\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 88, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/88\hfil Asymptotic behavior] {Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems} \author[Rym Chemmam, Abdelwaheb Dhifli, Habib M\^{a}agli\hfil EJDE-2011/88\hfilneg] {Rym Chemmam, Abdelwaheb Dhifli, Habib M\^aagli} % in alphabetical order \address{Rym Chemmam \newline D\'epartement de Math\'ematiques, Facult\'e des Sciences de Tunis, Universit\'e Tunis El Manar, Campus universitaire, 2092 Tunis, Tunisia} \email{Rym.Chemmam@fst.rnu.tn} \address{Abdelwaheb Dhifli \newline D\'epartement de Math\'ematiques, Facult\'e des Sciences de Tunis, Universit\'e Tunis El Manar, Campus universitaire, 2092 Tunis, Tunisia} \email{dhifli\_waheb@yahoo.fr} \address{Habib M\^aagli \newline D\'epartement de Math\'ematiques, Facult\'e des Sciences de Tunis, Universit\'e Tunis El Manar, Campus universitaire, 2092 Tunis, Tunisia} \email{habib.maagli@fst.rnu.tn} \thanks{Submitted April 13, 2011. Published July 5, 2011.} \subjclass[2000]{31B05, 31C35, 34B27, 60J50} \keywords{Asymptotic behavior; Dirichlet problem; ground sate solution; \hfill\break\indent singular equations; sublinear equations} \begin{abstract} In this article, we are concerned with the asymptotic behavior of the classical solution to the semilinear boundary-value problem \[ \Delta u+a(x)u^{\sigma }=0 \] in $\mathbb{R}^n$, $u>0$, $\lim_{|x|\to \infty }u(x)=0$, where $\sigma <1$. The special feature is to consider the function $a$ in $C_{\rm loc}^{\alpha }(\mathbb{R}^n)$, $0<\alpha <1$, such that there exists $c>0$ satisfying \[ \frac{1}{c}\frac{L(|x| +1)}{(1+|x| )^{\lambda }} \leq a(x)\leq c\frac{L(|x| +1)}{(1+|x| )^{\lambda }}, \] where $L(t):=\exp \big(\int_1^t\frac{z(s)}{s}ds\big)$, with $z\in C([1,\infty ))$ such that $\lim_{t\to \infty } z(t)=0$. The comparable asymptotic rate of $a(x)$ determines the asymptotic behavior of the solution. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In this article, we are interested in estimates for positive solutions of the semilinear problem \begin{equation} \label{e1} \begin{gathered} -\Delta u=a(x)g(u),\quad x\in\mathbb{R}^n,\;n\geq 3 \\ u>0\quad \text{in }\mathbb{R}^n, \\ \lim_{|x| \to \infty } u(x)=0. \end{gathered} \end{equation} The existence of such solutions and their asymptotic behavior have been extensively studied by many authors when \eqref{e1} has a smooth bounded domain $\Omega $ with zero boundary Dirichlet condition. We refer the reader to \cite{SON,cr,sy,ma,mz,20} and the references therein. In recent years, the study of ground state solutions of problem \eqref{e1} received a lot of interest and numerous existence results have been established (see for instance \cite{br,ed,rad,ls,MO,san} and the references therein). More specifically, Lair and Shaker \cite{ls} established the existence and the uniqueness of positive classical solution, where $g$ is a positive nonincreasing and continuously differentiable function on $(0,\infty )$ and $ a$ is a nontrivial nonnegative