\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 86, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/86\hfil Controllability of neutral systems] {Controllability of neutral impulsive stochastic quasilinear integrodifferential systems with nonlocal conditions} \author[K. Balachandran, R. Sathya \hfil EJDE-2011/86\hfilneg] {Krishnan Balachandran, Ravikumar Sathya} % in alphabetical order \address{Department of Mathematics, Bharathiar University, Coimbatore - 641046, India} \email[K. Balachandran]{kb.maths.bu@gmail.com} \email[R. Sathya]{sathyain.math@gmail.com} \thanks{Submitted June 3, 2011. Published June 29, 2011.} \subjclass[2000]{93B05, 34A37, 34K50} \keywords{Controllability; neutral equation; fixed point; \hfill\break\indent impulsive stochastic integrodifferential system} \begin{abstract} We establish sufficient conditions for controllability of neutral impulsive stochastic quasilinear integrodifferential systems with nonlocal conditions in Hilbert spaces. The results are obtained by using semigroup theory, evolution operator and a fixed point technique. An example is provided to illustrate the obtained results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Abstract differential systems in infinite-dimensional spaces appear in many bran\-ches of science and engineering, such as heat flow in materials with memory, viscoelasticity and other physical phenomena. In these fields many stochastic differential equations are obtained by including random fluctuations in ordinary differential equations which have been deduced from phenomological or physical laws. Quasilinear evolution equations forms a very important class of evolution equations as many time dependent phenomena in physics, chemistry and biology can be represented by such evolution equations. Some examples of quasi-stochastic systems are the system of price fluctuations in financial markets, earth climate or the seismic activity of the earth crust and a dice game. Of particular interest the following integrodifferential equation arises in the theory of one-dimensional viscoelasticity \cite{Kim, Xie} and also a special model for one-dimensional heat flow in materials with memory. \begin{equation} \label{eqvis1} \begin{gathered} u_t(t,x)=\int_0^tk(t-s)(\sigma(u_x))_x(s,x)ds +f(t,x), \quad t\geq 0,\; x\in (0,1),\\ u(0,x)=u_0(x),\quad x\in[0,1],\quad u(t,0)=u(t,1)=0,\; t>0. \end{gathered} \end{equation} In many of the papers, the mathematical model for certain problems in nonlinear viscoelasticity is discussed in the form \begin{equation} \label{eqvis} \begin{gathered} u_{tt}(t,x)=\phi(u_x(t,x))_x +\int_0^t a(t-s)\psi(u_x(s,x))_{x}ds +g(t,x),\quad t\geq 0,\\ u(0,x)=u_0(x),\quad x \in \mathbb{R}. \end{gathered} \end{equation} which is the same as \eqref{eqvis1} if $\phi=\psi=\sigma$, $k(0)=1$ and $a=k'$ (see \cite{Gust}). In \cite{Heard}, the following equation occurred during the study of the nonlinear behavior of elastic strings \cite{Nara}. \begin{equation} \label{eqmem} \begin{gathered} u_{tt}(t,x) + c(t)u_t(t,x) - M\Big(\int_{-\infty} ^\infty |u_x(t,s)|^2ds\Big)u_{xx}(t,x)+u(t,x)=h(t,x,u(t,x)),\\ 0\leq t< \infty,\\ u(0,x)=u_0(x),\quad u_t(0,x)=u_1(x),\quad x\in \mathbb{R}. \end{gathered} \end{equation} The above equations take the abstract form as \begin{equation}\label{abs} \frac{du(t)}{dt}=A(u)u(t)+f(t,u(t)),\quad u(0)=u_0. \end{equation} where $A$ is a linear operator in a Hilbert space $H$ and $f$ is a real function. Hence the natural generalization of \eqref{abs} is the following quasilinear integrodifferential equation \begin{equation}\label{eqqu} \begin{gathered} u'(t)=A(t,u)u(t)+f(t,u(t))+\int_0^t