using \[ \frac{d}{d\lambda }\| E(\lambda )\sqrt Bf\|^2=\frac1{2\pi i} \langle \{(A_0-(\lambda +i0))^{-1}-(A_0-(\lambda -i0))^{-1}\} \sqrt Bf,\sqrt Bf\rangle \] and \[ \langle \{(A_0-(\lambda +i0))^{-1}-(A_0-(\lambda -i0))^{-1}\}\sqrt Bf,\sqrt Bf\rangle =\lambda \langle \rho (\lambda)\sqrt bf_2,\sqrt bf_2\rangle_{L^2(\Omega )}, \] we have \begin{equation} \label{e3.3} \frac{d}{d\lambda }\| E(\lambda )\sqrt Bf\|^2=\frac1{2\pi i} \lambda \langle \sqrt b\rho (\lambda)\sqrt bf_2,f_2\rangle_{L^2(\Omega )}. \end{equation} To show (1) and (2), we estimate $\|\sqrt b\rho (\lambda)\sqrt b\|_{\mathcal B(L^2(\Omega ))}^2$. Applying Parseval's identity to the Fourier series, the Schwarz inequality, and \eqref{e1.3}, we have \[ \|\sqrt b\rho (\lambda)\sqrt b\|_{\mathcal B(L^2(\Omega ))}^2 \leq C\sum_{k=1}^{n}\| Y_m(r_k(\lambda +i0)-r_k(\lambda -i0))Y_m\|_{\mathcal B(L^2(\mathbb{R}^N))}^2 \] for some positive constant $C$. Hence, we only have to estimate the right-hand side of the above inequality. By \eqref{e3.2}, there exists a positive constant $\tilde{C}_1$, independent of $\lambda$, such that \begin{align*} &\sum_{k=1}^{n}\| Y_m(r_k(\lambda +i0)-r_k(\lambda -i0))Y_m\|_{\mathcal B(L^2(\mathbb{R}^N))}^2\\ &=\sum_{k=1}^{n-1}\| Y_m(r_k(\lambda +i0)-r_k(\lambda -i0))Y_m\|_{\mathcal B(L^2(\mathbb{R}^N))}^2\\ &\quad +\| Y_m(r_n(\lambda +i0)-r_n(\lambda -i0))Y_m\|_{\mathcal B(L^2(\mathbb{R}^N))}^2\\ &\leq \tilde{C}_1(1+|\lambda^2-n^2|^{-1}). \end{align*} for any $\lambda\in(-n-\varepsilon,-n)\cup(n,n+\varepsilon)$. For any $\lambda\in(-n-1, -n-\varepsilon)\cup(n+\varepsilon, n+1)$, there exists a positive constant $\tilde{C_2}$, independent of $\lambda$, such that \[ \sum_{k=1}^{n}\| Y_m(r_k(\lambda +i0)-r_k(\lambda -i0))Y_m\|_{\mathcal B(L^2(\mathbb{R}^N))}^2 \leq \tilde{C}_2. \] Thus, \[ \| \sqrt b\rho(\lambda)\sqrt b\|_{\mathcal B(L^2(\Omega))} \leq \begin{cases} \tilde{C}_1|\lambda^2-n^2|^{-1/2}&\text{if } n < |\lambda| < n+\varepsilon, \\ \tilde{C}_2 &\text{if } n+\varepsilon < |\lambda| < n+1. \end{cases} \] This together with \eqref{e3.3} prove (1) and (2). \end{proof} \begin{proof}[Proof of (A3)] From Proposition \ref{prop3.3}, we may put $a_n=n$. We take $\varepsilon\in(0,1)$. Substitute $z=\mu+i\kappa$ for $\kappa > 0$ and $K_{\varepsilon }(n)=\sqrt B F_n(A_0)E_{n,n+\varepsilon}(A_0)$. It follows from the well-known formula \begin{align*} &\operatorname{Im}\langle (A_0-z)^{-1}K_{\varepsilon}(n)^{\ast} f,K_{\varepsilon }(n)^{\ast}f\rangle\\ &=\Big(\int_{-n-\varepsilon}^{-n}+\int_{n}^{n+\varepsilon}\Big) \frac{\kappa}{(\lambda -\mu )^2+\kappa ^2} |(\lambda-i)^{-2}(\lambda^2-n^2)|^2\frac{d}{d\lambda } \| E(\lambda )\sqrt