\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 71, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/71\hfil Compact decoupling] {Compact decoupling for thermoviscoelasticity in irregular domains} \author[E. M. Ait Ben Hassi, H. Bouslous, L. Maniar \hfil EJDE-2011/71\hfilneg] {El Mustapha Ait Ben Hassi, Hammadi Bouslous, Lahcen Maniar} % in alphabetical order \address{D\'epartement de Math\'ematiques \\ Facult\'e des Sciences Semlalia, \hfill\break\indent Universit\'e Cadi Ayyad, Marrakech 40000, B.P. 2390, Maroc} \email[E. M. Ait Ben Hassi]{m.benhassi@ucam.ac.ma} \email[H. Bouslous]{bouslous@ucam.ac.ma} \email[L. Maniar]{maniar@ucam.ac.ma} \thanks{Submitted August 24, 2010. Published May 31, 2011.} \subjclass[2000]{34G10, 47D06} \keywords{Thermoviscoelasticity; semigroup compactness; \hfill\break\indent semigroup norm continuity, essential spectrum; fractional power} \begin{abstract} Our goal is to prove the compactness of the difference between the thermoviscoelasticity semigroup and its decoupled semigroup. To show this, we prove the norm continuity of this difference, the compactness of the difference of their resolvents and use \cite[Theorem 2.3 ]{Huang}. We generalize a result by Liu \cite{Liu}. An illustrative example of a thermoviscoelastic system with Neumann Laplacian on a Jelly Roll domain is given. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Consider the abstract thermoviscoelastic model \begin{gather} \label{visc1} \ddot w(t) + A_1 w(t) -\int_{-\infty}^0g(s) A_1 w(t+s) ds + B u(t) =0, \quad t\geq 0, \\ \label{visc2} \dot u(t) + A_2 u(t) -B^{\ast}\dot w(t)=0, \quad t\geq 0, \\ \label{visc3} w(0)=w^0, \quad \dot w(0)=w^1,\quad u(0)= u^0,\quad w(s)= f_0(s),\quad s\in (-\infty,0), \end{gather} where $g$ is a given function satisfying the following conditions: \begin{gather} \label{c1} g \in \mathcal{C}^1(-\infty,0]\cap L^1(-\infty,0),\\ \label{c2} g(t)\geq 0 , \quad g'(t)\geq0 \quad\text{for }t<0, \\ \label{c3} \int_{-\infty}^0g(s)ds < 1. \end{gather} By the decoupling technique, we obtain the system \begin{gather} \label{dvisc1} \ddot{\bar{w}}(t)+ A_1\bar{w}(t) - \int_{-\infty}^0g(s) A_1 \bar{w}(t+s) ds + BA_2^{-1}B^\ast \dot{\bar{w}}(t) =0,\quad t\geq0,\\ \label{dvisc2} \dot{\bar{u}}(t) + A_2\bar{u}(t) -B^{\ast}\dot{\bar{w}}(t)=0, \quad t\geq0, \\ \label{dvisc3} \bar{w}(0)=w^0,\quad \dot{\bar{w}}(0)=w^1, \quad \bar{u}(0)= u^0,\quad \bar{w}(s)= f_0(s),\quad s\in (-\infty,0). \end{gather} The operators $A_1$ and $A_2$ are positive self adjoint and invertible on two Hilbert spaces $H_1$ and $H_2$, and $B$ is an unbounded operator from $H_2$ to $H_1$. Liu \cite{Liu} proved that these two systems are well posed and generate