g(t,s,u(s))ds,\\ u(0)=u_0. \end{gathered} \end{equation} Systems with short-term perturbations are often naturally described by impulsive differential equations. The theory of impulsive differential equations is much richer than the corresponding theory of differential equations without impulse effects \cite{Lakshmi,Samo}. For instance, impulsive interruptions are observed in mechanics, radio engineering, communication security, control theory, optimal control, biology, mechanics, medicine, bio-technologies, electronics, neural networks and economics. The introduction of non-local conditions can improve the qualitative and quantitative characteristics of the problem which lead to good results concerning existence, uniqueness \cite{Bys} and regularity of the solution. Problems related to non local conditions have applications such as in the theory of heat conduction, thermoelasticity, plasma physics, control theory etc. Many real systems are quite sensitive to sudden changes. This fact may suggest that proper mathematical models of systems should consist of some neutral equations. Indeed, we may find that neutral term effects can be quite significant in real mathematical models. The neutral equations find numerous applications in applied mathematics, natural sciences, biological and physical systems. For this reason these type of equations have received much attention in recent years. Several authors have studied the existence of solutions of abstract quasilinear evolution equations in Banach spaces \cite{Amann, Bahuguna, Uchiyama, Chandra, Dong, Kato, Oka, Tanaka}. Park et al. \cite{Park}, Balachandran and Paul Samuel \cite{Paul} studied the regularity of solutions and the existence of solutions of quasilinear delay integrodifferential equations respectively. Controllability of quasilinear systems has gained renewed interests and few papers appeared \cite{Balasubramaniam, Anandhi, KB}. The controllability of nonlinear stochastic systems in finite and infinite-dimensional spaces have been extensively studied by many authors \cite{Dauer, Klamka, Mah}. Park et al. \cite{Bala} discussed the controllability of neutral stochastic functional integrodifferential infinite delay systems in abstract spaces. Karthikeyan and Balachandran \cite{Karthi} studied the controllability of nonlinear stochastic neutral impulsive systems. Subalakshmi and Balachandran \cite{Suba, Suba1} investigated the approximate controllability of neutral and impulsive stochastic integrodifferential systems in Hilbert spaces. Moreover, the controllability of neutral impulsive stochastic quasilinear integrodifferential systems is an untreated topic in the literature so far. Motivated by this fact, in this paper we study the controllability of neutral impulsive stochastic quasilinear integrodifferential systems with nonlocal conditions. For that, we impose neutral, impulse and nonlocal condition with random perturbations in \eqref{eqqu} which gives the form \begin{equation}\label{eq1} \begin{gathered} \begin{aligned} &d\big[x(t)-q(t,x(t))\big]\\ &=\Big[ A(t,x)x(t)+Bu(t)+f(t,x(t))+\int_0^t g(t,s,x(s))ds\Big]dt\\ &\quad + \sigma(t,x(t))dw(t),\quad t \in J:=[0,a], \quad t\neq t_k, \end{aligned}\\ \Delta x(t_k)=x(t_k^+)-x(t_k^-)= I_k(x(t_k^-)), \quad k=1,2,\dots,m, \\ x(0)+h(x)=x_0. \end{gathered} \end{equation} Here, the state variable $x(\cdot)$ takes values in a real separable Hilbert space $H$ with inner product $(\cdot,\cdot)$ and norm $\|\cdot\|$ and the control function $u(\cdot)$ takes values in $L^2(J,U)$, a Banach space of admissible control functions for a separable Hilbert space $U$. Also, $A(t,x)$ is the infinitesimal