\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 73, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/73\hfil Entire solutions] {Entire solutions for a nonlinear differential equation} \author[J. Qi, J. Ding, T. Zhu \hfil EJDE-2011/73\hfilneg] {Jianming Qi, Jie Ding, Taiying Zhu} \address{Jianming Qi \newline Department of Mathematics and Physics, Shanghai Dianji University, Shanghai 200240, China} \email{qijianming1981@gmail.com} \address{Jie Ding \newline Department of Mathematics, Shandong University, Jinan 250100, China} \email{dingjie169@163.com} \address{Taiying Zhu \newline Department of Mathematics and Physics, Shanghai Dianji University, Shanghai 200240, China} \email{ztyyyy@163.com} \thanks{Submitted July 10, 2010. Published June 15, 2011.} \thanks{Supported by project 10XKJ01 from Leading Academic Discipline Project of Shanghai Dianji \hfill\break\indent University, and grants: 10771121 from the NSFC, Z2008A01 from the NSF of Shandong, \hfill\break\indent and 20060422049 from the RFDP} \subjclass[2000]{30D35, 30D45} \keywords{Transcendental entire functions; Nevanlinna theory; \hfill\break\indent differential equations} \begin{abstract} In this article, we study the existence of solutions to the differential equation $$ f^n(z)+P(f)= P_1e^{h_1}+ P_2e^{h_2}, $$ where $n\geq 2$ is an positive integer, $f$ is a transcendental entire function, $P(f)$ is a differential polynomial in $f$ of degree less than or equal $n-1$, $P_1, P_2$ are small functions of $e^z$, $h_1$, $h_2$ are polynomials, and $z$ is in the open complex plane $\mathbb{C}$. Our results extend those obtained by Li \cite{L1,L2,L3,L4}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \section{Introduction and main results} Nevanlinna value distribution theory of meromorphic functions has been extensively applied to resolve growth (see\cite{L1}), value distribution \cite{L1}, and solvability of meromorphic solutions of linear and nonlinear differential equations \cite{H2,L1,Y1,Y2}. Considering meromorphic functions $f$ in the complex plane, we assume that the reader is familiar with the standard notations and results such as the proximity function $m(r, f)$, counting function $N(r, f)$, characteristic function $T(r, f)$, the first and second main theorems, lemma on the logarithmic derivatives etc. of Nevanlinna theory; see e.g. \cite{H1,L1}. Given a meromorphic function $f$, we shall call a meromorphic function $a(z)$ a small function of $f(z)$ if $T(r,a)=S(r,f)$, where $S(r, f)$ is used to denote any quantity that satisfies $S(r, f)=o(T(r, f))$ as $r\to\infty$, possibly outside a set of $r$ of finite logarithmic measure. A differential polynomial $P(f)$ in $f$ is a polynomial in $f$ and its derivatives with small functions of $f$ as the coefficients. The notation $\mathscr{F}$ is defined to the family of all meromorphic functions which satisfy $\overline{N}(r,\frac{1}{h})+\overline{N}(r, h)=S(r, h)$. Note that