Bf\|^2d\lambda. \end{align*} Thus, using Proposition \ref{prop3.3} (1) and the well-known identity \[ \int_{-\infty}^{\infty}\frac{\kappa}{(\lambda-\mu)^2 +\kappa^2}d\lambda=\pi, \] we have \[ \sup_{\operatorname{Im}z\neq 0,f\in\mathcal{H}}|\operatorname{Im}\langle (A_0-z)^{-1}K_{\varepsilon }(n)^{\ast}f, K_{\varepsilon }(n)^{\ast}f\rangle| \leq C\| f\|^2 \] for some $C > 0$. This implies that $K_{\varepsilon }(n)=\sqrt BF_n(A_0)E_{n,n+\varepsilon}(A_0)$ is $A_0$-smooth (cf. Kato \cite{kato} or Reed-Simon \cite{reedsimon2}). By Proposition \ref{prop3.3} (2), we can show that $\sqrt BE_{n+\varepsilon,n+1}(A_0)$ is $A_0-$smooth in the same manner as that mentioned above. Since $F_n(A_0)$ is bounded, the operator $\sqrt BF_n(A_0)E_{n+\varepsilon,n+1}(A_0)$ is also $A_0-$smooth. Thus $\sqrt BF_n(A_0)E_{n,n+1}(A_0)$ is $A_0$-smooth because of $E(\{\pm(n+\varepsilon)\})=0$ ($\sigma_p(A_0)=\emptyset $). \end{proof} \begin{remark} \label{rmk34} \rm From \cite[Proposition 3.5]{kado} and \cite[Lemma 5]{schlag}, the following statements are obtained. \begin{enumerate} \item[(1)] Let $N\geq 3$ and $s \geq 1$. Then for any $\lambda\in(-n-1,-n)\cup(n,n+1)$, there exists a positive constant $C$, independent of $\lambda$, such that \[ \| Z_sr_n(\lambda\pm i0)Z_s\|_{\mathcal B(L^2(\mathbb{R}^N))}\leq C, \] where $Z_s=(1+\vert x\vert^2)^{-s/2}$. \item[(2)] Let $s > 1$. Then for any $\lambda\in(-n-1,-n)\cup(n,n+1)$, there exists a positive constant $C$, independent of $\lambda$, such that \[ \| Z_s\{r_n(\lambda+i0)-r_n(\lambda-i0)\}Z_s\|_{\mathcal B(L^2(\mathbb{R}^2))}\leq C. \] \end{enumerate} Thus, assuming \eqref{e1.4} with $\delta \geq 1$ (if $N\geq 3$) and $\delta > 1$ (if $N=2$), we need not insert $F_n(A_0)$ in assumption (A3). \end{remark} \begin{proof} We omit the proof of (1), refer to \cite{kado}, and provide a brief sketch of the proof of (2). Put \[ E_0(\sqrt{\lambda^2-n^2})(x',x)=\frac{i}4H_0^+ (\sqrt{\lambda^2-n^2}|x-x'|)- \frac{i}4H_0^-(\sqrt{\lambda^2-n^2}|x-x'|)-\frac{i}2, \] where $H_0^{\pm}$ are the Hankel functions of order zero with $H_0^-=\overline{H_0^+}$. Let $g\in C^{\infty }_0(\mathbb{R}^2)$. By \cite[Lemma 5]{schlag}, for any $\varepsilon > 0$, there exists a $C > 0$ such that \[ |E_0(\sqrt{\lambda ^2-k^2})(x',x)| \leq C(\lambda ^2-k^2)^{\varepsilon/2}|x'-x|^{\varepsilon }. \] In addition, using \[ ((r_k(\lambda +i0)-r_k(\lambda -i0))g)(x)= \int_{\mathbb{R}^2} \Big(\frac{i}2+E_0(\sqrt{\lambda ^2-k^2})(x',x)\Big)g(x')dx', \] we obtain the desired estimate. \end{proof} \begin{remark} \label{rmk3.5} \rm In the case of $N=1$, for $n\in\mathbb{N}$, we provide a concrete example of $BE((n,n+1))$, which is not $A_0$-smooth. We put $b(x,y)=\chi_{(0,\pi)}(x)$ and $f={}^t\!