generator of a $C_0$-semigroup in $H$ and $B$ is a bounded linear operator from $U$ into $H$. Let $K$ be another separable Hilbert space with inner product $(\cdot,\cdot)_K$ and the norm $\|\cdot\|_K$. We employ the same notation $\|\cdot\|$ for the norm $\mathcal{L}(K,H)$, where $\mathcal{L}(K,H)$ denotes the space of all bounded linear operators from $K$ into $H$. Further, $q:J\times H \to H$, $f:J\times H \to H$, $g:\Lambda\times H \to H$, $\sigma:J\times H\to \mathcal{L}_Q(K,H)$ are measurable mappings in $H$-norm and $\mathcal{L}_Q(K,H)$ norm respectively, where $\mathcal{L}_Q(K,H)$ denotes the space of all $Q$-Hilbert-Schmidt operators from $K$ into $H$ which will be defined in Section 2 and $\Lambda =\{(t,s)\in J\times J:s\leq t\}$. Here, the nonlocal function $h:\mathcal{PC}[J:H] \to H$ and impulsive function $I_k \in C(H,H)$ $(k=1,2,\dots,m)$ are bounded functions. Furthermore, the fixed times $t_k$ satisfies $0=t_0\omega \end{gather*} and every finite sequence $0\leq t_1 \leq t_2 \leq \dots \leq t_k \leq a$, $b_j \in Q, 1 \leq j\leq k$. The stability of $\{A(t,b)\}$, $(t,b) \in J\times Q$, implies \cite{Pazy} that $$ \|\prod_{j=1}^k S_{t_j,b_j}(s_j)\|\leq M \exp \{\omega \sum _{j=1}^k s_j\} \quad \text{for } s_j\geq 0 $$ and any finite sequences $0\leq t_1 \leq t_2 \leq \dots \leq t_k \leq a$, $b_j \in Q, 1 \leq j\leq k$. $k=1,2, \dots$. \end{definition} \begin{definition} \label{def2.3} \rm Let $S_{t,b}(s)$, $s\geq 0$ be the $C_0$ semigroup generated by $A(t,b),(t,b) \in J\times Q$. A subspace $Y$ of $H$ is called $A(t,b)$-admissible if $Y$ is invariant subspace of $S_{t,b}(s)$ and the restriction of $S_{t,b}(s)$ to $Y$ is a $C_0$-semigroup in $Y$. \end{definition} Let $Q \subset H$ be a subset of $H$ such that for every $(t,b) \in J\times Q$, $A(t,b)$ is the infinitesimal generator of a $C_0$-semigroup $S_{t,b}(s), s\geq 0$ on $H$. We make the following assumptions: \begin{itemize} \item[(E1)] The family $\{A(t,b)\}, (t,b) \in J \times Q$ is stable. \item[(E2)]$Y$ is $A(t,b)$- admissible for $(t,b) \in J \times Q$ and the family $\{\tilde A(t,b)\},(t,b)\in J\times Q$ of parts $\tilde A(t,b)$ of $A(t,b)$ in $Y$, is stable in $Y$. \item[(E3)]For $(t,b)\in J\times Q$, $D(A(t,b))\supset Y$, $A(t,b)$ is a bounded linear operator from $Y$ to $H$ and $t \to A(t,b)$ is continuous in the $B(Y,H)$ norm $\|\cdot\|$ for every $b \in Q$. \item[(E4)]There is a constant $L>0$ such that $$ \|A(t,b_1)-A(t,b_2)\|_{Y\to H} \leq L\|b_1-b_2\|_H $$ holds for every $b_1,b_2 \in Q$ and $0\leq t\leq a$. \end{itemize} Let $Q$ be a subset of $H$ and let $\{A(t,b)\}$, $(t,b) \in J\times Q$ be a family of operators satisfying the conditions $(E1)-(E4)$. If $x\in \mathcal{PC}(J,L_2)$ has values in $Q$ then there is a unique evolution system $U(t,s ;x), 0\leq s\leq t\leq a$ in $H$ satisfying (see \cite{Pazy}) \begin{itemize} \item[(i)] $\|U(t,s; x)\|\leq Me^{\omega (t-s)}$ for $0\leq s\leq t\leq a$, where $M$ and $\omega$ are stability constants. \item[(ii)] $\frac{\partial^+}{\partial t}U(t,s; x)y=A(s,x(s))U(t,s; x)y$ for $y\in Y$, $0\leq s\leq t\leq a$. \item[(iii)] $\frac{\partial}{\partial s}U(t,s; x)y = -U(t,s; x)A(s,x(s))y$ for $y \in Y$, $0\leq s\leq t\leq a$. \end{itemize} Further we assume that \begin{itemize} \item[(E5)] For every $x \in \mathcal{PC}(J,L_2)$ satisfying $x(t) \in Q$ for $0\leq t\leq a$, we have $$ U(t,s; x)Y\subset Y,\quad 0\leq s\leq t\leq a $$ and $U(t,s; x)$ is strongly continuous in $Y$ for $0\leq s\leq t\leq a$. \item[(E6)] Closed bounded convex subsets of $Y$ are closed in $H$. \item[(E7)]For every $(t,b)\in J\times Q$, $q(t,b)\in Y$ and $f(t,b)\in Y$, $((t,s),b)\in \Lambda\times