all functions in family $\mathscr{F}$ are transcendental, and all functions of the form $be^{\lambda z}$ are functions in family $\mathscr{F}$, where $\lambda$ is any nonzero constant and $b$ is a rational function. In 2006, Li and Yang \cite{L2,Y2} obtain the following results. \begin{theorem} \label{thmA} Let $n\geq 4$ be an integer, and $P(f)$ denote an algebraic differential polynomial in $f$ of degree $\leq n-3$. Let $P_1$, $P_2$ be two nonzero polynomials, $\alpha_1$ and $\alpha_2$ be two nonzero constants with $\frac{\alpha_1}{\alpha_2}\neq $ rational. Then the differential equation $$ f^n(z)+P(f)= P_1e^{\alpha_1z}+ P_2e^{\alpha_2z} $$ has no transcendental entire solutions. \end{theorem} \begin{theorem} \label{thmB} Let $n\geq 3$ be an integer, and $P(f)$ be an algebraic differential polynomial in $f$ of degree $\leq n-3$, $b(z)$ be a meromorphic function, and $\lambda$, $c_1$, $c_2$ and three nonzero constants, Then the differential equation $$ f^n(z)+P(f)= b(z)(c_1e^{\lambda z}+c_2e^{-\lambda z}) $$ has no transcendental entire solutions $f(z)$, satisfying $T(r, b)= S(r, f)$. \end{theorem} Recently, Considering the degree of the differential polynomial $P(f)$ of $n-2$ or $ n-1$, P. Li \cite{L4} proved the following results which are improvements or complementarity of Theorems \ref{thmA} and \ref{thmB}. \begin{theorem} \label{thmC} Let $n\geq 2$ be an integer. Let $f$ be a transcendental entire function, $P(f)$ be a differential polynomial in $f$ of degree $\leq n-1$. If \begin{equation} f^n(z)+P(f)= P_1e^{\alpha_1z}+ P_2e^{\alpha_2z},\label{e1.1} \end{equation} where $P_i(i=1, 2)$ are nonvanshing small functions of $e^z$, $\alpha_i (i=1, 2)$ are positive numbers satisfying $(n-1)\alpha_2\geq n\alpha_1>0$, then there exists a small function $\gamma$ of $f$ such that \begin{equation} (f-\gamma)^n= P_2e^{\alpha_2z}.\label{e1.2} \end{equation} \end{theorem} \begin{theorem} \label{thmD} Let $n\geq 2$ be an integer, $\alpha_1, \alpha_2$ be real numbers and $\alpha_1<0<\alpha_2$. Let $P_1$, $P_2$ be small functions of $e^z$. If there exists a transcendental entire function $f$ satisfying the differential equation \eqref{e1.1}, where $P(f)$ is a differential polynomial in $f$ of degree not exceeding $n-2$, then $\alpha_1+\alpha_2=0$, and there exist constants $c_1, c_2$ and small functions $\beta_1, \beta_2$ with respect to $f$ such that \begin{equation} f=c_1\beta_1e^{\alpha_1z/n} +c_2\beta_2e^{\alpha_2z/n},\label{e1.3} \end{equation} moreover, $\beta_i^n=P_i$, $i=1, 2$. \end{theorem} \begin{theorem} \label{thmE} Let $n\geq 2$ be an integer, $\alpha_1$, $\alpha_2$ be positive numbers satisfying $(n-1)\alpha_2\geq n\alpha_1>0$. Let $P_1$, $P_2$ be small functions of $e^z$. If $\frac{\alpha_1}{\alpha_2}$ is irrational, then the differential equation \eqref{e1.1} has no entire solutions, where $P(f)$ is a differential polynomial in $f$ of degree $\leq n-1$. \end{theorem} \begin{remark} \label{rmk1.1} \rm