two semigroups $\mathcal{T}:=(T(t))_{t\geq0}$ and $\mathcal{T}_d:=(T_d(t))_{t\geq0}$. Assuming that $BA_2^{-\gamma}$ is compact for some $0<\gamma<1$, he proved that their difference is compact. In this paper, proceeding as in \cite{bbm}, we show that $t\mapsto T(t)-T_{d}(t)$ and $t\mapsto T(t)-S(t)$ are norm continuous for $t>0$ where $\mathcal{S}:=(S(t))_{t\geq0}$ is the semigroup generated by the first equation \eqref{dvisc1} in the decoupled system. Consequently, under no compactness assumption, $r_{\rm crit}(T(t))=r_{\rm crit}(T_d(t))= r_{\rm crit}(S(t))$ for $t\geq0$ and $\omega_0(\mathcal{T})=\max\{\omega_{\rm crit}(\mathcal{S}),s(L)\}$. Assuming that $A_1^{-1/2}BA_2^{-1}$ is a compact operator (in particular if $BA_2^{-\gamma}$ is compact) and $\int_{-\infty}^0 g(s)s^2 ds < \infty$, we prove the compactness of the difference $R(\lambda,L)-R(\lambda,L_d)$ for every $\lambda \in \rho(L)\cap \rho(L_d)$, where $L$ and $L_d$ are the generators of $\mathcal{T}$ and $\mathcal{T}_d$, respectively. Thus, \cite[Theorem 2.3]{Huang} leads to the compactness of $T(t)-T_{d}(t)$. To illustrate this generalization, we consider the thermoviscoelastic system \begin{gather*} %\label{ex1} \ddot w -\mu\Delta w -(\lambda + \mu) \nabla\operatorname{div} w + \mu g_1 \ast \Delta w + (\lambda + \mu)g_1\ast \nabla \operatorname{div} w + m\nabla u=0\\ \text{in } \Omega \times (0,\infty), \\ %\label{ex2} \dot u+\beta u - \Delta u - m \operatorname{div}\dot w=0\quad \text{in }\Omega \times (0,\infty), \\ %\label{ex3} w = 0, \frac{\partial u}{\partial n} = 0\quad \text{on } \Gamma \times (0,\infty),\\ % \label{ex4} w(x,0)=w^0(x),\quad \dot w(x,0)=w^1(x),\quad u(x,0)= u^0(x) \quad \text{in } \Omega ,\\\ %\label{ex5} w(x,0) + w(x,s)=f_0(x,s)\quad\text{in }\Omega \times (-\infty,0)), \end{gather*} where $\mu,\lambda$ are positive constants. The set $\Omega$ is the Jelley Roll, a bounded open set proposed in \cite{B.Sim}, $$ \Omega=\{(x,y)\in \mathbb{R}^2: 1/2 0$ and $x^0=( w^0,v^0, f_0, u^0)\in \mathcal{D}(L)$ such that $\|x^0\|\leq 1$. \begin{align*} &T(t)( w^0,v^0, f_0, u^0)-T_{d}(t)( w^0,v^0, f_0, u^0)\\ &= \begin{pmatrix} w(t)-\bar{w}(t)\\ v(t)-\bar{v}(t)\\ z(t)-\bar{z}(t)\\ u(t)-\bar{u}(t) \end{pmatrix} = \int_0^t T(t-s)\begin{pmatrix} 0\\ BA_2^{-1}B^\ast \bar{v}(s)- B\bar{u}(s)\\ 0\\ 0 \end{pmatrix}ds . \end{align*} Let $00$. \begin{align*} &T_d(t)x_0-(S(t)((u^0,v^0,f_0),0)\\ &=(0, 0, 0,e^{-A_2t} w^0 + \int_0^{t}e^{-A_2(t-s)}B^{\ast}\pi_2 S(s)((u^0,v^0,f_0)ds) \end{align*} where $\pi_2:\mathcal{D}(A_1^{1/2})\times H_1\times L^2(g,(-\infty,0), \mathcal{D}(A_1^{1/2})) \to H_1$, $(u,v,z) \mapsto v$. Set $\Delta(t)=T_d(t)x_0-(S(t)(u^0,v^0,f_0),0)$. For $h>0$, one