( 0,\chi_{(0,\pi)}(x)\sin ny)$. Then we have \[ \sup_{\kappa\not=0}|\operatorname{Im}\langle (A_0-(n-i\kappa))^{-1} E((n,n+1))\sqrt Bf, E((n,n+1))\sqrt Bf\rangle| =\infty \] Indeed, since Green's function of $r_n(z)$ is \[ \frac{i}{2\sqrt{z^2-n^2}}e^{i\sqrt{z^2-n^2}\vert x\vert}, \] where $\operatorname{Im}\sqrt{z^2-n^2} > 0$. By \eqref{e3.3}, we have \[ \frac{d}{d\lambda }\| E(\lambda )\sqrt Bf\|^2= \frac{{\pi}^2}2\frac{\sin^2 \frac{\sqrt{\lambda ^2-n^2}}{2}\pi}{\big(\frac{\sqrt{\lambda ^2-n^2}}{2}\pi\big)^2} \frac{\lambda }{\sqrt{\lambda ^2-n^2}}. \] Therefore, we can obtain the estimate \begin{align*} &|2\operatorname{Im}\langle (A_0-(n-i\kappa))^{-1}E((n,n+1)) \sqrt Bf, E((n,n+1))\sqrt Bf\rangle|\\ &=\big|\big\langle E((n,n+1))\sqrt Bf,\\ &\quad \{(A_0-(n+i\kappa))^{-1}-(A_0-(n-i\kappa))^{-1}\}E((n,n+1)) \sqrt Bf\big\rangle\big|\\ &=\int_{n}^{n+1} \frac{{\pi}^2\kappa }{(\lambda -n)^2+\kappa ^2}\frac{\sin^2\frac{\sqrt{\lambda ^2-n^2}}{2}\pi} {\big(\frac{\sqrt{\lambda ^2-n^2}}{2}\pi\big)^2} \frac{\lambda }{\sqrt{\lambda ^2-n^2}}d\lambda \\ &\geq Cn\int_{n}^{n+1}\frac{\kappa }{(\lambda -n)^2 +\kappa ^2}\frac1{\sqrt{\lambda ^2-n^2}}d\lambda \end{align*} for some $C > 0$. Integrating by parts and using Fatou's lemma, we have \[ \liminf_{\kappa \to0}\int_{n}^{n+1}\frac{\kappa }{(\lambda -n)^2 +\kappa ^2}\frac1{\sqrt{\lambda ^2-n^2}}d\lambda \geq \frac{\pi}{2\sqrt{2n+1}}+\int_n^{n+1} \frac{\pi\lambda }{2(\lambda^2-n^2)^{\frac32}}d\lambda =\infty \] Therefore, $\sqrt BE((n,n+1))$ is not $A_0$-smooth. \end{remark} \section{Proof of Lemma \ref{lem3.2}} Without loss of generality, we may assume $n=0$. Hence, we only have to prove the following lemma. \begin{lemma} \label{lem4.1} For every $\lambda \in \mathbb{R}\backslash \{0\}$, there exist limits $$ r_0(\lambda \pm i0)\in \mathcal B(L^2_{Y_m^{-1}}(\mathbb{R}^N), L^2_{Y_m}(\mathbb{R}^N)) $$ such that \[ \langle r_0(\lambda \pm i0)Y_mu,Y_mv\rangle_{L^2(\mathbb{R}^N)} =\lim_{\kappa \downarrow 0}\langle r_0(z)Y_mu,Y_mv \rangle_{L^2(\mathbb{R}^N)}, \] for any $u,v\in L^2(\mathbb{R}^N)$, where $z=\lambda \pm i\kappa $ with $\kappa > 0$. Moreover, there exists a positive constant $C$ such that \[ \| Y_mr_0(\lambda \pm i0)Y_m\|_{\mathcal B(L^2(\mathbb{R}^N))} \leq C|\lambda|^{-1}, \] where $C$ is independent of $\lambda $. \end{lemma} To prove Lemma \ref{lem4.1}, we define a Besov space (introduced by Agmon-H\"ormander \cite{agmon-hormander}) \[ B_{1/2}(\mathbb{R}^N)=\big\{ f(x): \| f\|_{B_{1/2}} =\sum_{j\geq 1}R_j^{1/2} \{\int_{D_j}|f(x)|^2dx\}^{1/2}<\infty\big\}, \] where $R_{-1}=0$, $R_j=2^{j-1}$ $(j=1, 2, 3 \dots)$ and $D_j=\{ x\in\mathbb{R}^N : R_{j-2} < |x| < R_{j-1}\}$. The dual space of $B_{1/2}(\mathbb{R}^N)$ with respect to $L^2({\mathbb{R}}^N)$ is denoted by $B^{*}_{1/2}(\mathbb{R}^N)$. The following result is well known (cf. Agmon \cite[Theorems 3.1 and 3.2]{agmon}). \begin{lemma} \label{lem4.2} For every $\lambda \in \mathbb{R}\backslash \{0\}$, there exist limits $$ r_0(\lambda\pm i0)\in\mathcal B(B_{1/2}(\mathbb{R}^N),B_{1/2}^{*} (\mathbb{R}^N)) $$ such that \[ \langle r_0(\lambda\pm i0)u,v\rangle_{L^2(\mathbb{R}^N)} =\lim_{\kappa\downarrow 0}\langle r_0(z)u,v\rangle_{L^2(\mathbb{R}^N)} \] for any $u,v\in B^{1/2}(\mathbb{R}^N)$, where $z=\lambda \pm i\kappa $ with $\kappa > 0$. Moreover, there exists a positive constant $C$ such that \[ \| r_0(\lambda \pm i0)\| _{\mathcal B(B_{1/2}(\mathbb{R}^N),B_{1/2}^{*}(\mathbb{R}^N))} \leq C|\lambda |^{-1}, \] where $C$ is independent of $\lambda $. \end{lemma} \begin{remark} \label{rmk4.3} \rm The proof of (2) for $N=1$ was not mentioned in \cite{agmon}. However, it is not difficult. The proof of (2), according to Isozaki \cite[section 5.3]{isozaki}, we can done as follows. \begin{align*} |\langle (\frac{d^2}{dx^2}-z^2)^{-1}u,v\rangle_{L^2(\mathbb{R})}| &=\big|\iint_{\mathbb{R}^2}\frac{i}{2z}e^{iz\vert x-y\vert} u(y)dy\overline{v(x)}dx\big|\\ &\leq \frac1{2\vert z\vert}\int_{\mathbb{R}}\vert u(y)\vert dy \int_{\mathbb{R}}\vert v(x)\vert dx\\ &=\frac1{2\vert z\vert} \Big(\sum_{j=1}^{\infty}\int_{D_j}\vert u(y)\vert dy\Big) \Big(\sum_{j=1}^{\infty}\int_{D_j}\vert v(x)\vert dx\Big)\\ &\leq \frac1{\vert z\vert}\| u\|_{B_{1/2}}\| v\|_{B_{1/2}}. \end{align*} \end{remark} Now Lemma \ref{lem4.1} follows from Lemma \ref{lem4.2} and the relation between $L^2_{Y_m}=L^2_{Y_m}(\mathbb{R}^N)$ and $B_{1/2}=B_{1/2}(\mathbb{R}^N)$ (cf. Roach-Zhang \cite{roach-zhang} ($m=1$) and Nakazawa \cite{naka} ($m\geq 1$)): \begin{equation} \label{e4.1} L^2_{Y_0^{-1}}\subset L^2_{Y_1^{-1}}\subset\dots \subset L^2_{Y_m^{-1}}\subset B_{1/2}\subset L^2 \subset B^{*}_{1/2}\subset L^2_{Y_m} \subset \dots \subset L^2_{Y_{1}} \subset L^2_{Y_0}. \end{equation} \begin{proof} Since \eqref{e4.1} follows from the duality and \begin{equation} \label{e4.2} L^2_{Y_{m}^{-1}}\subset L^2_{Y_{m+1}^{-1}}\subset B_{1/2}, \end{equation} we only have to prove only \eqref{e4.2}. First, for any $k\in {\mathbb{N}}\cup\{0\}$ satisfying $k\leq m-1$ and an arbitrarily fixed positive number $\delta$, we have: \begin{gather} \label{e4.3} {\log^{[k]}(e_m+r)} \leq \frac{e_{m-k}}{e_{m-k-1}}{\log^{[k]} (e_{m-1}+r)}, \\ \label{e4.4} {[\log^{[m]}(e_m+r)]^{1+\delta}} \leq \frac{1+\delta}{\delta}{[\log^{[m-1]} (e_{m-1}+r)]^{\delta}}. \end{gather} Indeed, substituting $$ f(r)=\frac{e_{m-k}}{e_{m-k-1}}{\log^{[k]}(e_{m-1}+r)} - {\log^{[k]}(e_m+r)} $$ and $$ g(r)=\frac{1+\delta}{\delta}{[\log^{[m-1]} (e_{m-1}+r)]^{\delta}}-{[\log^{[m]}(e_m+r)]^{1+\delta}}, $$ we can easily verify that $f'(r), g'(r)\geq 0$ and $f(0)=0, g(0)=1/{\delta } > 0$. Therefore, \eqref{e4.3} and \eqref{e4.4} hold. Hence, there exists a positive number $M_m\geq \{e_m(1+\delta)\}/{\delta}$ such that \begin{align*} &\bigl[\prod_{k=0}^{m-1}\log^{[k]} (e_{m}+r)\bigr]\big[\log^{[m]}(e_{m}+r)\big]^{1+\delta}\\ &\leq M_m \begin{cases} (1+r)^{1+\delta}& \text{if } m=1,\\ [\prod_{k=0}^{m-2}\log^{[k]} (e_{m-1}+r)][\log^{[m-1]}(e_{m-1}+r)]^{1+\delta} & \text{if } m\geq 2. \end{cases} \end{align*} Thus, we obtain \begin{equation} \label{e4.5} L^2_{Y_{m}^{-1}}\subset L^2_{Y_{m+1}^{-1}}. \end{equation} Put $\varphi(r)=\{\prod_{k=0}^{m}\log^{[k]}(e_m+r)\}^{1/2} \{\log^{[m]}(e_m+r)\}^{\delta/2}$. From the Schwarz inequality, for any $f\in C_0^{\infty}(\mathbb{R}^N)$, we have \begin{align*} \|f\|_{B_{1/2}} &=\sum_{j\geq 1}R_j^{1/2} \Big(\int_{D_j}\varphi(r)^{-2}\cdot |\varphi(r)f(x)|^2dx\Big)^{1/2}\\ &\leq \big\{\sum_{j\geq 1}R_j \big(\max_{D_j}\varphi(r)^{-2}\big)\big\} ^{1/2}\Big(\sum_{j\geq 1}\int_{D_j}|\varphi(r)f(x)|^2dx\Big)^{1/2}\\ &= M(\varphi)\|f\|_{\varphi}, \end{align*} where \[ M(\varphi)\equiv \big\{\sum_{j\geq 1}R_j \big(\max_{D_j} \varphi(r)^{-2}\big)\big\}^{1/2}. \] Hence, we have \begin{equation} \label{e4.6} L^2_{Y_m^{-1}}\subset B_{1/2} \end{equation} because \begin{align*} M(\varphi )^2 &=\sum_{j\geq 1}R_j\varphi(R_{j-1})^{-2}\\ &=\varphi(0)^{-2}+2^2\sum_{j\geq 2}2^{j-3}\varphi(R_{j-1})^{-2}\\ &\leq \varphi(0)^{-2}+2^2\int_0^{\infty}\varphi(r)^{-2}dr < \infty. \end{align*} Thus, from \eqref{e4.5} and \eqref{e4.6} we obtain \eqref{e4.2}. \end{proof} \section{Total energy decay} In this section, we assume that the function $b(x,y)$ satisfies \begin{equation} \label{e5.1} b_0\Big(\prod_{k=0}^m\log^{[k]}(e_m+r)\Big)^{-1}\leq b(x,y)\leq b_1 \end{equation} for some $b_0, b_1 > 0$ and $m\in\mathbb{N}\cup \{0\}$. Under assumption \eqref{e5.1}, the operator $-iA$ defined in section 1 generates a contraction semi-group $V(t) (t\geq 0)$. Hence, we obtain the following theorem. \begin{theorem} \label{thm5.1} For any $f\in \mathcal{H}$, $\lim_{t\to\infty}\| V(t)f\|=0$. \end{theorem} The above theorem is an immediate consequence of the usual density argument and the following proposition. \begin{proposition} \label{prop5.2} Let $\varepsilon$ satisfy $0<\varepsilon\leq\min\{1,b_0/2\}$. Assume the initial data $f={}^t\!