By an example, Li \cite{L4} pointed if the degree of $P(f)$ is $n-1$, then the solutions of \eqref{e1.1} may not be the form in \eqref{e1.3}. \end{remark} It is natural to ask whether $\alpha_1z$ and $\alpha_2z$ in \eqref{e1.1} can be replaced by two polynomials. In this article, by the same method as in \cite{L4}, we obtain the following results. \begin{theorem} \label{thm1} Let $n\geq 2$ be an integer. Let $f$ be a transcendental entire function, $P(f)$ be a differential polynomial in $f$ of degree $\leq n-1$. If \begin{equation} f^n(z)+P(f)= P_1e^{Q_1(z)}+ P_2e^{Q_2(z)},\label{e1.4} \end{equation} where $P_i(i=1, 2)$ are nonvanshing small meromorphic functions of $e^z$, $Q_1(z)=\alpha_kz^k+ \alpha_{k-1}z^{k-1}+\dots+\alpha_1z+\alpha_0$, $Q_2(z)=\beta_kz^k+ \beta_{k-1}z^{k-1}+\dots+\beta_1z+\beta_0$ are two polynomials satisfying $(n-1)\beta_k\geq n\alpha_k>0$ (where $\alpha_{k-1},\dots \alpha_0, \beta_{k-1},\dots \beta_0$ are finite constants and $k\geq 1$ ) is a positive integer, then there exists a small meromorphic function $\gamma$ of $f$ such that \begin{equation} (f-\gamma)^n= P_2e^{Q_2}.\label{e1.5} \end{equation} \end{theorem} \begin{theorem} \label{thm2} Let $n\geq 2$ be an integer and $P_1$, $P_2$ be small functions of $e^z$. If there exists a transcendental entire function $f$ satisfying the differential equation \eqref{e1.4}, where $P(f)$ is a differential polynomial in $f$ of degree not exceeding $n-2$ and $\alpha_k<0<\beta_k$, then $\alpha_k+\beta_k=0$, and there exist constants $c_1, c_2$ and small functions $\beta_1, \beta_2$ with respect to $f$ such that $$ f=c_1\beta_1e^{\frac{Q_1}{n}}+c_2\beta_2e^{\frac{Q_2}{n}},\label{e1.6} $$ moreover, $\beta_i^n=P_i$, $i=1, 2$. \end{theorem} \begin{theorem} \label{thm3} Let $n\geq 2$ be an integer, $P_1$, $P_2$ be small functions of $e^z$. If $\frac{\alpha_k}{\beta_k}$ is irrational, then the differential equation \eqref{e1.4} has no entire solutions, where $P(f)$ is a differential polynomial in $f$ of degree $\leq n-1$ and $(n-1)\beta_k\geq n\alpha_k>0$. \end{theorem} Obviously, our results generalize the results in \cite{L1,L2,L3,L4}. \section{Preliminary Lemmas} In order to prove our theorems, we need the following lemmas. First, we need the following well-known Clunie's lemma, which has been extensively applied in studying the value distribution of a differential polynomial $P(z, f)$, as well as the growth estimates of solutions and meromorphic solvability of differential equations in the complex plane. \begin{lemma}[\cite{B,C}] \label{lem2.1} Let $f$ be a transcendental meromorphic solution of $$ f^nA(z, f)=B(z, f), $$ where $A(z,f)$, $B(z, f)$ are differential polynomials in $f$ and its derivatives with small meromorphic coefficients $a_{\lambda}$, in the sense of $T(r, a_{\lambda})=S(r, f)$ for all $\lambda\in I$, where $I$ is an index set. If the total degree of $B(z,f)$ as a polynomial in $f$ and its derivatives