Q, g(t,s,b)\in Y$ and $(t,b)\in J\times Q$, $\sigma(t,b)\in Y$. \end{itemize} \begin{definition}[\cite{Dauer}] \label{def2.4} \rm A stochastic process $x$ is said to be a mild solution of \eqref{eq1} if the following conditions are satisfied: \begin{itemize} \item[{(a)}] $x(t,\omega)$ is a measurable function from $J \times \Omega$ to $H$ and $x(t)$ is $\mathcal{F}_t$-adapted, \item[{(b)}] $E\|x(t)\|^2 < \infty$ for each $t \in J$, \item[{(c)}] $\Delta x(t_k)= x(t_k^+)-x(t_k^-)=I_k(x(t_k^-))$, $k=1,2,\dots,m,$ \item [{(d)}] For each $u \in L_2^\mathcal{F}(J,U)$, the process $x$ satisfies the following integral equation \begin{equation}\label{eq2} \begin{gathered} \begin{aligned} x(t)&= U(t,0 ;x)\big[x_0 -h(x) -q(0,x(0))\big]+q(t,x(t))\\ &\quad+\int_0^t U(t,s;x)A(s,x(s))q(s,x(s))ds\\ &\quad +\int_0^t U(t,s; x)\big[Bu(s)+f(s,x(s))\big]ds\\ &\quad+\int_0^t U(t,s; x)\Big[\int_0^s g\big(s,\tau,x(\tau)d\tau\big)\Big]ds+\int_0^tU(t,s; x)\sigma(s,x(s))dw(s)\\ &\quad +\sum_{00$ such that for every $x,y \in \mathcal{PC}(J,L_2)$ and every $\tilde y\in Y$ we have $$ \|U(t,s; x)\tilde y -U(t,s; y)\tilde y\|^2 \leq \mathcal N a^2\|\tilde y\|_Y^2 \|x-y\|_{\mathcal{PC}}^2. $$ To establish our controllability result we assume the following hypotheses: \begin{itemize} \item[(H1)] $A(t,x)$ generates a family of evolution operators $U(t,s; x)$ in $H$ and there exists a constant $\mathcal{C}_U>0$ such that $$ \|U(t,s; x)\|^2\leq \mathcal{C}_U \quad \text{for } 0\leq s\leq t \leq a,\; x \in \mathcal{Z}. $$ \item[(H2)] The linear operator $W: L^2(J,U) \to H$ defined by $$ Wu= \int_0^a U(a,s; x) Bu(s) ds $$ is invertible with inverse operator $W^{-1}$ taking values in $L^2(J,U)\setminus \ker W$ and there exists a positive constant $\mathcal{C}_{W}$ such that $$ \|BW^{-1}\|^2 \leq \mathcal{C}_{W}. $$ \item[(H3)] \begin{itemize} \item[(i)] The function $q:J \times \mathcal{Z} \to \mathcal{Z}$ is continuous and there exist constants $\mathcal{C}_q>0$, $\tilde{\mathcal{C}_q}>0$ for $s,t \in J$ and $x,y \in \mathcal{Z}$ such that the function $A(t,x)q$ satisfies the Lipschitz condition: $$ E\|A(t,x(t))q(t,x)-A(t,y(t))q(t,y)\|^2 \leq C_q \|x-y\|^2, $$ and $\tilde {\mathcal{C}_q} = \sup_{t \in J} \|A(t,0) q(t,0)\|^2$. \item[(ii)] There exist constants $\mathcal{C}_k>0, \mathcal{C}_1>0$ and $\mathcal{C}_2>0$ such that \begin{gather*} E\|q(t,x)-q(t,y)\|^2 \leq \mathcal{C}_k[|t-s|^2+\|x-y\|^2] ,\\ E\|q(t,x)\|^2 \leq \mathcal{C}_1\|x\|^2+\mathcal{C}_2, \end{gather*} where $\mathcal{C}_2=\sup_{t \in J} \|q(t,0)\|^2$. \end{itemize} \item[(H4)] The nonlinear function $f:J\times \mathcal{Z} \to \mathcal{Z}$ is continuous and there exist constants $\mathcal{C}_f >0$, $\tilde{\mathcal{C}_f}>0$ for $t \in J$ and $x,y \in \mathcal{Z}$ such that $$ E\|f(t,x)-f(t,y)\|^2 \leq \mathcal{C}_f \|x-y\|^2 $$ and $\tilde {\mathcal{C}_f} = \sup_{t \in J} \|f(t,0)\|^2$. \item[(H5)] The nonlinear function $g:\Lambda \times \mathcal{Z} \to \mathcal{Z}$ is continuous and there exist positive constants $\mathcal{C}_g$, $\tilde{\mathcal{C}_g}$, for $x,y \in \mathcal{Z}$ and $(t,s) \in \Lambda$ such that $$ E\big\|g(t,s,x)-g(t,s,y)\big\|^2 \leq \mathcal{C}_g\|x-y\|^2 $$ and $\tilde{\mathcal{C}_g} = \sup _{(t,s) \in \Lambda} \|g(t,s,0)\|^2$. \item[(H6)] The function $\sigma:J \times \mathcal{Z} \to \mathcal{L}_Q(K,H)$ is continuous and there exist constants $\mathcal{C}_\sigma>0$, $\tilde{\mathcal{C}_\sigma}>0$ for $t\in J$ and $x,y \in \mathcal{Z}$ such that $$ E\|\sigma(t,x)-\sigma(t,y)\|^2 _Q\leq \mathcal{C}_\sigma\|x-y\|^2 $$ and $\tilde{\mathcal{C}_\sigma}=\sup_{t \in J} \|\sigma(t,0)\|^2$. \item[(H7)] The nonlocal function $h:\mathcal{PC}(J:\mathcal{Z}) \to \mathcal{Z}$ is continuous and there exist constants $\mathcal{C}_h>0$, $\tilde{\mathcal{C}_h}>0$ for $x,y \in \mathcal{Z}$ such that $$ E\|h(x)-h(y)\|^2 \leq \mathcal{C}_h\|x-y\|^2 , \quad E\|h(x)\|^2\leq \tilde{\mathcal{C}_h}. $$ \item[(H8)] $I_k:\mathcal{Z}\to \mathcal{Z}$ is continuous and there exist constants $\beta_k>0$, $\tilde{\beta_k}>0$ for $x,y \in \mathcal{Z}$ such that $$ E\|I_k(x)-I_k(y)\|^2\leq \beta_k\|x-y\|^2, \quad k=1,2,\dots,m $$ and $\tilde{\beta_k}=\|I_k(0)\|^2, \ k=1,2,\dots,m$. \item[(H9)] There exists a constant $r>0$ such that \begin{align*} &10\Big\{\mathcal{C}_U(\|x_0\|^2 + \tilde{\mathcal{C}_h})+a^2 \mathcal{C}_U \mathcal{G}+2\mathcal{C}_U\big[\mathcal{C}_1(\|x_0\|^2+\tilde{\mathcal{C}_h})+\mathcal{C}_2\big]+\mathcal{C}_1 r+\mathcal{C}_2\\ &+ 2a^2\mathcal{C}_U(\mathcal{C}_q r+\tilde{\mathcal{C}_q})+2a^2\mathcal{C}_U(\mathcal{C}_f r+\tilde{\mathcal{C}_f}) +2a^3\mathcal{C}_U\big[ \mathcal{C}_g r+\tilde{\mathcal{C}_g}\big]\\ &+ 2a\ \mathcal{C}_U\ \operatorname{Tr}(Q)\big(\mathcal{C}_\sigma r+\tilde{\mathcal{C}_\sigma}\big) +2m\mathcal{C}_U\Big[\sum_{k=1}^m \beta_k r+\sum_{k=1}^m \tilde{ \beta_k}\Big]\Big\}\\ &\leq r \end{align*} and \[ \nu = 10\Big\{ (1+18a^2\mathcal{C}_U\mathcal{C}_W) (N_1+N_2+N_3+N_4+N_5+N_6+N_7) + 2a^3\mathcal N \mathcal{G} \Big\} \] where \begin{gather*} N_1 =\mathcal Na^2\|x_0\|^2+2(\mathcal N a^2\tilde{\mathcal{C}_h}+\mathcal{C}_U \mathcal{C}_h),\\ N_2 =2\Big[2\mathcal N a^2\big(\mathcal{C}_1(\|x_0\|^2 +\tilde{\mathcal{C}_h})+\mathcal{C}_2\big) +\mathcal{C}_U\mathcal{C}_k\mathcal{C}_h\Big]+\mathcal{C}_q,\\ N_3=2a^2\Big[2\mathcal N a\big(\mathcal{C}_q r +\tilde{\mathcal{C}_q}\big)+\mathcal{C}_U \mathcal{C}_q\Big],\\ N_4=2a^2\Big[2\mathcal N a\big(\mathcal{C}_f r +\tilde{\mathcal{C}_f}\big)+\mathcal{C}_U \mathcal{C}_f\Big],\\ N_5= 2a^3\Big[2\mathcal N a\big(\mathcal{C}_gr +\tilde{\mathcal{C}_g}\big)+\mathcal{C}_U\mathcal{C}_g\Big],\\ N_6=2a\Big[2\mathcal Na\operatorname{Tr}(Q)\big(\mathcal{C}_\sigma r +\tilde{\mathcal{C}_\sigma}\big)+\mathcal{C}_U \operatorname{Tr}(Q)\mathcal{C}_\sigma\Big],\\ N_7=2m\Big[2\mathcal N a^2\Big(\sum_{k=1}^m\beta_k r +\sum_{k=1}^m \tilde{\beta_k}\Big) +\mathcal{C}_U\sum_{k=1}^m\beta_k\Big]. \end{gather*} \end{itemize} \section{Controllability Result} \begin{theorem}\label{main} If the conditions {\rm (H1)-(H9)} are satisfied and if $0\leq\nu < 1$, then system \eqref{eq1} is controllable on $J$. \end{theorem} \begin{proof} Using (H2) for an arbitrary function $x(\cdot)$, define the control \begin{equation} \begin{split} u(t)&= W^{-1}\Big[x_1- U(a,0 ;x)\big[x_0 -h(x)-q(0,x(0))\big] -q(a,x(a))\\ &\quad -\int_0^a U(a,s;x)A(s,x(s))q(s,x(s))ds-\int_0^aU(a,s; x) \sigma(s,x(s))dw(s)\\ &\quad -\int_0^a U(a,s; x)\Big[f(s,x(s))+\int_0^s g(s,\tau, x(\tau))d\tau\Big]ds\\ &\quad -\sum_{00$, $\tilde{\mathcal{C}_Q}>0$ for $s,t \in J$ and $x, y, x_1, y_1 \in \mathcal{Z}$ such that the function $A(t,x)Q$ satisfies the Lipschitz condition $$ E\|A(t,x(t))Q(t,x,x_1)-A(t,y(t))Q(t,y,y_1)\|^2 \leq C_Q\big(\|x-y\|^2+\|x_1-y_1\|^2\big), $$ and $\tilde {\mathcal{C}_Q} = \sup_{t \in J} \|A(t,0) Q(t,0,0)\|^2$. \item[(ii)] There exist constants $ Q_k>0, Q_1>0$ and $Q_2>0$ such that \begin{gather*} E\|Q(t,x,x_1)-Q(t,y,y_1)\|^2 \leq Q_k\big(|t-s|^2+\|x-y\|^2+\|x_1-y_1\|^2\big), \\ E\|Q(t,x,y)\|^2 \leq Q_1\big(\|x\|^2+\|y\|^2\big)+ Q_2, \end{gather*} where $Q_2=\sup_{t \in J} \|Q(t,0,0)\|^2$. \end{itemize} \item[(H11)] The nonlinear function $q:\Lambda \times \mathcal{Z} \to \mathcal{Z}$ is continuous and there exist positive constants $\mathcal{C}_q$, $\tilde{\mathcal{C}_q}$, for $x,y \in \mathcal{Z}$ and $(t,s) \in \Lambda$ such that $$ E\|\int_0^t \big(q(t,s,x)-q(t,s,y)\big)ds\|^2 \leq \mathcal{C}_q \|x-y\|^2 $$ and $\tilde{\mathcal{C}_q} = \sup _{(t,s) \in \Lambda} \|\int_0^t q(t,s,0)ds\|^2$. \item [(H12)] The nonlinear function $F:J\times \mathcal{Z} \times \mathcal{Z} \to \mathcal{Z}$ is continuous and there exist constants $\mathcal{C}_F >0$, $\tilde{\mathcal{C}_F}>0$ for $t \in J$ and $x_1, x_2, y_1, y_2 \in \mathcal{Z}$ such that $$ E\|F(t,x_1,y_1)-F(t,x_2,y_2)\|^2 \leq \mathcal{C}_F\big(\|x_1-x_2\|^2 +\|y_1-y_2\|^2\big) $$ and $\tilde {\mathcal{C}_F} = \sup_{t \in J} \|F(t,0,0)\|^2$. \item[(H13)] The nonlinear function $f:\Lambda \times \mathcal{Z} \to \mathcal{Z}$ is continuous and there exist positive constants $\mathcal{C}_f$, $\tilde{\mathcal{C}_f}$, for $x,y \in \mathcal{Z}$ and $(t,s) \in \Lambda$ such that $$ E\big\|\int_0^t \big(f(t,s,x)-f(t,s,y)\big)ds\big\|^2 \leq \mathcal{C}_f \|x-y\|^2 $$ and $\tilde{\mathcal{C}_f} = \sup _{(t,s) \in \Lambda} \|\int_0^t f(t,s,0)ds\|^2$. \item[(H14)] The nonlinear function $G:J\times \mathcal{Z} \times \mathcal{Z} \to \mathcal{L}_Q(K,H)$ is continuous and there exist constants $\mathcal{C}_G >0$, $\tilde{\mathcal{C}_G}>0$ for $t \in J$ and $x_1, x_2, y_1, y_2 \in \mathcal{Z}$ such that $$ E\|G(t,x_1,y_1)-G(t,x_2,y_2)\|^2 \leq \mathcal{C}_G \big(\|x_1-x_2\|^2+\|y_1-y_2\|^2\big)$$ and $\tilde {\mathcal{C}_G} = \sup_{t \in J} \|G(t,0,0)\|^2$. \item[(H15)] The nonlinear function $\sigma:\Lambda \times \mathcal{Z} \to \mathcal{Z}$ is continuous and there exist positive constants $\mathcal{C}_\sigma$, $\tilde{\mathcal{C}_\sigma}$, for $x,y \in \mathcal{Z}$ and $(t,s) \in \Lambda$ such that $$ E\big\|\int_0^t \big(\sigma(t,s,x)-\sigma(t,s,y)\big)ds\big\|^2 \leq \mathcal{C}_\sigma \|x-y\|^2 $$ and $\tilde{\mathcal{C}_\sigma} = \sup _{(t,s) \in \Lambda} \|\int_0^t \sigma(t,s,0)ds\|^2$. \item[(H16)] There exists a constant $r^*>0$ such that \begin{align*} &9\Big\{\mathcal{C}_U(\|x_0\|^2 + \tilde{\mathcal{C}_h}) + a^2 \mathcal{C}_U \mathcal{G} + 2\mathcal{C}_U\big[Q_1(\|x_0\|^2 + \tilde{\mathcal{C}_h}) + Q_2\big]\\ &+Q_1\big[(1 + 2\mathcal{C}_q)r + 2\tilde{\mathcal{C}_q}\big] +Q_2 + 2a^2\mathcal{C}_U\big[\mathcal{C}_Q \big((1 + 2\mathcal{C}_q)r + 2\tilde{\mathcal{C}_q}\big) + \tilde{\mathcal{C}_Q}\big]\\ &+ 2a^2\mathcal{C}_U\big[\mathcal{C}_F \big((1 + 2\mathcal{C}_f)r + 2\tilde{\mathcal{C}_f}\big) + \tilde{\mathcal{C}_F}\big]\\ &+ 2a\mathcal{C}_U\operatorname{Tr}(Q)\big[\mathcal{C}_G \big((1 + 2\mathcal{C}_\sigma)r + 2\tilde{\mathcal{C}_\sigma}\big) + \tilde{\mathcal{C}_G}\big] + 2m\mathcal{C}_U\Big[\sum_{k=1}^m \beta_k r+\sum_{k=1}^m \tilde{ \beta_k}\Big]\Big\}\\ &\leq r^* \end{align*} and \[ \nu^* = 9\Big\{ (1+16a^2\mathcal{C}_U\mathcal{C}_W) (N_1+N_2+N_3+N_4+N_5+N_6) + 2a^3\mathcal N \mathcal{G} \Big\} \] where \begin{gather*} N_1= \mathcal Na^2\|x_0\|^2+2(\mathcal N a^2\tilde{\mathcal{C}_h} +\mathcal{C}_U \mathcal{C}_h)\\ N_2= 2\Big[2\mathcal N a^2\big(Q_1(\|x_0\|^2+\tilde{\mathcal{C}_h}) +Q_2\big)+\mathcal{C}_U Q_k\mathcal{C}_h\Big]+Q_k(1+\mathcal{C}_q)\\ N_3= 2a^2\Big[2\mathcal N a\Big[\mathcal{C}_Q \big((1+2\mathcal{C}_q)r +2\tilde{\mathcal{C}_q}\big)+\tilde{\mathcal{C}_Q}\Big] +\mathcal{C}_U\mathcal{C}_Q(1+\mathcal{C}_q)\Big]\\ N_4= 2a^2\Big[2\mathcal N a\Big[\mathcal{C}_F \big((1+2\mathcal{C}_f)r +2\tilde{\mathcal{C}_f}\big)+\tilde{\mathcal{C}_F}\Big] +\mathcal{C}_U \mathcal{C}_F(1+\mathcal{C}_f)\Big]\\ N_5= 2a\Big[2\mathcal Na \operatorname{Tr}(Q) \Big[\mathcal{C}_G\big((1 + 2\mathcal{C}_\sigma)r + 2\tilde{\mathcal{C}_\sigma}\big) + \tilde{\mathcal{C}_G}\Big] + \mathcal{C}_U \ \operatorname{Tr}(Q)C_G(1 + \mathcal{C}_\sigma)\Big]\\ N_6= 2m\Big[2\mathcal N