( f_1,f_2)\in C_0^{\infty}(\Omega )\times C_0^{\infty}(\Omega )$. Then $$ \| V(t)f\|\leq C_2\{\log^{[m]}(e_m+t )\}^{-\varepsilon/2} $$ for a positive constant $C_2=C_2(f_1,f_2,b_0,b_1,\varepsilon)>0$. \end{proposition} This result is proved using the same arguments as those used in \cite[section 2]{mochizuki-naka}. Here, we provide a brief summary of the proof. Let $u$ be the unique solution of \eqref{e1.1} with initial data $f={}^t\!( f_1,f_2)\in C_0^{\infty}(\Omega )\times C_0^{\infty}(\Omega )\subset D(A)$. Let $\varphi$ be a function defined by $\varphi(s)=\{\log^{[m]}(e_m+s)\}^{\varepsilon}$ $(0<\varepsilon\leq1)$. Multiplying both sides of \eqref{e1.1} with $\partial_t\{\varphi(r+t)\overline{u}\}$, we obtain \begin{equation} \label{e5.2} \partial_t X(x,y,t)+\nabla\cdot Y(x,y,t)+Z(x,y,t)=0, \end{equation} where \begin{gather*} X(x,y,t)=\frac{\varphi}{2}(\vert \partial_tu\vert^2+|\nabla u|^2) +\frac{\varphi'b-\varphi''}{2}\vert u\vert^2+\varphi'\operatorname{Re} (\partial_tu\overline{u}),\\ Y(x,y,t)=-\{\varphi \operatorname{Re}(\nabla u\overline{\partial_tu}) +\varphi'\operatorname{Re}(\nabla u\overline{u}) \},\\ \begin{aligned} Z(x,y,t)&=\big(\varphi b-\frac{3\varphi'}{2}\big) \vert \partial_tu\vert^2 +\frac{\varphi'}{2}|\nabla u|^2+ \varphi'\operatorname{Re}(\partial_ru\overline{\partial_tu}) +\varphi''\operatorname{Re}(\partial_ru\overline{u})\\ &\quad +\frac{\varphi'''-\varphi''b}{2}\vert u\vert^2. \end{aligned} \end{gather*} To prove Proposition \ref{prop5.2}, we state the following four lemmas. \begin{lemma} \label{lem5.3} Let $\varepsilon $ satisfy $0<\varepsilon\leq\min\{1,b_0/2\}$. Then $$ Z(x,y,t)\geq -\partial_t\big(\frac{\varphi''\vert u\vert^2}{2}\big). $$ \end{lemma} \begin{proof} It holds that $$ Z(x,y,t)\geq (b\varphi-2\varphi')\vert \partial_tu\vert^2 +\frac12\big(2\varphi'''-b\varphi'' -\frac{{\varphi''}^2}{\varphi'}\big) \vert u\vert^2-\partial_t\big(\frac{\varphi''\vert u\vert^2}{2}\big). $$ From the assumption of $b(x,y)$ and the definition of $\varphi$, we can easily verify that $b\varphi-2\varphi'$ and $2\varphi'''-\frac{{\varphi''}^2}{\varphi'}$ are non-negative if $\varepsilon$ is chosen as $\frac{b_0}{2}\geq \varepsilon$. This provides the conclusion. \end{proof} \begin{lemma} \label{lem5.4} Let $\varepsilon $ satisfy $0<\varepsilon\leq\min\{1,b_0/2\}$. Then $$ \int_{\Omega } \Big(X-\frac{\varphi''\vert u\vert^2}{2} \big|_{t=\tau }\Big)\,dx\,dy\leq \int_{\Omega } \Big(X-\frac{\varphi''\vert u\vert^2}{2} \big|_{t=0}\Big)\,dx\,dy. $$ \end{lemma} \begin{proof} From \eqref{e5.2} and Lemma \ref{lem5.3}, we obtain \begin{equation} \label{e5.3} \partial_t\Big(X(x,y,t)-\frac{\varphi''|u|^2}{2}\Big) +\nabla\cdot Y(x,y,t)\leq0. \end{equation} Since $V(t)f={}^t\!