is less than or equal $n$, then $m(r, A(z,f))=S(r,f)$. \end{lemma} \begin{lemma}[\cite{H1}] \label{lem2.2} Suppose that $f$ is a nonconstant meromorphic function and $F= f^n + Q(f)$, where $Q(f)$ is a differential polynomial in $f$ with degree $\leq n-1$. If $N(r,f)+N(r,\frac{1}{F})=S(r,f)$, then $$ F=(f+\gamma)^n, $$ whereby $\gamma$ is meromorphic and $T(r,\gamma)=S(r, f)$ \end{lemma} \begin{lemma}[\cite{L3}] \label{lem2.3} Suppose that $h$ is a function in family $\mathscr{F}$. Let $f=a_0h^p+a_1h^{p-1}+\dots+a_p$, and $g=b_0h^q+b_1h^{q-1}+\dots+b_q$ be polynomials in $h$ with all coefficients being small functions of $h$ and $a_0b_0a_p\neq 0$ If $q\leq p$, then $m(r,\frac{g}{f})=S(r,h)$. \end{lemma} \section{Proofs of main theorems} \begin{proof}[Proof of Theorem \ref{thm1}] First of all, we write $P(f)$ as \begin{equation} P(f)=\sum_{j=0}^{n-1}b_jM_j(f),\label{e3.1} \end{equation} where $b_j$ are small functions of $f$, $M_0(f)=1$, $M_j(f) (j=1, 2,\dots , n-1)$ are homogeneous differential monomials in $f$ of degree $j$. Without loss of generality, we assume that $b_0\not\equiv 0$, otherwise, we do the transformation $f=f_1+c$ for a suitable constant $c$. From \eqref{e1.4}, we have \begin{equation} \frac{1}{P_1e^{Q_1}+P_2e^{Q_2}-b_0} +\sum_{j=1}^{n-1}\frac{b_j}{P_1e^{Q_1}+P_2e^{Q_2}-b_0} \frac{M_j(f)}{f^j}(\frac{1}{f})^{n-j}=(\frac{1}{f})^n.\label{e3.2} \end{equation} Note that $m(r, \frac{M_j(f)}{f^j})=S(r,f)$, \begin{align*} &m(r, \frac{1}{P_1e^{Q_1(z)}+P_2e^{Q_2(z)}-b_0})\\ &= m(r,\frac{1}{P_1e^{\alpha_{k-1}z^{k-1}+\dots+\alpha_0} e^{\alpha_kz^k}+P_2e^{\beta_{k-1}z^{k-1}+\dots +\beta_0}e^{\beta_kz^k}-b_0}), \end{align*} where $P_1$, $P_2$, $e^{\alpha_{k-1}z^{k-1}+\dots+\alpha_0}$, $e^{\beta_{k-1}z^{k-1}+\dots+\beta_0}$ are small functions of $e^{z^k}$. We take $h=e^{z^k}$, $q=0, p=\beta_k$, by Lemma \ref{lem2.3}, we obtain \begin{align*} &m(r, \frac{1}{P_1e^{Q_1(z)}+P_2e^{Q_2(z)}-b_0})\\ &=S(r, e^{z^k})=S(r,P_1e^{Q_1(z)}+P_2e^{Q_2(z)}-b_0) =S(r, f(z)). \end{align*} Therefore, the left-hand side of \eqref{e3.2} is a polynomial in $1/f$ of degree at most $n-1$ with coefficients being small proximate functions of $1/f$. Hence \begin{equation} m(r,\frac{1}{f})=S(r, f).\label{e3.3} \end{equation} Taking the derivatives in both sides of \eqref{e1.4} gives \begin{equation} nf^{n-1}f'+(P(f))'=(P_1'+Q_1'P_1)e^{Q_1}+(P'_2+Q_2'P_2)e^{Q_2}. \label{e3.4} \end{equation} By eliminating $e^{Q_1}$ and $e^{Q_2}$, respectively from \eqref{e1.4} and the above equation, we obtain \begin{gather} (P_2'+Q_2'P_2)f^n-P_2nf^{n-1}f'+(P_2'+Q_2'P_2)P(f)-P_2(P(f))'=\beta e^{Q_1}\label{e3.5} \\ (P_1'+Q_1'P_1)f^n-P_1nf^{n-1}f'+(P_1'+Q_1'P_1)P(f)-P_1(P(f))'=-\beta e^{Q_2},\label{e3.6} \end{gather} where $\beta= P_1P_2'-P_2P_1'+(Q'_2-Q'_1)P_1P_2$ which is a small function of $f$. We note that $\beta$ cannot vanish identically, otherwise, by integration we obtain $e^{Q_2-Q_1}=C\frac{P_1}{P_2}$ for a constant, which is impossible. From \eqref{e3.5} and \eqref{e3.6}, we obtain \begin{equation} m(r, e^{Q_j})\leq n T(r, f)+S(r,f),\quad j=1,2.