a^2\Big(\sum_{k=1}^m\beta_k r +\sum_{k=1}^m \tilde{\beta_k}\Big)+\mathcal{C}_U\sum_{k=1}^m \beta_k\Big]. \end{gather*} \end{itemize} To apply the contraction mapping, we define the nonlinear operator $\Phi^*: \mathcal{Y}_r \to \mathcal{Y}_r$ as \begin{align*} &(\Phi^* x)(t)\\ &=U(t,0 ;x)\Big[x_0 -h(x) -Q(0,x(0),0)\Big]+Q\Big(t,x(t), \int_0^t q(t,s,x(s))ds\Big)\\ &\quad +\int_0^t U(t,s;x)A(s,x(s))Q\Big(s,x(s),\int_0^s q(s,\tau,x(\tau))d\tau\Big)ds\\ &\quad +\int_0^t U(t,s; x)Bu(s)ds +\int_0^t U(t,s; x)F\Big(s,x(s),\int_0^s f\big(s,\tau,x(\tau)) d\tau\Big)ds\\ &\quad +\int_0^t U(t,s;x)G\Big(s,x(s),\int_0^s \sigma\big(s,\tau,x(\tau))d\tau\Big)dw(s)+\sum_{00$ in $Y$ and it is proved that the family of operators $A(v), v \in \mathcal{Y}_r,$ satisfies the conditions (E1)--(E4) and (H1) (see \cite{Pazy}). Put $x(t)=z(t,\cdot)$ and $u(t)=\mu(t,\cdot)$ where $\mu:J\times \mathbb{R}\to\mathbb{R}$ is continuous, \begin{gather*} f(t,x(t))=\frac{1}{2}e^{-t}\sin z(t,y) ,\quad \sigma(t,x(t))=\frac{1}{2}\cos t\ z(t,y),\\ q(t,x(t))=\frac{1}{2}\cos z(t,y) ,\quad h(x)=\int_0^1 m(s) \log(1+|z(s,y)|)ds\\ \int_0^tg(t,s,x(s))ds= \frac{z(t,y)}{t(1+t^2)} \Big[\int_0^te^{-z(s,y)}ds\Big]. \end{gather*} With this choice of $A(v)$, $I_k, q, f, g, h,\sigma$, $B =I$, the identity operator and $w(t)$ denotes a one dimensional standard wiener process, we see that \eqref{ex} is an abstract formulation of the system \eqref{eq1}. Further we have $$ \big\|\frac{z(t,y)}{t(1+t^2)} \Big[\int_0^te^{-z(s,y)}ds\Big] \big\| \leq\frac{1}{1+t^2}\|z\|. $$ Assume that the operator $W:L^2(J,U)/Ker W \to H$ defined by $$ W u =\int_0^1 U(1,s;x)\mu(s,\cdot)ds $$ has an inverse operator and satisfies (H2) for every $x \in \mathcal{Y}_r$. Further the other assumptions (H3)--(H9) are obviously satisfied and it is possible to choose a suitable control function $u(t)$ in such a way that the constant $\nu <1$ which will steer the system from $x_0$ to $x_1$. Hence, by Theorem \ref{thm4.1}, system \eqref{ex} is controllable on $J$. \subsection*{Acknowledgements} The second author is thankful to UGC, New Delhi, for providing a BSR Fellowship during 2010. \begin{thebibliography}{00} \bibitem{Amann} H. Amann; Quasilinear evolution equations and parabolic systems, \emph{Trans. Amer. Math. Soc.}, 29 (1986), 191-227. \bibitem{Bahuguna} D. Bahuguna; Quasilinear integrodifferential equations in Banach spaces, \emph{Nonlinear Anal.}, 24 (1995), 175-183. \bibitem{Paul} K. Balachandran and F. Paul Samuel; Existence of solutions for quasilinear delay integrodifferential equations with nonlocal conditions, \emph{Electron. J. Differential Equations}, vol. 2009 (2009), no. 6 , 1-7. \bibitem{Uchiyama} K. Balachandran and K. Uchiyama; Existence of solutions of quasilinear integrodifferential equations with nonlocal condition, \emph{Tokyo J. Math.}, 23 (2000), 203-210. \bibitem{Balasubramaniam} K. Balachandran, P. Balasubramaniam and J. P. Dauer; Controllability of quasilinear delay systems in Banach spaces, \emph{Optim. Contr. Appl. Meth.}, 16 (1995), 283-290. \bibitem{Anandhi} K. Balachandran, J.Y. Park and E.R. Anandhi; Local controllability of quasilinear integrodifferential evolution systems in Banach spaces, \emph{J. Math. Anal. Appl.}, 258 (2001), 309-319. \bibitem{KB} K. Balachandran, J. Y. Park and S. H. Park; Controllability of nonlocal impulsive quasilinear integrodifferential systems in Banach spaces, \emph{Rep. Math. Phys.}, 65 (2010), 247-257. \bibitem{Bys} L. Byszewski and V. Lakshmikantham; Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, \emph{Appl. Anal.