( u(t),\partial_tu(t))\in D(A)$, we have $u(x,0,t)=\partial_tu(x,0,t)=u(x,\pi,t)=\partial_tu(x,\pi,t)=0$ in the trace sense. Thus, integration of \eqref{e5.3} by parts over $\Omega \times[0,\tau]$ provides the conclusion. \end{proof} \begin{lemma} \label{lem5.5} Let $\varepsilon$ satisfy $0<\varepsilon\leq\min\{1,b_0/2\}$ and $\mu $ satisfy $1/2\leq\mu<1$. Then $$\int_{\Omega } \Big(X-\frac{\varphi''\vert u\vert^2}{2}\big|_{t=\tau }\Big)\,dx\,dy \geq \frac{(1-\mu )}2\{\log^{[m]}(e_m+\tau )\}^{\varepsilon} \| V(\tau )f\|^2. $$ \end{lemma} \begin{proof} Using \eqref{e5.1} and the definition of $\varphi(r+t)$, we find \[ X-\frac{\varphi''\vert u\vert^2}{2}\big|_{t=\tau } \geq \frac{(1-\mu )\varphi}{2}(\vert \partial_tu\vert^2+|\nabla u|^2). \] For more details, refer the reader to \cite[Lemmas 2.1 and 2.2]{mochizuki-naka}. This provides the conclusion. \end{proof} The proof of the following lemma is obvious and is omitted. \begin{lemma} \label{lem5.6} There exists a positive constant $C_1=C_1(b_1,\varepsilon)$ such that \begin{align*} &\int_{\Omega} \Big(X-\frac{\varphi''\vert u\vert^2}{2}\big|_{t=0}\Big)\,dx\,dy\\ &\leq C_1 \Big(\int_{\Omega }\{\log^{[m]}(e_m+r)\}^{\varepsilon} \{|\nabla f_1(x,y)|^2+\vert f_2(x,y)\vert^2\}\,dx\,dy +\| f_1\|_{L^2(\Omega) }^2 \Big). \end{align*} \end{lemma} Then Proposition \ref{prop5.2} follows from Lemmas \ref{lem5.4}, \ref{lem5.5}, and \ref{lem5.6}. \begin{thebibliography}{00} \bibitem{agmon} S. Agmon; \emph{A representation theorem for solutions of the Helmholtz equation and resolvent estimates for the Laplacian}, In P.\ H.\ Rabinowitz\ and\ E.\ Zehnder\ eds., Analysis, et cetera, Academic\ Press, \ Boston, 1990, pp. 39--76. \bibitem{agmon-hormander} S. Agmon and L. H\"ormander; \emph{Asymptotic properties of solutions of differential equations with simple characteristics}, J.\ Analyse.\ Math.,\textbf{30}, 1976, pp. 1--38. \bibitem{ben-artzi} M.\ Ben-Artzi; \emph{On spectral properties of acoustic propagator in a layered band}, J.\ Differential Equations, \textbf{136}, 1997, pp. 115--135. \bibitem{isozaki}H.\ Isozaki; \emph{Many Body Shr\"odinger Equations}, (in Japanese), Springer, Tokyo, 2004. \bibitem{kado} M.\ Kadowaki; \emph{Resolvent estimates and scattering states for dissipative systems}, Publ.\ RIMS\ Kyoto\ Univ., \textbf{38}, 2002, pp. 191--209. \bibitem{kato} T.\ Kato; \emph{Wave operators and similarity for some non--selfadjoint operators}, Math.\ Ann. \textbf{162}, 1966, pp. 258--279. \bibitem{kuroda} S.\ T.\ Kuroda; \emph{An Introduction to Scattering Theory}, Lecture Note Series $N^o$ 51, Matematisk Institut, Aarhus University, 1980. \bibitem{mochizuki2} K. Mochizuki; \emph{Scattering theory for wave equations with dissipative terms}, Publ.