\label{e3.7} \end{equation} On the other hand, from \eqref{e1.4}, we have \begin{equation} nT(r,f)=m(r, f^n)=m(r, f^n+P(f))\leq T(r, P_1e^{Q_1}+P_2e^{Q_2})+ S(r,f).\label{e3.8} \end{equation} Therefore, $S(r, e^{Q_1})=S(r, e^{Q_2})=S(r, f):=S(r)$. From \eqref{e3.2}, we have $$ \frac{e^{Q_i}}{p_1e^{Q_1}+p_2e^{Q_2}-b_0} +\sum_{j=1}^{n-1}\frac{b_je^{Q_i}}{p_1e^{Q_1}+p_2e^{Q_2}-b_0} \frac{M_j(f)}{f^j}\frac{1}{f^{n-j}}=\frac{e^{Q_i}}{f^n},\quad i=1, 2. $$ It follows that \begin{equation} m(r,\frac{e^{Q_i}}{f^n})=S(r),\quad i=1, 2.\label{e3.9} \end{equation} Next, we prove \begin{equation} m(r, \frac{e^{Q_1}}{f^{n-1}})=S(r).\label{e3.10} \end{equation} For a fixed $r>0$, let $z=re^{i\theta}$. The interval $[0, 2\pi)$ can be expressed as the union of the following three disjoint sets: \begin{gather*} E_1=\{\theta\in[0, 2\pi)|\frac{|f(z)|}{|e^{Q_2(z)-Q_1(z)}|}\leq 1\},\\ E_2=\{\theta\in[0, 2\pi)|\frac{|f(z)|}{|e^{Q_2(z)-Q_1(z)}|}> 1, |e^{z^k}|\leq 1\}, \\ E_3=\{\theta\in[0, 2\pi)|\frac{|f(z)|}{|e^{Q_2(z)-Q_1(z)}|}> 1, |e^{z^k}|> 1\}. \end{gather*} By the definition of the proximate function, we have $$ m(r,\frac{e^{Q_1(z)}}{f^{n-1}(z)}) =\frac{1}{2\pi}\int_{0}^{2\pi}\log^+|\frac{e^{Q_1(z)}}{f^{n-1}(z)} |d\theta= I_1+ I_2 + I_3, $$ where $$ I_j=\frac{1}{2\pi}\int_{E_j}\log^+|\frac{e^{Q_1(z)}}{f^{n-1}(z)}| d\theta,\quad (j=1, 2, 3). $$ For $\theta\in E_1$, we have $|f(z)|\leq |e^{Q_2(z)-Q_1(z)}|$. Since $\frac{e^{Q_1(z)}}{f^{n-1}(z)} =\frac{e^{Q_2(z)}}{f^{n}(z)}\frac{f(z)}{e^{Q_2(z)-Q_1(z)}}$, we obtain $$ I_1\leq m(r,\frac{e^{Q_2}}{f^n})=S(r). $$ For $\theta\in E_2$, we have $|e^{Q_1(z)}|=|e^{\alpha_k z^k(1+o(1))}|\leq 1$, and thus $|\frac{e^{Q_1(z)}}{f^{n-1}(z)}|\leq\frac{1}{|f^{n-1}(z)|}$. It follows from \eqref{e3.3} that $$ I_2\leq m(r,\frac{1}{f^{n-1}})= S(r). $$ For $\theta\in E_3$, we have $|f(z)|>|e^{Q_2(z)-Q_1(z)}|$. Therefore, \begin{align*} |\frac{e^{Q_1(z)}}{f^{n-1}(z)}| &\leq\frac{|e^{Q_1(z)}|}{|e^{(n-1)(Q_2(z)-Q_1(z))}|}\\ & =\frac{1}{|e^{(n-1)Q_2(z)-nQ_1(z)}|} =\frac{1}{|e^{((n-1)\beta_k-n\alpha_k)z^k(1+o(1))}|}. \end{align*} By the assumption $(n-1)\beta_k\geq n\alpha_k>0$, we obtain $|\frac{e^{Q_1(z)}}{f^{n-1}(z)}|\leq 1$. Therefore, we have $I_3=0$. Hence \eqref{e3.10} holds. It follows from \eqref{e3.5} that $$ f^{n-1}\varphi=\beta\frac{e^{Q_1}}{f^{n-1}}f^{n-1}-R(f), $$ where $\varphi=(P_2'+P_2Q_2')f-nP_2f'$, and $$ R(f)=(P_2'+P_2Q_2')P(f)-P_2P'(f) $$ which is a differential polynomial in $f$ of degree at most $n-1$. By Lemma \ref{lem2.1}, we obtain $m(r, \varphi)=S(r, f)$. Note that since $\varphi$ is entire, we have $N(r, \varphi)=S(r, \varphi)=S(r, f)$. Hence $T(r, \varphi)= S(r, f)$, i.e., $\varphi$ is a small function of $f$, By the definition of $\varphi$, we obtain $$ f'=\frac{P_2'+Q'_2P_2}{nP_2}f-\frac{\varphi}{nP_2}. $$ Substituting the above equation into \eqref{e3.6} gives $$ f^n-\frac{n P_1\varphi}{\beta}f^{n-1}-\frac{P_2(P'_1+Q_1'P_1)}{\beta}P(f) +\frac{P_1P_2}{\beta}(P(f))'=P_2e^{Q_2}. $$ By Lemma \ref{lem2.2}, we see that there exists a small function $\gamma$ of $f$ such that $(f-\gamma)^n=P_2e^{Q_2}$. This also completes the proof of Theorem \ref{thm1}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2}] We discuss only the case $\alpha_k+\beta_k\geq 0$. The case $\alpha_k+\beta_k\leq 0$ can be discussed similarly. Suppose that $f$ is a transcendental entire solution of \eqref{e1.4}. Similar to the proof of Theorem \ref{thm1}, we can still get \eqref{e3.3}-\eqref{e3.9}. For a fixed $r>0$, let $z=re^{i\theta}$. We can express the interval $[0, 2\pi)$ as the union of the following three disjoint sets: \begin{gather*} E_1=\{\theta\in [0, 2\pi)|\frac{|f^2(z)|}{|e^{Q_2(z)-Q_1(z)}|}\leq 1|\}, \\ E_2=\{\theta\in[0, 2\pi)|\frac{|f^2(z)|}{|e^{Q_2(z)-Q_1(z)}|}> 1, |e^{z^k}|\leq 1\},\\ E_3=\{\theta\in[0, 2\pi)|\frac{|f^2(z)|}{|e^{Q_2(z)-Q_1(z)}|}> 1, |e^{z^k}|> 1\}. \end{gather*} By the definition of the proximate function, we have $$ m(r,\frac{e^{Q_1(z)+Q_2(z)}}{f^{2n-2}(z)})=\frac{1}{2\pi} \int_{0}^{2\pi}\log^+|\frac{e^{Q_1(z)+Q_2(z)}}{f^{2n-2}(z)}|d\theta =I_1+ I_2+ I_3, $$ where $$ I_j=\frac{1}{2\pi}\int_{E_j}\log^+|\frac{e^{Q_1(z) +Q_2(z)}}{f^{2n-2}(z)}|d\theta,\quad j=1, 2, 3. $$ For $\theta\in E_1$, we have $$ |\frac{e^{Q_1(z)+Q_2(z)}}{f^{2n-2}(z)}| =|\frac{e^{2Q_2(z)}}{f^{2n}(z)}\frac{f^2(z)}{e^{Q_2(z)-Q_1(z)}}| \leq |\frac{e^{Q_2(z)}}{f^n(z)}|^2. $$ Thus by \eqref{e3.9}, we obtain $I_1\leq S(r)$. For $\theta\in E_2$, it follows from $|e^{z^k}|\leq 1$ and $\alpha_k+\beta_k\geq 0$ that $|e^{(\alpha_k+\beta_k)z^k(1+o(1))}|\leq 1$. Therefore, $$ |\frac{e^{Q_1(z)+Q_2(z)}}{f^{2n-2}(z)}|\leq\frac{1}{|f^{2n-2}(z)|}. $$ Then by \eqref{e3.3}, we obtain $I_2\leq S(r)$. For $\theta\in E_3$, we have $|f^2(z)|>|e^{Q_2(z)-Q_1(z)}|$. Thus \begin{align*} |\frac{e^{Q_1(z)+Q_2(z)}}{f^{2n-2}(z)}| &<\frac{|e^{Q_1(z)+Q_2(z)}|}{|e^{(n-1)(Q_2(z)-Q_1(z))}|} =\frac{1}{|e^{(n-2)Q_2(z)-nQ_1(z)}|}\\ &=\frac{1}{|e^{[(n-2)\beta_k -n\alpha_k]z^k(1+o(1))}|}\leq 1. \end{align*} It follows that $I_3\leq S(r)$. Hence we have \begin{equation} m(r,\frac{e^{Q_1+Q_2}}{f^{2n-2}})= S(r,f).\label{e4.1} \end{equation} Multiplying \eqref{e3.5} by \eqref{e3.6} gives \begin{equation} f^{2n-2}\varphi+Q(f)=-\beta^2e^{Q_1+Q_2},\label{e4.2} \end{equation} where $Q(f)$ is a differential polynomial in $f$ of degree at most $2n-2$, and \begin{equation} \varphi=((P_1'+Q_1'P_1)f-nP_1f')((P_2'+Q_2'P_2)f-nP_2f')).\label{e4.3} \end{equation} From \eqref{e4.2} and by Lemma \ref{lem2.1}, we obtain $m(r,\varphi)=S(r, f)$. Therefore, $T(r,\varphi)=S(r, f)$. If $(P_1'+Q_1'P_1)f-nP_1f'\equiv 0$, then by integration we obtain $f^n=cP_1e^{Q_1}$, for a nonzero constant $c$. Therefore, $f=ae^{\frac{Q_1}{n}}$ for a small function $a$ of $f$. Thus we see that the left-hand side of \eqref{e1.4} is a polynomial in $e^{\frac{Q_1}{n}}$ of degree $n$. However, the right-hand side of \eqref{e1.4} cannot be a polynomial in $e^{\frac{Q_1}{n}}$. Hence $(P_1'+Q_1'P_1)f-nP_1f'\not\equiv 0$. Similarly, we have $(P_2'+Q_2'P_2)f-nP_2f'\not\equiv 0$. Therefore, $\varphi\not\equiv 0$. Let \begin{equation} (P_2'+Q_2'P_2)f-nP_2f'=h.