function in $C_{\rm loc}^{\alpha }(\mathbb{R}^n)$, satisfying \begin{equation} \int_{0}^{\infty }t\max_{|x| =t} a(x)dt<\infty. \label{1b} \end{equation} Moreover, they showed that this condition on $a$ is nearly optimal. Furthermore, Brezis and Kamin \cite{br} proved the existence of a unique positive solution to the problem \begin{gather*} -\Delta u=a(x)u^{\sigma },\quad x\in \mathbb{R}^n,\; n\geq 3 \\ u>0, \\ \liminf_{|x| \to \infty } u(x)=0, \end{gather*} where $0<\sigma <1$ and $a$ is a nonnegative measurable function potentially bounded, that is the function $x\mapsto \int_{\mathbb{R}^n}\frac{a(y)}{| x-y| ^{n-2}}dy$ is in $L^{\infty }(\mathbb{R}^n)$. Throughout this article, we denote $\mathcal{K}$ the set of all functions $L$ defined on $[1,\infty ) $, by \[ L( t) :=c\exp \Big(\int_1^t\frac{z(s)}{s}ds\Big), \] where $c$ is a positive constant and $z\in C([1,\infty ) )$ such that $\lim_{t\to \infty } z(t)=0$. \begin{remark} \label{rmk1} \rm It is obvious that $L\in \mathcal{K}$ if and only if $L$ is a positive function in $C^{1}( [1,\infty )) $ such that $\lim_{t\to \infty } \frac{tL'(t)}{L(t)}=0$. \end{remark} \begin{example} \label{exmp1} \rm Let $m\in \mathbb{N}^{\ast }$, $( \lambda _1,\lambda _{2},\dots ,\lambda _{m}) \in {\mathbb{R}}^{m}$ and $\omega $ be a positive real number sufficiently large such that the function \[ L(t)=\prod_{k=1}^{m}( \log _{k}(wt)) ^{-\lambda _{k}} \] is defined and positive on $[1,\infty ) $, where $\log _{k}x=\log \circ \log \circ \dots \circ \log x$ $($k times$).$Then $L\in \mathcal{K}$. \end{example} In this paper, we give precise asymptotic behavior of the solution to the problem \begin{equation} \label{e2} \begin{gathered} -\Delta u=a(x)u^{\sigma },\quad x\in \mathbb{R}^n,\; n\geq 3, \\ u>0\quad\text{ in }\mathbb{R}^n, \\ \lim_{|x| \to \infty } u(x)=0, \end{gathered} \end{equation} where $\sigma <1$ and $a$ satisfies the hypothesis \begin{itemize} \item[(H1)] $a$ is a nonnegative function in $C_{\rm loc}^{\alpha}(\mathbb{R}^n)$, $0<\alpha <1$, satisfying \[ a(x)\approx \frac{L(1+|x| )}{(1+|x| )^{\lambda }}, \] where $\lambda \geq 2$ and $L\in \mathcal{K}$ such that $\int_1^{\infty}t^{1-\lambda }L( t) dt<\infty $. \end{itemize} Here and throughout the paper, for two nonnegative functions $f$ and $g$ defined on a set $S$, the notation $f( x) \approx g(x)$, for $x\in S$ means that there exists $c>0$ such that $\frac{1}{c}f(x)\leq g(x)\leq cf(x)$, for all $x\in S$. \begin{remark} \label{rmk2} \rm (i) Note that we need to verify the condition $\int_1^{\infty }t^{1-\lambda }L( t) dt<\infty $ in hypothesis (H1), only for $ \lambda =2$ (see Remark \ref{rmk3}). (ii) It is obvious to see that if $a$ satisfies hypothesis $(H1)$, then $a$ is potentially bounded and $a$ verifies \eqref{1b}. This implies from \cite{ls} and \cite{br}, that problem \eqref{e2} has a unique classical positive solution in $C^{2,\alpha }(\mathbb{R}^n)$. Thus it becomes interesting to know the asymptotic behavior of such solution, as $t\to \infty$. \end{remark} Our main result is