\ RIMS\ Kyoto\ Univ., \textbf{12}, 1976, pp. 383--390. \bibitem{mochizuki3} K. Mochizuki; \emph{Scattering Theory for Wave Equations}, (in Japanese), Kinokuniya, Tokyo, 1984. \bibitem{mochizuki-naka} K. Mochizuki and H. Nakazawa; \emph{Energy decay and asymptotic behavior of solutions to the wave equations with linear dissipation}, Publ.\ RIMS Kyoto Univ. \textbf{32}, 1996, pp. 401--414. \bibitem{naka} H.\ Nakazawa; \emph{On wave equations with dissipations}, Proceedings of the 4th International Conference AMADE 2006, 13-19th of September 2006, Minsk, Belarus, Volume 3: Differential Equations, 2006, pp. 102--110 \bibitem{petkov} V.\ Petkov; \emph{Scattering Theory for Hyperbolic Operators}, North Holland, Amsterdam, New York, Oxford, Tokyo, 1989. \bibitem{rammwerner} A.\ G.\ Ramm and P.\ Werner; \emph{On the limit amplitude principle for a layer}, J.\ f\"ur die reine und angewandte Mathematik, \textbf{360}, 1986, pp. 19--46. \bibitem{reedsimon1} M. Reed and B. Simon; \emph{Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness}, Academic Press, New York, San Francisco, London, 1975 \bibitem{reedsimon2} M. Reed and B. Simon; \emph{Methods of Modern Mathematical Physics, IV}, Analysis of Operators, Academic Press, New York, San Francisco, London, 1978. \bibitem{roach-zhang} G.\ F.\ Roach and B.\ Zhang; \emph{On Sommerfeld radiation conditions for the diffraction problem with two unbounded media}, Proc.\ Roy.\ Soc.\ Edinburgh, \textbf{121A}, 1992, pp. 149--161. \bibitem{schlag} W.\ Schlag; \emph{Dispersive estimates for Schr\"odinger operators in dimension two}, Comm.\ Math.\ Phys.\, \textbf{257}, 2005, pp. 87--117. \bibitem{simon} B.\ Simon; \emph{Phase space analysis of simple scattering systems: extensions of some work of Enss}, Duke.\ Math.\ J.\, \textbf{46}, 1979, pp. 119--168. \bibitem{sveshnikov1} A.\ G.\ Sveshnikov; \emph{The principle of radiation}, Dokl.\ Akad.\ Nauk SSSR, \textbf{73}, 1950, pp. 917--920. \bibitem{sveshnikov2} A.\ G.\ Sveshnikov; \emph{The limiting absorption principle for a wave guide}, Dokl.\ Akad.\ Nauk SSSR, \textbf{80}, 1951, pp. 345--347. \bibitem{werner} P.\ Werner; \emph{Ein Resonanzph\"anomen in der Theorie akustischer und elektromagnetischer Wellen}, Math.\ Meth. \ Appl. \ Sci., \textbf{6}, 1984, pp. 104--128. \bibitem{weder1} R.\ Weder; \emph{The limiting absorption principle at thresholds}, Journal de Math. Pures et Appl., \textbf{67}, 1988, pp. 313--338. \bibitem{weder2} R.\ Weder; \emph{Spectral and Scattering Theory for Wave Propagation in Perturbed Stratified Media}, Applied Mathematical Sciences \textbf{87}, Springer-Verlag, New York, Berlin, Heidelberg, 1991. \end{thebibliography} \end{document}