\label{e4.4} \end{equation} Then we have \begin{equation} (P_1'+Q_1'P_1)f-nP_1f'=\frac{\varphi}{h}.\label{e4.5} \end{equation} By eliminating $f'$ and $f$, respectively from \eqref{e4.4} and \eqref{e4.5}, we obtain \begin{gather} f=\frac{P_1}{\beta}h-\frac{\varphi P_2}{\beta}\frac{1}{h},\label{e4.6} \\ f'=\frac{P_1'+Q_1'P_1}{n\beta}h-\frac{P_2'+Q_2'P_2}{n\beta} \frac{\varphi}{h},\label{e4.7} \end{gather} where $\beta= P_1 P'_2-P_2 P'_1+(Q'_2-Q'_1)P_1 P_2$ which is a small function of $f$, and cannot vanish identically. From \eqref{e4.6}, we see that $$ 2T(r,h)=T(r,f)+S(r,f). $$ Therefore, any small function of $f$ is also a small function of $h$. And from the definition of $\varphi$ we see that $h$ is a function in family $\mathscr{F}$. Thus $\frac{h'}{h}$ is a small function of $f$. By taking derivative in both sides of \eqref{e4.6}, we obtain \begin{equation} f'=((\frac{P_1}{\beta})'+\frac{P_1}{\beta}\frac{h'}{h})h -((\frac{\varphi P_2}{\beta})'-\frac{\varphi P_2}{\beta}\frac{h'}{h})\frac{1}{h}.\label{e4.8} \end{equation} Comparing the coefficients of the right-hand side of \eqref{e4.7} and \eqref{e4.8}, we deduce that \begin{gather} \frac{P_1'+Q'_1P_1}{n\beta}=(\frac{P_1}{\beta})' +\frac{P_1}{\beta}\frac{h'}{h},\label{e4.9}\\ \frac{(P_2'+Q'_2P_2)\varphi}{n\beta}=(\frac{\varphi P_2}{\beta})'-\frac{\varphi P_2}{\beta}\frac{h'}{h}.\label{e4.10} \end{gather} By integrating \eqref{e4.9} and \eqref{e4.10}, respectively, we obtain \begin{equation} P_1e^{Q_1}=d_1(\frac{P_1}{\beta}h)^n,\quad P_2e^{Q_2}=d_2(\frac{\varphi P_2}{\beta}\frac{1}{h})^n,\label{e4.11} \end{equation} where $d_1$ and $d_2$ are two nonzero constants. From the above two equations, we see that there exist two small functions $\beta_1$ and $\beta_2$ of $e^z$ such that $P_i=\beta_i^n$, $i=1, 2$, and \begin{equation} P_1P_2e^{Q_1+Q_2}=d_1d_2(\frac{P_1P_2\varphi}{\beta^2})^n.\label{e4.12} \end{equation} The right-hand side of the above equation is a small function of $f$, and thus a small function of $e^{z^k}$. Therefore, the above equation holds only when $\alpha_k+\beta_k\equiv 0$. Furthermore, from \eqref{e4.11}, we see that there exist two nonzero constants $c_1$ and $c_2$ such that \begin{equation} \frac{P_1}{\beta}h=c_1\beta_1e^{\frac{Q_1}{n}},\quad \frac{P_2\varphi}{\beta}\frac{1}{h} =-c_2\beta_2e^{\frac{Q_2}{n}}.