has \begin{align*} \Delta(t+h)-\Delta(t) &= \Big(0,0,e^{-A_2(t+h)} w^0-e^{-A_2t} w^0\\ &\quad +\int_0^{t+h}e^{-A_2(t+h-s)}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds\\ &\quad -\int_0^{t}e^{-A_2(t-s)}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds\Big). \end{align*} Then \begin{align*} &{ \|\Delta(t +h)-\Delta(t)\|}\\ &= {\|e^{-A_2(t+h)} w^0-e^{-A_2t}w^0 +\int_0^{t+h}e^{-A_2(t+h-s)}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds}\\ &\quad - {\int_0^{t}e^{-A_2(t-s)}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds)\|}\\ &= {\|e^{-A_2(t+h)} w^0-e^{-A_2t} w^0 +\int_0^{t}[e^{-A_2(t+h-s)}-e^{-A_2(t-s)}]B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds} \\ &\quad +{\int_t^{t+h}e^{-A_2(t+h-s)}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds)\|} \\ &\leq \|e^{-A_2(t+h)}-e^{-A_2t}\|\|w^0\|\\ &\quad +\|\int_0^{t}[e^{-A_2(t+h-s)}-e^{-A_2(t-s)}]B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds \| \\ &\quad+\|\int_t^{t+h}e^{-A_2(t+h-s)}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds)\|. \end{align*} Hence, since $A_2^{-1/2}B^{\ast}$ is a bounded operator, we have \begin{align*} &{ \|\Delta(t +h)-\Delta(t)\|}\\ &\leq \int_0^{t}\|[A_2^{1/2}e^{-A_2(t+h-s)}-A_2^{1/2}e^{-A_2(t-s)}]A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0) \| ds\\ &\quad +\int_t^{t+h}\|A_2^{1/2}e^{-A_2(t+h-s)}A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0))\|ds +\|e^{-A_2(t+h)}-e^{-A_2t}\|\\ &\leq \int_0^{t}\|[A_2^{1/2}e^{-A_2(t+h-s)}-A_2^{1/2}e^{-A_2(t-s)}]A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0) \|ds \\ &\quad +\int_t^{t+h}\|A_2^{1/2}e^{-A_2(t+h-s)}A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0))\|ds +\|e^{-A_2(t+h)}-e^{-A_2t}\|. \end{align*} Since the semigroup $(e^{-A_2t})_{t\geq0}$ is analytic, it is immediately norm continuous. Thus $\|e^{-A_2(t+h)}-e^{-A_2t}\|\to 0$ as $h\to0$. In the other hand $A_2^{-1/2}B^{\ast}= (BA_2^{-1/2})^{\ast}$ is a bounded operator, thus there exists a constant $\delta(t)$ such that \begin{gather*} \|A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)\| \leq \delta(t)\|A_2^{-1/2}B^{\ast}\| \|(u^0,v^0, f_0)\|\quad \text{for every } s \in[0,t]\\ \|A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)\| \leq \delta(t)\|A_2^{-1/2}B^{\ast}\|\|x_0\| \quad \text{for every } s \in[0,t]\\ \|A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)\| \leq \delta(t)\|A_2^{-1/2}B^{\ast}\|\quad \text{for every } s \in[0,t]. \end{gather*} Moreover \begin{align*} &\|\int_0^{t}[A_2^{1/2}e^{-A_2(t+h-s)}-A_2^{1/2}e^{-A_2(t-s)}] A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)d s\| \\ &\leq\delta(t)\|A_2^{-1/2}B^{\ast}\|\int_0^{t}\|A_2^{1/2} e^{-A_2(t+h-s)}-A_2^{1/2}e^{-A_2(t-s)}\|ds. \end{align*} It