\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 83, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/83\hfil Positive solutions] {Positive solutions for a nonlinear $n$-th order $m$-point boundary-value problem} \author[J. Zhang, Y. Guo, Y. Ji\hfil EJDE-2011/83\hfilneg] {Jiehua Zhang, Yanping Guo, Yude Ji} \address{Jiehua Zhang \newline College of Sunshine, Fuzhou University, Fuzhou 350015, China} \email{jiehuahappy@163.com} \address{Yanping Guo \newline College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China} \email{guoyanping65@sohu.com} \address{Yude Ji \newline College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China} \email{jiyude-1980@163.com} \thanks{Submitted March 12, 2010. Published June 24, 2011.} \thanks{Supported by grants: 10971045 the Natural Science Foundation of China, and \hfill\break\indent A2009000664 from the Natural Science Foundation of Hebei Province} \subjclass[2000]{39A10} \keywords{Boundary value problem; positive solution; fixed point theorem; \hfill\break\indent Green's function} \begin{abstract} Using the Leggett-Williams fixed point theorem in cones, we prove the existence of at least three positive solutions to the nonlinear $n$-th order $m$-point boundary-value problem \begin{gather*} \Delta^{n}u(k)+a(k)f(k,u)=0, \quad k\in \{0,N\},\\ u(0)=0,\; \Delta u(0)=0, \dots, \Delta^{n-2}u(0)=0,\quad u(N+n)=\sum_{i=1}^{m-2}\alpha_iu(\xi_i). \end{gather*} \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} Multi-point boundary value problems arise in a variety of areas of applied mathematics and physics. The solvability of two-point difference and multi-point differential boundary value problems has been studied extensively in the literature in recent years; see \cite{e1,e2,e3,e4,e5,e6,g1,h1,i1,m1} and their references. Guo \cite{g1} used Leggett-Williams fixed point theorem to obtain the existence of at least three positive solutions for the second-order $m$-point boundary value problem \begin{gather*} u''(t)+f(t,u)=0,\quad 0\leq t\leq 1,\\ u(0)=0,\quad u(1)-\sum_{i=1}^{m-2}k_iu(\xi_i)=0, \end{gather*} where $k_i>0$ $(i=1,2,\dots,m-2)$, $0<\xi_1<\xi_2<\dots<\xi_{m-2}<1$, $0<\sum_{i=1}^{m-2}k_i\xi_i<1$ are given, and $f:[0,1]\times[0,\infty)\to [0,\infty)$ is continuous. Recently, Eloe and Ahmad \cite{e7} discussed the existence of at least one positive solution for the nonlinear $n$-th order three-point boundary value problem \begin{gather*} u^{(n)}(t)+a(t)f(u)=0, \quad t\in(0,1),\\ u(0)=0,\; u'(0)=\dots=u^{(n-2)}(0)=0,\quad u(1)=\alpha u(\eta), \end{gather*} where $n\geq 2,0<\eta<1,0<\alpha\eta^{n-1}<1,f(t)\in C([0,1],[0,\infty))$ is either superlinear or sublinear. The method they used is the Krasnoselskii's fixed point theorem in cones. Motivated by the results \cite{e7,l1}, in this paper, we investigate the existence of positive solutions for the following nonlinear $n$-th order $m$-point boundary value problem \begin{gather} \label{e1} \Delta^{n}u(k)+a(k)f(k,u)=0, \quad k\in \{0,N\},\\ u(0)=0,\quad \Delta u(0)=0, \dots, \Delta^{n-2}u(0)=0,\quad u(N+n)=\sum_{i=1}^{m-2}\alpha_iu(\xi_i), \label{e2} \end{gather} where $n\geq2$, $\alpha_i\geq0$ for $i=1,2,\dots,m-3$, and $\alpha_{m-2}>0$, $\xi_i$ is an integer, satisfying $n=\xi_{0}\leq\xi_1<\xi_2<\dots<\xi_{m-2}<\xi_{m-1}=N+n$, \[ 0<\sum_{i=1}^{m-2}\alpha_i(\sum_{j=1}^{n-1}\prod_{l=1}^{j} (\xi_i-n+l)+1) <\sum_{j=1}^{n-1}\prod_{l=1}^{j}(N+l)+1. \] We denote $\{i,j\}=\{ k\in\mathbb{N}:i\leq k\leq j\}$ and assume that: \begin{itemize} \item[(A1)] $f:\{0,N\}\times[0,\infty)\to [0,\infty)$ is continuous; \item[(A2)] $a(k)\geq 0$, for $k\in \{0,N\}$ and there exists $k_{0}\in\{\xi_{m-2},N\}$ such that $a(k_{0})>0$. \end{itemize} This article is organized as follows. In Section 2, we present some preliminaries that will be used to prove our main results. In Section 3, using the Leggett-Williams fixed point theorem, we show that \eqref{e1}--\eqref{e2} has at least three positive solutions. \section{Preliminaries} In this section, we present some notation and lemmas, which are fundamental in the proof of our main results. Let $E$ be a Banach space over $\mathbb{R}$. A nonempty convex closed set $K\subset E$ is said to be a cone provided that \begin{itemize} \item[(i)] $au\in K$ for all $u\in K$ and all $a\geq 0$; \item[(ii)] $u,-u\in K$ implies $u=0$. \end{itemize} A map $\alpha$ is said to be a nonnegative continuous concave functional on $K$ provided that $\alpha:K\to [0,\infty) $ is continuous and $$ \alpha(tx+(1-t)y)\geq t\alpha(x)+(1-t)\alpha(y) $$ for all $ x,y\in K $ and $0\leq t\leq 1$. Similarly, we say a map $\beta$ is a nonnegative continuous convex functional on $K$ provided that $\beta:K\to [0,\infty) $ is continuous and $$ \beta(tx+(1-t)y)\leq t\beta(x)+(1-t)\beta(y) $$ for all $ x,y\in K $ and $0\leq t\leq 1$. Let $\alpha$ be a nonnegative continuous concave functional on $K$. Then, for nonnegative real numbers $0b\}\neq \emptyset$, and $\alpha (Ax)>b$ for $x\in P(\alpha,b,d)$, \item[(C2)] $ \|Ax\|b$ for $x\in P(\alpha,b,c)$, with $\|Ax\|>d$. \end{itemize} Then $A$ has at least three fixed point $x_1,x_2$ and $x_3$ such that $\|x_1\|a$ with $\alpha(x_3)0$ is a node for $u$ if $u(k)=0$ or $u(k-1)u(k)<0$. The following lemma, obtained in \cite{m1}, is a discrete analogue of Rolle's Theorem. \begin{lemma} \label{lem2.2} Suppose that the finite sequence $u(0),\dots,u(j)$ has $N_{j}$ nodes and the sequence $\Delta u(0),\dots,\Delta u(j-1)$ has $M_{j}$ nodes. Then, $M_{j}\geq N_{j}-1$. \end{lemma} \begin{theorem} \label{thm2.2} Assume $n\leq\xi_1<\xi_2<\dots<\xi_{m-2}0$, $u(\epsilon,k)$ satisfies the strict difference inequality and the nonlocal conditions \eqref{e2}. Thus, \eqref{e5} holds for each $\epsilon>0$ and by limiting, it holds for $\epsilon=0$. Under the assumption $\Delta^{n}u(k)<0$, $k\in\{0,N\}$, we have to distinguish two cases. Case (i): $0<\sum_{i=1}^{m-2} \alpha_i<1$. Suppose $u(\xi_{r})=\max_{i\in \{1,m-2\}}u(\xi_i)$, then $u(N+n)=\sum_{i=1}^{m-2}\alpha_iu(\xi_i)\leq \sum_{i=1}^{m-2}\alpha_iu(\xi_{r})\frac{\|u\|\prod_{i=0}^{n-2}(\xi_{m-2}-i)}{\prod_{i=0}^{n-2}(N+n-i)}, \end{equation} which implies \[ u(N+n)=\sum_{i=1}^{m-2}\alpha_iu(\xi_i)\geq \alpha_{m-2}u(\xi_{m-2})\geq \frac{\alpha_{m-2}\prod_{i=0}^{n-2} (\xi_{m-2}-i)}{\prod_{i=0}^{n-2}(N+n-i)}\|u\|. \] Case (ii): $\sum_{i=1}^{m-2} \alpha_i\geq1$. Again, using the argument given in the first case, we obtain the similar nature of $u$. Firstly, suppose $u(\xi_{m-2})>u(N+n)$, then $\min_{k\in\{\xi_{m-2},N+n\}}u(k)=u(N+n)$, which implies $\xi_1<\overline{k}u(N+n)$, and \[ u(N+n)=\sum_{i=1}^{m-2}\alpha_iu(\xi_i) >\sum_{i=1}^{m-2}\alpha_iu(N+n)\geq u(N+n). \] Which is a contradiction. Thus \eqref{e6} is readily modified to obtain \[ u(\xi_1)\geq \frac{\|u\|\prod_{i=0}^{n-2}(\xi_1-i)}{\prod_{i=0}^{n-2} (N+n-i)}, \] which implies $$ u(N+n)=\sum_{i=1}^{m-2}\alpha_iu(\xi_i)\geq \alpha_1u(\xi_1)\geq \frac{\alpha_1\prod_{i=0}^{n-2}(\xi_1-i)}{\prod_{i=0}^{n-2} (N+n-i)}\|u\|. $$ Secondly, if $u(\xi_{m-2})\leq u(N+n)$, then $\min_{k\in\{\xi_{m-2},N+n\}}u(k)=u(\xi_{m-2})$; thus, $\xi_{m-2}\leq\overline{k}\leq N+n$. Hence, we have \eqref{e6}. The proof is complete. \end{proof} \section{Main results} In this section, we will impose suitable growth conditions on $f$, which enable us to apply Theorem \ref{thm2.1} to obtain three positive solutions for \eqref{e1}) \eqref{e2}. Let $E=\big\{u:\{0, N+n\}\to\mathbb{R}\big\}$, and choose the cone $K\subset E$, \[ K=\big\{u\in E:u(k)\geq 0,\; k\in \{0,N+n\},\text{ and }\min_{k\in \{\xi_{m-2},N+n\}}u(k)\geq\gamma\|u\|\big\}. \] Define an operator $A$ by \[ Au(k)=\sum_{s=0}^{N}G(k,s)a(s)f\big(s,u(s)\big). \] Obviously, $u$ is a solution of \eqref{e1} \eqref{e2} if and only if $u$ is a fixed point of operator $A$. Finally, we define the nonnegative continuous concave functional $\alpha$ on $K$ by $$ \alpha(u)=\min_{k\in\{\xi_{m-2},N+n\}}u(k). $$ Note that, for each $u\in K$, $\alpha(u)\leq\|u\|$. For of convenience, we denote \[ \lambda_1=\max_{k\in\{0,N+n\}}\sum_{s=0}^{N}G(k,s)a(s),\quad \lambda_2=\min_{k\in\{\xi_{m-2},N+n\}}\sum_{s=\xi_{m-2}}^{N}G(k,s)a(s). \] Then $0<\lambda_2<\lambda_1$. To present our main result, we assume there exist constants $0b/\lambda_2$, for $(k,u)\in \{\xi_{m-2},N+n\}\times [b,b/\gamma]$. \end{itemize} \begin{theorem} \label{thm3.1} Under assumptions {\rm (H1)--(H3)}, the boundary value problem \eqref{e1} \eqref{e2} has at least three positive solutions $u_1$, $u_2$ and $u_3$ satisfying \begin{equation} \label{e7} \|u_1\|a, \quad \min_{k\in \{\xi_{m-2},N+n\}}u_3(k)b\}\neq \emptyset. $$ If $u\in P(\alpha,b,\frac{b}{\gamma})$, then $b\leq u(k)\leq \frac{b}{\gamma}$, for $k\in\{\xi_{m-2},N+n\}$. By condition (H3), we obtain \begin{align*} \alpha(Au)&= \min_{k\in \{\xi_{m-2},N+n\}}\sum_{s=0}^{N}G(k,s)a(s)f\big(s,u(s)\big)\\ &\geq \min_{k\in \{\xi_{m-2},N+n\}}\sum_{s=\xi_{m-2}}^{N}G(k,s)a(s)f\big(s,u(s)\big)\\ &> \frac{b}{\lambda_2}\min_{k\in \{\xi_{m-2},N+n\}}\sum_{s=\xi_{m-2}}^{N}G(k,s)a(s)=b. \end{align*} Therefore, condition (C1) of Theorem \ref{thm2.1} is satisfied. Finally, we show that condition (C3) of Theorem \ref{thm2.1} also holds. If $u\in P(\alpha,b,c)$ and $\|Au\|>\frac{b}{\gamma}$, then $$ \alpha(Au)=\min_{k\in \{\xi_{m-2},N+n\}}Au(k)\geq\gamma\|Au\|>b. $$ So, condition (C3) of Theorem \ref{thm2.1} is satisfied. Applying Theorem \ref{thm2.1}, we know that the boundary value problem \eqref{e1} \eqref{e2} has at least three positive solutions $u_1$, $u_2$ and $u_3$ satisfying \eqref{e7}. The proof is complete. \end{proof} \begin{thebibliography}{00} \bibitem{e1} P. W. Eloe; \emph{A Generalization of Concavity for Finite Differences}, Comput. Math. Appl. 36 (1998), 109-113. \bibitem{e2} P. W. Eloe, J. Henderson; \emph{Inequalities based on a generalization of concavity}, Proc. Amer. Math. Soc. 125 (1997), 2103-2108. \bibitem{e3} P. W. Eloe, J. Henderson; \emph{Singular nonlinear (n-1,1) conjugate boundary value problems}, Georgian Math. Journal, 4 (1997), 501-512. \bibitem{e4} P.W. Eloe, J. Henderson; \emph{Positive solutions for higher order ordinary differential equations}, Electron. J. Differential Equations 1995, no. 3 (1995), 1-8. \bibitem{e5} P. W. Eloe, J. Henderson, P. J. Y. Wong; \emph{Positive solutions for two point boundary value problems}, Dynam. Systems Appl. 2 (1996), 135-144. \bibitem{e6} P. W. Eloe; \emph{Maximum principles for a family of nonlocal boundary value problems}, Adv. Difference Equations 3 (2004), 201-210. \bibitem{e7} P. W. Eloe, B. Ahmad; \emph{Positive solutions of a nonlinear $n$th order boundary value problem with nonlocal conditions}, Appl. Math. Lett. 18 (2005), 521-527. \bibitem{g1} Y. Guo, W. Shan, W. Ge; \emph{Positive solutions for second-order m-point boundary value problems}, J. Comput. Appl. Math. 151 (2003), 415-424. \bibitem{h1} P. Hartman; \emph{Difference equations: Disconjugacy, Principal solutions, Green's functions, complete monotonicity}, Trans. Amer. Math. Soc. 246 (1978), 1-30. \bibitem{i1} V. A. Il'in, E. I. Moiseev; \emph{Nonlocal boundary value problem of the first kind for a Sturm Liouville operator in its differential and finite difference aspects}, Differ. Equ. 23 (1987), 803-810. \bibitem{l1} X. Liu, J. Qiu, Y. Guo; \emph{Three positive solutions for second-order m-point boundary value problems}, Appl. Math. Comput. 156 (2004), 733-742. \bibitem{m1} R. Ma; \emph{Existence theorems for a second order m-point boundary value problems}, J. Math. Anal. Appl. 211 (1997), 545-555. \end{thebibliography} \end{document}