\label{e4.13} \end{equation} Finally, from \eqref{e4.6}, we obtain \eqref{e1.6}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm3}] If $f$ is a transcendental entire solution of \eqref{e1.4}, then by Theorem \ref{thm1}, there exists a small function $\gamma$ of $f$ such that \eqref{e1.5} holds. And thus $N(r, \frac{1}{f-\gamma})= S(r, f)$, i.e., $\gamma$ is an exceptional small function of $f$. Equation \eqref{e1.5} also shows that there exist two small functions $\omega_1$ and $\omega_2$ of $f$ such that $f'=\omega_1f+\omega_2$. By substituting this equation into \eqref{e1.4}, we see that $P_1e^{Q_1}$ is a polynomial in $f$ of degree $t< n$. By Lemma \ref{lem2.2}, there exist two small functions $a$ and $\gamma_1$ of $f$ such that $$ a(f-\gamma_1)^t=P_1e^{Q_1}.\label{e5.1} $$ Therefore, $\gamma_1$ is also an exceptional small function of $f$. Since any transcendental entire function cannot have two exceptional small functions, we deduce that $\gamma_1=\gamma$. From \eqref{e1.5} and above equation, we obtain \begin{equation} e^{nQ_1-tQ_2}=\frac{P_2^ta^n}{P_1^n}.\label{e5.2} \end{equation} The right-hand side of the above equation is small function of $f$, and thus a small function of $e^z$. Hence we obtain $nQ_1-tQ_2\equiv 0$. Therefore, $\lim_{z\to\infty}\frac{Q_1}{Q_2}=\frac{\alpha_k}{\beta_k} =\frac{t}{n}$ must be a rational number, which contradicts the assumption. This also completes the proof of Theorem \ref{thm3}. \end{proof} \subsection*{Acknowledgements} The authors would like to express their hearty thanks to Professor Hongxun Yi for his valuable advice and helpful information. \begin{thebibliography}{16} \bibitem{B} S. Bank, I. Laine; \emph{Onthe growth of meromorphic solutions of linear and algebraic differential equations}, Math. Scand. 40(1997) 119-126. \bibitem{C} J. Clunie; \emph{On integral and meromorphic functions}, J. London Math. Soc. 37 (1962) 17-27. \bibitem{H1} W. Hayman; \emph{Meromorphic Functions, Clarendon Press}, Oxford, 1964. \bibitem{H2} J. Heittokangas, R. Korhonen, I. Laine; \emph{On meromorphic solutions of certain nonlinear differential equations}, Bull. Austral. Math. Soc. 66(2) (2002) 331-343. \bibitem{J} G. Jank, L. Volkmann; \emph{Einf\"{u}hrung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen}, Birkh\"{a}user Verlag, Basel, 1985. \bibitem{L1} I. Laine; \emph{Nevanlinna Theory and Complex Differential Equations}, Stud. Math., vol. 15, Walter de Gruyter, Berlin, 1993. \bibitem{L2} P. Li, C. C. yang; \emph{On the non-existence of entire solutions of certain type of nonlinear differential equations}. J. Math. Anal. Appl. 320(2006) 827-835. \bibitem{L3} P. Li, W. J. Wang; \emph{Entire function that share a small function with its derivative}, J. Math. Anal. Appl. 328(2007) 743-751. \bibitem{L4} P. Li; \emph{Entire solutions of certain type of differential equations}, J. Math. Anal. Appl. 344(2008) 253-259. \bibitem{Y1} C. C. Yang; \emph{On entire solutions of a certain type of nonlinear differential equations}, Bull. Austral. Math. Soc. 64 (3) (2001) 377-380. \bibitem{Y2} C. C. Yang, P. Li; \emph{On the transcendental solutions of a certain type of nonlinear differential equations}, Arch. Math. 82(2004) 442-448. \end{thebibliography} \end{document}