follows from Lemma \ref{lem3.1} and Lebegue theorem that \[ \|A_2^{1/2}e^{-A_2(t+h-s)}-A_2^{1/2}e^{-A_2(t-s)}\|\to0 \] as $ h\to0$ and $t>s$, and \[ {\|\int_0^{t}[A_2^{1/2}e^{-A_2(t+h-s)} -A_2^{1/2}e^{-A_2(t-s)}]A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds \|}\to 0 \] as $h\to 0$ uniformly in $x_0$. For the third term, we have \begin{align*} &{\|\int_t^{t+h}A_2^{1/2}e^{-A_2(t+h-s)}A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds)\|}\\ &= {\|\int_0^{h}A_2^{1/2}e^{-A_2s}A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds\|}. \end{align*} Using the similar argument as in the second term, there exists $\beta(t)$ such that \begin{align*} {\|\int_0^{h}A_2^{1/2}e^{-A_2s}A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds\|}&\leq \beta(t){\int_0^{h}\|A_2^{1/2}e^{-A_2s}\|ds}\|x_0\|\\ &\leq \|x_0\|\beta(t){\int_0^{h}s^{-1/2}ds}\\ &\leq 2\beta(t)\sqrt{h} \end{align*} (here we used $\|A_2^{1/2}e^{-A_2t}\|= O(t^{-1/2})$ as $t>0$; see for example \cite[Theorem 1.4.3]{Lun}). Consequently, ${\|\int_t^{t+h}A_2^{1/2}e^{-A_2(t+h-s)}A_2^{-1/2}B^{\ast}\pi_2 S(s)(u^0,v^0,f_0)ds)\|}\to0$ as $h\to0$ uniformly in $x_0$. Finally, $\|\Delta(t+h)-\Delta(t)\|\to0$ as $h\to0$ uniformly in $x_0$. Since, by Theorem \ref{pr}, $t\mapsto T(t)-T_{d}(t)$ is norm continuous on $(0,\infty)$, $t\mapsto T(t)-S(t)$ is norm continuous. \end{proof} Theorem \ref{thwavew} leads to the following result. \begin{corollary}\label{cor2} $r_{\rm crit}(T(t))=r_{\rm crit}(T_d(t))= r_{\rm crit}(S(t))$ for $t\geq0$ and $\omega_0(\mathcal{T})=\max\{\omega_{\rm crit}(\mathcal{S}_w),s(L)\}$. \end{corollary} \section{Compactness of the difference between the two semigroups} We have also this main result. \begin{theorem} \label{thm4.1} Assume $A_1^{-1/2}BA_2^{-1}$ is compact in $\mathcal{L}(H_2,H_1)$ and $\int_{-\infty}^0g(s)s^2 ds< \infty$. Then $ R(\lambda,L)-R(\lambda,L_d) $ is compact on $\mathbb{H}$ for every $\lambda\in \rho(L)\cap \rho(L_d)$. \end{theorem} \begin{proof} We have \begin{equation} \label{resolv1} R(\lambda,L_d)-R(\lambda,L) =LR(\lambda,L)[L^{-1}-L_d^{-1}]L_dR(\lambda,L_d). \end{equation} Let $(\varphi,\psi,\eta,\xi)\in\mathbb{H} =\mathcal{D}(A_1^{1/2})\times H_1 \times L^2(g,(-\infty,0),\mathcal{D}(A_1^{1/2}))\times H_2$. We look for $(w, v, z, u)\in D(L)$ such that $L(w, v, z, u)=(\varphi,\psi,\eta,\xi)$. Note that the equation $L(w, v, z, u)=(\varphi,\psi,\eta,\xi)$ is safistied is equivalent to the system \begin{gather*} v=\varphi\\ - k A_1 w - \int_{-\infty}^0g(s) A_1 z(t,s) ds - B u =\psi v- z_s=\eta\\ - A_2 u + B^{\ast}v=\xi \end{gather*} which is equivalent to the system \begin{gather*} v=\varphi\\ - k A_1 w - \int_{-\infty}^0g(s) A_1 z(t,s) ds - B u=\psi\\ z_s=\varphi-\eta\\ - A_2 u + B^{\ast}v=\xi \end{gather*} which is equivalent to the system \begin{gather*} - k A_1 w - \int_{-\infty}^0g(s) A_1 z(t,s) ds - B u=\psi\\ v=\varphi\\ z=s\varphi -\int_0^s \eta(\tau)d\tau\\ u =A_2^{-1} B^{\ast}\varphi -A_2^{-1}\xi. \end{gather*} By assumption, $\int_{-\infty}^0g(s)s^2 ds<\infty$, and since $\varphi\in \mathcal{D}(A_1^{1/2})$, we have $s\varphi\in L^2(g,(-\infty,0),\mathcal{D}(A_1^{1/2}))$. Using H\"older theorem, \[ \forall s\in(-\infty,0),\quad \Big(\int_s^0 \|A_1{1/2}\eta(\tau)\|d\tau\Big)^2 \leq -s\int_s^0 \|A_1{1/2}\eta(\tau)\|^2d\tau. \] We can assume that $\eta$ has compact support in $(0,\infty)$, and then \[ -\int_{-\infty}^0g(s) s\int_s^0 \|A_1{1/2}\eta(\tau)\|^2d\tau ds<\infty. \] Thus $z\in L^2(g,(-\infty,0),\mathcal{D}(A_1^{1/2}))$. Note that $L(w, v, z, u)=(\varphi,\psi,\eta,\xi)$ is equivalent to the system \begin{gather*} \begin{split} w &= - k^{-1} A_1^{-1/2}[(\int_{-\infty}^0g(s) s ds) A_1^{1/2}\varphi+\int_{-\infty}^0g(s) A_1^{1/2}\int_s^0 \eta(\tau)d\tau ds ]\\ &\quad -(k A_1)^{-1} B A_2^{-1} B^{\ast}\varphi +(k A_1)^{-1} BA_2^{-1}\xi-(k A_1)^{-1}\psi \end{split}\\ v=\varphi\\ z=s\varphi -\int_0^s \eta(\tau)d\tau\\ u =A_2^{-1} B^{\ast}\varphi -A_2^{-1}\xi \end{gather*} which is equivalent to the system \begin{gather*} \begin{split} w &= - (k )^{-1}(\int_{-\infty}^0g(s) s ds)\varphi - (kA_1)^{-1/2}\int_{-\infty}^0g(s)A_1^{1/2} \int_s^0 \eta(\tau)d\tau ds \\ &\quad -(k A_1)^{-1} B A_2^{-1} B^{\ast}\varphi +(k A_1)^{-1} BA_2^{-1}\xi-(k A_1)^{-1}\psi \end{split}\\ v=\varphi\\ z=s\varphi -\int_0^s \eta(\tau)d\tau\\ u =A_2^{-1} B^{\ast}\varphi -A_2^{-1}\xi. \end{gather*} Replacing $B u$ by $BA_2^{-1}B^\ast \bar{v}$ and repeating the above procedure for $L$, we can prove that the equation $L_d( \bar{w},\bar{v},\bar{z},\bar{u})=( \varphi,\psi,\eta,\xi)$ is equivalent to the system \begin{gather*} \bar{v}=\varphi\\ - k A_1\bar{w} - \int_{-\infty}^0g(s) A_1 \bar{z}(t,s) ds - BA_2^{-1} B^{\ast}\bar{v}=\psi\\ \bar{z}_s=\varphi-\eta\\ - A_2 \bar{u} + B^{\ast}\bar{v}=\xi \end{gather*} which is equivalent to the system \begin{gather*} \begin{split} \bar{w} &= (- k)^{-1}A_1^{-1/2}\Big[\Big(\int_{-\infty}^0g(s) s ds\Big) A_1^{1/2}\varphi\\ &\quad -\int_{-\infty}^0g(s) A_1^{1/2} \int_0^s \eta(\tau)d\tau ds + BA_2^{-1} B^{\ast}\varphi+\psi\Big] \end{split}\\ \bar{v}=\varphi\\ \bar{z}=s\varphi -\int_0^s \eta(\tau)d\tau\\ \bar{u} =A_2^{-1} B^{\ast}\varphi -A_2^{-1}\xi \end{gather*} which is equivalent to the system \begin{gather*} \begin{split} \bar{w} &= - k ^{-1}(\int_{-\infty}^0g(s) s ds)\varphi + (kA_1)^{-1/2}\int_{-\infty}^0g(s)A_1^{1/2} \int_0^s \eta(\tau)d\tau ds\\ &\quad -(k A_1)^{-1} BA_2^{-1} B^{\ast}\varphi-(k A_1)^{-1}\psi \end{split}\\ \bar{v}=\varphi\\ \bar{z}=s\varphi -\int_0^s \eta(\tau)d\tau\\ \bar{u} =A_2^{-1} B^{\ast}\varphi -A_2^{-1}\xi. \end{gather*} Therefore, by an easy computation one obtains $$ L^{-1}-L_d^{-1}=\begin{pmatrix}0&0&(kA_1)^{-1}BA_2^{-1} &0\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix} $$ which is a compact operator by assumption. The claim follows from the equality \eqref{resolv1}. \end{proof} Now by the Theorem \ref{thm4.1}, Theorem \ref{pr} and \cite[Theorem 3.2]{Huang}, we obtain the main result of this section. \begin{theorem} \label{thm3} Assume that $A_1^{-1/2}BA_2^{-1}$ is compact in $\mathcal{L}(H_2,H_1)$, \eqref{c1}-\eqref{c3} and \eqref{Hy} hold. Then $T(t)-T_d(t)$ is compact on $\mathbb{H}$ for all $t\geq0$. \end{theorem} As a consequence of this theorem, we have the following result. \begin{corollary} \label{coro4.3} $r_{\rm ess}(T(t))= r_{\rm ess}(T_d(t))$ for $t\geq 0$ and $\omega_{0}(\mathcal{T})=\max\{\omega_{\rm ess}(\mathcal{T}_d),s(L)\}$. \end{corollary} \begin{remark} \label{rmk4.4} \rm The result of Theorem \ref{thm3} has been shown in \cite{Liu} directly, assuming the compactness of the operator $BA_2^{-\gamma}$ for some $0<\gamma<1$. It is clear that this last assumption implies that $A_1^{-1/2}BA_2^{-1}$ is compact from $H_2$ to $H_1$. \end{remark} \section{Application} We consider the following model for a linear viscoelastic body $\Omega$ of Boltzmann type with thermal damping \begin{gather} \begin{gathered} \ddot w -\mu \Delta w -(\lambda + \mu) \nabla \operatorname{div} w + \mu g_1 \ast \Delta w + (\lambda + \mu)g_1\ast \nabla \operatorname{div} w + m\nabla u=0 \\ \text{in }\Omega \times (0,\infty), \end{gathered} \label{ex1} \\ \label{ex2} \dot u+\beta u - \Delta u - m \operatorname{div} \dot w=0 \quad \text{in }\Omega \times (0,\infty), \\ \label{ex3} w = 0, \frac{\partial u}{\partial n} = 0\quad \text{on } \Gamma \times (0,\infty), \\ \label{ex4}w(x,0)=w^0(x), \quad \dot w(x,0)=w^1(x), \quad u(x,0)= u^0(x) \quad \text{in } \Omega , \\ \label{ex5} w(x,0) + w(x,s)=f_0(x,s)\quad\text{in } \Omega \times (-\infty,0)), \end{gather} where $\lambda,\mu>0$ the Lame's constants and $m>0$ is the thermal strain parameter, $\beta$ is a positive constant and $g$ is a given function which satisfies the following conditions \begin{itemize} \item[(C1)] $g_1 \in \mathcal{C}^1[0,\infty)\cap L^1(0,\infty)$. \item[(C2)] $g_1(t)\geq 0 $ and $g_1'(t)\leq0$ for $t>0$, \item[(C3)] $\int_0^{\infty}g_1(s) ds <1$. \end{itemize} The set $\Omega$ is the bounded open Jelly Roll set defined in \cite{B.Sim}, $$ \Omega=\{(x,y)\in \mathbb{R}^2: \frac12