the following. \begin{theorem} \label{thm1} Assume {\rm (H1)}. Then the solution $u$ of problem \eqref{e2} satisfies \begin{equation} u(x)\approx \theta _{\lambda }(x), \label{1.2} \end{equation} where $x\in\mathbb{R}^n$, and $\theta _{\lambda }$ is defined on $\mathbb{R}^n$ by \begin{equation} \theta _{\lambda }(x):=\begin{cases} \big( \int_{|x| +1}^{\infty }\frac{L(t)}{t}dt\big) ^{1/(1-\sigma)}, & \text{for }\lambda =2, \\ \frac{( L(1+|x| ) ^{1/(1-\sigma)}}{ (1+|x| )^{(\lambda -2)/(1-\sigma )}}, & \text{for } 2<\lambda n-(n-2)\sigma . \end{cases} \label{1.3} \end{equation} \end{theorem} To obtain estimates \eqref{1.3}, we shall adopt a sub-supersolution method. For the reader's convenience, we recall the definition. A positive function $v\in C^{2,\alpha }(\mathbb{R}^n)$ is called a subsolution of problem \eqref{e2} if \begin{equation} \begin{gathered} -\Delta v\leq a(x)v^{\sigma }\quad x\in\mathbb{R}^n, \\ \lim_{|x| \to \infty } v(x)=0. \end{gathered} \label{1.4} \end{equation} If the above inequality is reversed, $v$ is called a supersolution of problem \eqref{e2}. The outline of this article is as follows. In Section 2, we state some already known results on functions in $\mathcal{K}$, useful for our study and we give estimates on some potential functions. The proof of Theorem \ref{thm1} is given in Section 3. The last section is reserved to some applications. We close this section by giving the following notation. For a nonnegative measurable function $a$ in $\mathbb{R}^n$, we denote by $Va$ the potential of $a$ defined on $\mathbb{R}^n$ by \[ Va(x)=\int_{\mathbb{R}^n}G(x,y)a(y)dy, \] where $G(x,y)=\frac{c_{n}}{|x-y| ^{n-2}}$ is the Green function of the Laplacian $\Delta $ in $\mathbb{R}^n$ $( n\geq 3)$, and $c_{n}=\frac{\Gamma (\frac{n}{2}-1)}{4\pi ^{\frac{n}{2}}}$. We point out that for any nonnegative function $f$ in $C_{\rm loc}^{\alpha }(\mathbb{R}^n)$ $(0<\alpha <1)$ such that $Vf\in L^{\infty }(\mathbb{R}^n)$, we have $Vf\in C_{\rm loc}^{2,\alpha }(\mathbb{R}^n)$ and satisfies $-\Delta ( Vf) =f$ in $\mathbb{R}^n$; see \cite[Theorem 6.3]{SC}. \section{Key estimates} \subsection{Technical lemmas} In what follows, we collect some fundamental properties of functions belonging to the class $\mathcal{K}$. First, we need the following elementary result. \begin{lemma}[Karamata's Theorem] \label{lem1} Assume that $g\in C^{1}([\beta ,\infty ),(0,\infty))$ and that $\lim_{t\to \infty }tg'(t)/g(t)=\gamma $. Then we have the following properties: \begin{itemize} \item[(i)] If $\gamma <-1$, then $\int_{\beta }^{\infty }g(s)ds$ converges and \[ \int_{t}^{\infty }g(s)ds \sim -\frac{tg(t)}{\gamma +1}, \quad\text{as }t\to\infty . \] \item[(ii)] If $\gamma >-1$, then $\int_{\beta }^{\infty }g(s)ds$ diverges and \[ \int_{\beta }^tg(s)ds \sim \frac{tg(t)}{\gamma +1} \quad\text{as } t\to \infty. \] \end{itemize} \end{lemma} \begin{remark} \label{rmk3} \rm Let $\gamma \in \mathbb{R}$ and $L$ be a function in $\mathcal{K}$. Applying Lemma \ref{lem1} to $g(t)=t^{\gamma }L(t)$, we obtain that \begin{itemize} \item If $\gamma <-1$, then $\int_1^{\infty }s^{\gamma }L(s)ds$ diverges and $\int_{t}^{\infty }s^{\gamma }L(s)ds \sim -\frac{t^{1+\gamma }L(t)}{\gamma +1}$, as $t\to \infty$; \item If $\gamma >-1$, then $\int_1^{\infty }s^{\gamma }L(s)ds$ converges and $\int_1^ts^{\gamma }L(s)ds \sim \frac{t^{1+\gamma }L(t)}{\gamma +1}$ as $t\to \infty$. \end{itemize} \end{remark} \begin{lemma} \label{lem2} $(i)$ Let $L_1$, $L_{2}\in \mathcal{K}$, $p\in \mathbb{R}$. Then $L_1L_{2}\in \mathcal{K}$ and $L_1^{p}\in \mathcal{K}$. $(ii)$ Let $L$ be a function in $\mathcal{K}$ then there exists $m\geq 0$ such that for every $\eta >0$ and $t\geq 1$ ,we have \[ ( 1+\eta ) ^{-m}L( t) \leq L( \eta +t) \leq ( 1+\eta ) ^{m}L( t) . \] \end{lemma} \begin{proof} Assertion (i) is due to Remark \ref{rmk1}. Let us prove (ii). Let $z$ be the function in $C([1,\infty ) )$ such that $\lim_{t\to\infty } z(t)=0$ and $L( t) =\exp \big(\int_1^t\frac{z(s)}{s}ds\big)$. Put $m=\sup_{t\in [ 1,\infty )} | z(t)| $, then for each $\eta >0$ and $t\geq 1$, we have \[ m \log\frac{t}{t+\eta }\leq \int_{t}^{t+\eta }\frac{z(s)}{s}ds \leq m\log\frac{t+\eta }{t}. \] That is, \[ ( 1+\frac{\eta }{t}) ^{-m}\leq \exp \Big( \int_{t}^{t+\eta } \frac{z(s)}{s}ds\Big) \leq ( 1+\frac{\eta }{t}) ^{m}. \] So (ii) holds. \end{proof} \begin{lemma} \label{lem3} Let $L\in \mathcal{K}$ and $\varepsilon >0$, then we have \begin{gather} \lim_{t\to \infty } t^{-\varepsilon }L(t)=0, \label{2.1}\\ \lim_{t\to \infty } \frac{L( t) }{\int_1^t L(s)/s \,ds}=0. \label{2.2} \end{gather} If further $\int_1^{\infty }L(s)/s\,ds$ converges, then \begin{equation} \lim_{t\to \infty } \frac{L( t) }{ \int_{t}^{\infty }L(s)/s \,ds}=0. \label{2.3} \end{equation} \end{lemma} \begin{proof} Let $L\in \mathcal{K}$ and $\varepsilon >0$. It is obvious by Remark \ref{rmk1} that the function $t\to t^{-\frac{\varepsilon }{2}}L(t)$ is non-increasing in $[\omega ,\infty )$, for $\omega $ large enough. Then \[ t^{-\frac{\varepsilon }{2}}L(t)\leq \omega ^{-\frac{\varepsilon }{2} }L(\omega ),\text{ for }t\geq \omega ; \] That is, \[ t^{-\varepsilon }L(t)\leq \frac{L( \omega ) }{( \omega t) ^{\varepsilon /2}},\quad \text{for }t\geq \omega . \] This proves \eqref{2.1}. For the rest of the proof, we distinguish two cases. \textbf{Case 1:} $\int_1^{\infty }\frac{L(s)}{s}ds<\infty $. Since the function $t\to tL(t)$ is nondecreasing in $[\omega,\infty )$, then \[ tL(t)\int_{t}^{\infty }\frac{ds}{s^{2}}\leq \int_{t}^{\infty }\frac{L(s)}{s} ds,\quad \text{for }t\geq \omega . \] Hence \[ 0n. \end{cases} \label{2.3'} \end{equation} \end{proposition} \begin{proof} First, we recall the following well known result. Let $\varphi $ be a nonnegative radial measurable function and $x\in \mathbb{R}^n$, then we have \[ \int_{\mathbb{R}^n}\frac{\varphi ( y) }{| x-y| ^{n-2}} dy =c\int_{0}^{\infty }\frac{r^{n-1}}{\max (|x| ,r)^{n-2}} \varphi ( r) dr. \] Now, let $\lambda \geq 2$ and $L\in \mathcal{K}$ satisfying $\int_1^{\infty }t^{1-\lambda }L( t) dt<\infty $ and such that \[ a(x)\approx \frac{L(1+|x| )}{(1+|x|)^{\lambda }}. \] Thus \[ Va(x)\approx \int_{\mathbb{R}^n}\frac{L(1+| y| )}{(1+| y| )^{\lambda }}\frac{1}{| x-y| ^{n-2}} dy=c_{n}I(|x| ), \] where $I$ is the function defined on $[0,\infty ) $ by \[ I(t)=\int_{0}^{\infty }\frac{r^{n-1}L(1+r)}{\max (t,r)^{n-2} (1+r)^{\lambda }} dr. \] So to prove the result, it is sufficient to show that $I( t) \approx \psi ( t) $ for $t\in [0,\infty ) $. We have \begin{align*} I(t) &=\frac{1}{t^{n-2}}\int_{0}^{1}\frac{r^{n-1}L(1+r)}{(1+r)^{\lambda }} dr+\frac{1}{t^{n-2}}\int_1^t\frac{r^{n-1}L(1+r)}{(1+r)^{\lambda }} dr+\int_{t}^{\infty }\frac{rL(1+r)}{(1+r)^{\lambda }}dr \\ &:=I_1(t)+I_{2}(t)+I_{3}(t). \end{align*} It is clear that for $t\geq 2$, \begin{equation} I_1(t)\approx \frac{1}{t^{n-2}}. \label{2.4} \end{equation} To estimate $I_{2}$ and $I_{3}$, we distinguish two cases. \textbf{Case 1:} $\lambda >2$. Using Lemma \ref{lem2} (ii) and Remark \ref{rmk3}, for $t\geq 2$ we have \begin{equation} I_{3}(t)\approx \int_{t}^{\infty }r^{1-\lambda }L(r)dr \approx \frac{L(t)}{t^{\lambda -2}}. \label{2.5} \end{equation} $\bullet $ If $2<\lambda n$, then applying Remark \ref{rmk3}, we have $\int_1^tr^{n-1-\lambda }L(r)dr<\infty $. So by Lemma \ref{lem2} (ii), for $t\geq 2$, we obtain \[ I_{2}(t)\approx \frac{1}{t^{n-2}}\int_1^tr^{n-1-\lambda }L(r)dr\approx \frac{1}{t^{n-2}}. \] This together with \eqref{2.4}, \eqref{2.5} and \eqref{2.1} implies that for $t\geq 2$, \[ I(t)\approx \frac{1}{t^{n-2}}. \] Then by the same argument as above, we deduce that for $t\geq 0$, \[ I(t)\approx \frac{1}{( 1+t) ^{n-2}}. \] $\bullet $ If $\lambda =n$, then using \eqref{2.4}, \eqref{2.5} and \eqref{2.2}, for $t\geq 2$, we have \[ I(t) \approx \frac{1}{t^{n-2}}( 1+\int_1^t\frac{L(r)}{r} dr+L(t)) \approx \frac{1}{t^{n-2}}\int_1^t\frac{L(r)}{r}dr. \] So for $t\geq 0$, we obtain \[ I(t)\approx \frac{1}{( 1+t) ^{n-2}}\int_1^{t+2}\frac{L(r)}{r} dr. \] \textbf{Case 2:} $\lambda =2$. By Remark \ref{rmk3}, for $t\geq 2$, we have $I_{2}(t)\approx L(t)$. So for $t\geq 2$, we have \[ I(t)\approx \frac{1}{t^{n-2}}+L(t)+\int_{t}^{\infty }\frac{L(r)}{r}dr. \] Hence using \eqref{2.1} and \eqref{2.3}, for $t\geq 2$, we have \[ I(t)\approx \int_{t}^{\infty }\frac{L(r)}{r}dr. \] So for $t\geq 0$, we obtain \[ I(t)\approx \int_{t+1}^{\infty }\frac{L(r)}{r}dr. \] This completes the proof. \end{proof} The following Proposition plays a key role in this paper. \begin{proposition} \label{prop2} Let $a$ be a function satisfying (H1) and let $\theta_{\lambda }$ be the function given by \eqref{1.3}. Then for $x\in\mathbb{R}^n$, \[ V(a\theta _{\lambda }^{\sigma })(x)\approx \theta _{\lambda }(x). \] \end{proposition} \begin{proof} Let $\lambda \geq 2$ and $L\in \mathcal{K}$ satisfying $\int_1^{\infty}t^{1-\lambda }L( t) dt<\infty $ and such that \[ a(x)\approx \frac{L(1+|x| )}{(1+|x| )^{\lambda }}. \] Then for every $x\in \mathbb{R}^n$, we have \[ a(x)\theta _{\lambda }^{\sigma }(x)\approx h(x) :=\begin{cases} \frac{L(1+|x| )}{(1+|x| )^{2}} \big( \int_{|x| +1}^{\infty }\frac{L(t)}{t}dt\big) ^{\sigma/(1-\sigma)}, & \lambda =2, \\[3pt] \frac{( L(1+|x| ) ^{1/(1-\sigma)}}{ (1+|x| )^{(\lambda -2\sigma)/(1-\sigma )}}, & 2<\lambda n-(n-2)\sigma . \end{cases} \] We point out that $h(x)=\frac{\widetilde{L}(1+|x| )}{(1 +|x| )^{\mu }}$, where $\mu \geq 2$. Moreover, due to Lemma \ref{lem2} and Remark \ref{rmk4}, we deduce that $\widetilde{L}\in \mathcal{K}$ and satisfies $\int_1^{\infty }t^{1-\mu }\widetilde{L}(t) dt<\infty $. Hence, it follows by Proposition \ref{prop1}, that \[ V(a\theta _{\lambda }^{\sigma })( x) \approx V(h)( x) \approx \widetilde{\psi }( |x| ),\quad \text{in } \mathbb{R}^n, \] where $\widetilde{\psi }$ is the function defined by \eqref{2.3'} by replacing $L$ by $\widetilde{L}$ and $\lambda $ by $\mu $. This completes the proof by a simple calculus. \end{proof} \section{Proof of Theorem \ref{thm1}} Let $a$ be a function satisfying (H1). The main idea is to find a subsolution and a supersolution of problem \eqref{e2} of the form $cV(a\phi ^{\sigma })$, where $c>0$ and $\phi (x)=\frac{L_{0}(1+|x| )}{(1+|x|) ^{\beta }}$, which will satisfy necessarily \begin{equation} V(a\phi ^{\sigma })\approx \phi . \label{3.1} \end{equation} So, the choice of the real $\beta $ and the function $L_{0}$ in $\mathcal{K}$ is such that \eqref{3.1} is satisfied. Setting $\phi (x)=\theta _{\lambda}(x)$, where $\theta _{\lambda }$ is the function given by \eqref{1.3}, we have by Proposition \ref{prop2} that the function $\theta _{\lambda }$ satisfies \eqref{3.1}. Let $v:=V(a\theta _{\lambda }^{\sigma })$ and let $M>1$ be such that \[ \frac{1}{M}v\leq \theta _{\lambda }\leq Mv. \] Which implies that for $\sigma <1$, \[ \frac{v^{\sigma }}{M^{| \sigma | }}\leq \theta _{\lambda }^{\sigma }\leq M^{| \sigma | }v^{\sigma }. \] Put $c:=M^{|\sigma |/(1-\sigma)}$, then it is easy to verify that $\underline{u}=\frac{1}{c}v$ and $\overline{u}=cv$ are respectively a subsolution and a supersolution of problem \eqref{e2}. Now, since $c>1$, we get $\underline{u}\leq \overline{u}$ on $\mathbb{R}^n$ and thanks to the method of sub and supersolution, it follows that problem \eqref{e2} has a solution $u$ satisfying $\underline{u}\leq u\leq \overline{u}$, in $\mathbb{R}^n$. Finally, by using Remark \ref{rmk2} (ii) and Proposition \ref{prop2}, we deduce that the unique classical positive solution of problem \eqref{e2} satisfies \eqref{1.2}. This completes the proof. \section{Applications} \subsection{First application} Let $\sigma <1$ and $a$ be a positive function in $C_{\rm loc}^{\alpha }(\mathbb{R}^n)$ satisfying for $x\in\mathbb{R}^n$ \[ a(x)\approx \frac{1}{(1+|x| )^{\lambda }} \prod_{k=1}^{m}( \log _{k}(w(1+|x| ))) ^{-\lambda _{\mathbf{k}}}, \] where $m\in\mathbb{N}^{\ast }$ and $w$ is a positive constant large enough. The real numbers $\lambda $ and $\lambda _{k}$, $1\leq k\leq m$, satisfy one of the following two conditions $\bullet $ $\lambda >2$ and $\lambda _{k}\in \mathbb{R}$ for $1\leq k\leq m$. $\bullet $ $\lambda =2$ and $\lambda _1=\lambda _{2}=\dots =\lambda _{l-1}=1$, $\lambda _{l}>1$, $\lambda _{k}\in \mathbb{R}$ for $l+1\leq k\leq m$. Using Theorem \ref{thm1}, we deduce that problem \eqref{e2} has a unique classical positive solution $u$ in $\mathbb{R}^n$ satisfying \begin{itemize} \item[(i)] If $\lambda =2$, then for $x\in\mathbb{R}^n$ \[ u(x)\approx ( \log _{l}w(1+|x| )) ^{(1-\lambda _{l})/(1-\sigma)} \prod_{k=l+1}^{m}( \log _{k}w(1+|x| )) ^{-\lambda _{k}/(1-\sigma)}. \] \item[(ii)] If $2<\lambda 1$, $\lambda _{k}\in \mathbb{R} $, for $l+1\leq k\leq m$, then for $x\in \mathbb{R} ^n$ \[ u(x)\approx \frac{1}{(1+|x| )^{n-2}}. \] \item[(vi)] If $\lambda >n+\sigma (n-2)$, then for $x\in \mathbb{R} ^n$ \[ u(x)\approx \frac{1}{(1+|x| )^{n-2}}. \] \end{itemize} \subsection{Second application} Let $a$ be a function satisfying (H1) and let $\sigma ,\beta <1$. We are interested in the problem \begin{equation} \begin{gathered} -\Delta u+\frac{\beta }{u}| \nabla u| ^{2}=a(x)u^{\sigma }\quad \text{in }\mathbb{R}^n, \\ u>0,\quad \text{in }\mathbb{R}^n,\\ \lim_{|x| \to \infty } u(x)=0. \end{gathered} \label{4.1} \end{equation} Put $v=u^{1-\beta }$, then by a simple calculus, we obtain that $v$ satisfies \begin{equation} \begin{gathered} -\Delta v=( 1-\beta ) a(x)v^{\frac{\sigma -\beta }{1-\beta }} \quad \text{in } \mathbb{R}^n, \\ v>0\quad \text{in } \mathbb{R}^n,\\ \lim_{|x| \to \infty } v(x)=0. \end{gathered} \label{4.2} \end{equation} Applying Theorem \ref{thm1} to problem \eqref{4.2}, we obtain that there exists a unique solution $v$ such that \[ v(x)\approx \widetilde{\theta }_{\lambda }( x) :=\begin{cases} \big( \int_{|x| +1}^{\infty }\frac{L(s)}{s}ds\big) ^{(1-\beta)/(1-\sigma)}, & \text{if }\lambda =2, \\[3pt] \frac{( L(1+|x| )) ^{(1-\beta)/(1-\sigma)}} {(1+|x| )^{(\lambda -2)/(1-\sigma)}}, & \text{if }2<\lambda n-(n-2) \frac{\sigma -\beta }{1-\beta }. \end{cases} \] Consequently, we deduce that \eqref{4.1} has a unique positive solution $u$ satisfying \begin{align*} u(x)&\approx \big( \widetilde{\theta }_{\lambda }(x)\big) ^{1/(1-\beta)}\\ &=\begin{cases} \Big( \int_{|x| +1}^{\infty }\frac{L(s)}{s}ds\Big) ^{1/(1-\sigma)}, & \text{if }\lambda =2, \\[3pt] (1+|x| )^{\frac{2-\lambda}{(1-\sigma )( 1-\beta )}} ( L(1+|x| )) ^{1/(1-\sigma)}, & \text{if }2<\lambda n-(n-2)\frac{\sigma -\beta }{1-\beta }. \end{cases} \end{align*} \subsection{Third application} Let $a$ be a function satisfying (H1) and $L$ be a function in $\mathcal{K}$ such that \[ a(x)\approx \frac{L(1+|x| )}{(1+|x|)^{\lambda }}. \] Let $b\in C_{\rm loc}^{\gamma }(\mathbb{R}^n) $, $0<\gamma <1$ satisfying for $x\in \mathbb{R}^n$, \[ b(x)\approx \frac{L_1(1+|x| )}{(1+|x| )^{\mu }}, \] where $\mu \in \mathbb{R}$ and $L_1\in \mathcal{K}$. Let $\sigma ,\beta <1$ and $p\in \mathbb{R}$. We are interested in the system \begin{equation} \begin{gathered} -\Delta u=a(x)u^{\sigma }\quad \text{in } \mathbb{R}^n, \\ -\Delta v=b(x)u^{p}v^{\beta }\quad \text{in }\mathbb{R}^n, \\ u,v>0 \quad \text{in }\mathbb{R}^n,\ \lim_{|x| \to \infty }u(x)=\lim_{|x| \to \infty }v(x)=0. \end{gathered} \label{4.3} \end{equation} By Theorem \ref{thm1}, it follows