}, 40 (1991), 11-19. \bibitem{Chandra} M. Chandrasekaran; Nonlocal Cauchy problem for quasilinear integrodifferential equations in Banach spaces, \emph{Electron. J. Differential Equations}, 2007 (2007), no. 33, 1-6. \bibitem{Prato} G. Da Prato and J. Zabczyk; \emph{Stochastic Equations in Infinite Dimensions}, Cambridge University Press, Cambridge, 1992. \bibitem{Dauer} J. P. Dauer and N. I. Mahmudov; Controllability of stochastic semilinear functional differential equations in Hilbert spaces, \emph{J. Math. Anal. Appl.}, 290 (2004), 373-394. \bibitem{Dong} Q. Dong, G. Li and J. Zhang; Quasilinear nonlocal integrodifferential equations in Banach spaces, \emph{Electron. J. Differential Equations}, 2008 (2008), no 19, 1-8. \bibitem{Gust} G. Gripenberg; Weak solutions of hyperbolic-parabolic volterra equations, \emph{Trans. American Math. Soc.}, 343 (1994), 675-694. \bibitem{Heard} M. L. Heard; A quasilinear hyperbolic integrodifferential equation related to a nonlinear string, \emph{Trans. American Math. Soc.}, 285 (1984), 805-823. \bibitem{Karthi} S. Karthikeyan and K. Balachandran; Controllability of nonlinear stochastic neutral impulsive systems, \emph{Nonlinear Anal.}, 3 (2009), 266-276. \bibitem{Kato} S. Kato; Nonhomogeneous quasilinear evolution equations in Banach spaces, \emph{Nonlinear Anal.}, 9 (1985), 1061-1071. \bibitem{Klamka} J. Klamka; Stochastic controllability of linear systems with state delays, \emph{Int. J. Appl. Math. Comput. Sci.}, 17(2007), 5-13. \bibitem{Kim} J. H. Kim, On a stochastic nonlinear equation in one-dimensional viscoelasticity, \emph{Trans. American Math. Soc.}, 354 (2002), 1117-1135. \bibitem{Lakshmi} V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, \emph{Theory of Impulsive Differential Equations}, World Scientific, Singapore, 1989. \bibitem{Mah} N. I. Mahmudov; Existence and uniqueness results for neutral stochastic differential equations in Hilbert spaces, \emph{Stoch. Anal. Appl.}, 24 (2006), 79-95. \bibitem{Nara} R. Narasimha; Nonlinear vibration of an elastic string, \emph{J. Sound Vibration}, 8 (1968), 134 -146. \bibitem{Oka} H. Oka; Abstract quasilinear Volterra integrodifferential equations, \emph{Nonlinear Anal.}, 28 (1997), 1019-1045. \bibitem{Tanaka} H. Oka and N. Tanaka; Abstract quasilinear integrodifferential equations of hyperbolic type, \emph{Nonlinear Anal.}, 29 (1997), 903-925. \bibitem{Bala} J.Y. Park, P. Balasubramaniam and N. Kumerasan; Controllability for neutral stochastic functional integrodifferential infinite delay systems in abstract space, \emph{Numer. Funct. Anal. Optim.}, 28 (2007), 1369-1386. \bibitem{Park} D. G. Park, K. Balachandran and F. Paul Samuel; Regularity of solutions of abstract quasilinear delay integrodifferential equations, \emph{J. Korean Math. Soc.}, 48 (2011), 585-597. \bibitem{Pazy} A. Pazy; \emph{Semigroups of Linear Operators and Applications to Partial Differential Equations}, Springer, Berlin, 1983. \bibitem{Samo} A.M. Samoilenko and N.A. Perestyuk; \emph{Impulsive Differential Equations}, World Scientific, Singapore, 1995. \bibitem{Suba} R. Subalakshmi and K. Balachandran; Approximate controllability of neutral stochastic integrodifferential systems in Hilbert spaces, \emph{Electron. J. Differential Equations}, vol. 2008 (2008), no. 162, 1-15. \bibitem{Suba1} R. Subalakshmi and K. Balachandran; Approximate controllability of nonlinear stochastic impulsive integrodifferential systems in Hilbert spaces, \emph{Chaos, Solitons and Fractals}, 42 (2009), 2035-2046. \bibitem{Xie} S. Xie; Numerical algorithms for solving a type of nonlinear integrodifferential equations, \emph{World Academy of Science, Engineering and Technology}, 65 (2010), 1083-1086. \end{thebibliography} \end{document}