that there exists a unique classical solution $u$ to \eqref{e2} satisfying \eqref{1.2}. So, we distinguish the following cases. \textbf{Case 1:} $\lambda =2$. By hypothesis (H1), we have $\int_1^{\infty }\frac{L(t)}{t} dt<\infty $ and using estimates \eqref{1.3}, we deduce that \[ b(x)u^{p}(x)\approx \frac{L_1(1+|x| )}{(1+|x| )^{\mu }} \Big( \int_{|x| +1}^{\infty } \frac{L(s)}{s}ds\Big) ^{p/(1-\sigma)} :=\frac{L_{2}(1+|x| )}{(1+|x| )^{\mu }}. \] It is obvious to see by Lemma \ref{lem2} and Remark \ref{rmk4} that $L_{2}\in \mathcal{K}$. Now suppose that $\mu \geq 2$ and $\int_1^{\infty }t^{1-\mu}L_{2}(t)dt<\infty $. Then applying Theorem \ref{thm1}, we conclude that \eqref{4.3} has a unique classical solution $( u,v) $ such that $u(x)\approx \theta _{\lambda }( x)$ and \[ v(x)\approx \begin{cases} \big( \int_{|x| +1}^{\infty }\frac{L_{2}(s)}{s} ds\big) ^{1/(1-\beta )}, & \text{if }\mu =2, \\[3pt] \frac{( L_{2}(1+|x| )) ^{1/(1-\beta )}}{(1+|x| ) ^{(\mu -2)/(1-\beta)}}, & \text{if } 2<\mu n-(n-2)\beta . \end{cases} \] \textbf{Case 2:} $2<\lambda n-(n-2)\beta . \end{cases} \] \textbf{Case 3:} $\lambda =n-(n-2)\sigma $. We have \[ b(x)u^{p}(x)\approx \frac{L_1(1+|x| )}{(1+|x| )^{\mu +(n-2)p}} \Big( \int_1^{|x| +2} \frac{L(s)}{s}ds\Big) ^{p/(1-\sigma)} :=\frac{L_{2}(1+|x| )}{(1+|x| )^{\mu +(n-2)p}}. \] By Lemma \ref{lem2} and Remark \ref{rmk4}, obviously we have that $L_{2}\in \mathcal{K}$. Now suppose that $\mu +(n-2)p\geq 2$ and $\int_1^{\infty }t^{1-\mu -(n-2)p}L_{2}(t)dt<\infty $. Then applying Theorem \ref{thm1}, we conclude that \eqref{4.3} has a unique classical solution $(u,v) $ such that $u(x)\approx \theta _{\lambda }(x)$ and \[ v(x)\approx \begin{cases} \big( \int_{|x| +1}^{\infty }\frac{L_{2}(s)}{s} ds\big) ^{1/(1-\beta )}, & \text{if }\mu +(n-2)p=2, \\[3pt] \frac{( L_{2}(1+|x| )) ^{1/(1-\beta )} }{(1+|x|) ^{\frac{\mu +(n-2)p}{1-\beta }}}, & \text{if }2<\mu +(n-2)pn-(n-2)\beta . \end{cases} \] \textbf{Case 4:} $\lambda >n-(n-2)\sigma $. We have \[ b(x)u^{p}(x)\approx \frac{L_1(1+|x|) }{ (1+|x|) ^{n-2+\mu }}. \] Suppose that $n-2+\mu \geq 2$ and $\int_1^{\infty }t^{1-(n-2+\mu )}L_1(t)dt<\infty $. Then applying Theorem \ref{thm1}, we conclude that \eqref{4.3} has a unique classical solution $(u,v)$ such that $u(x)\approx \theta _{\lambda }( x)$ and \[ v(x)\approx \begin{cases} \big( \int_{|x| +1}^{\infty }\frac{L_1(s) }{s}ds\big) ^{1/(1-\beta )}, & \text{if }n-2+\mu =2, \\[3pt] \frac{( L_1(1+|x| )) ^{1/(1-\beta )} }{(1+|x|) ^{(\mu +n-4)/(1-\beta)}}, & \text{if }2n-(n-2)\beta . \end{cases} \] \subsection*{Acknowledgments} We want thank the anonymous referee for a careful reading of the original manuscript. \begin{thebibliography}{00} \bibitem{SON} S. Ben Othman, H. M\^{a}agli, S. Masmoudi, M. Zribi; \emph{Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems}, Nonlinear Anal. 71 (2009) 4137-4150. \bibitem{br} H. Brezis, S. Kamin; \emph{Sublinear elliptic equations in $\mathbb{R}^n$}, Manuscripta Math. 74 (1992) 87-106. \bibitem{cr} M. G. Crandall, P. H. Rabinowitz, L. Tartar; \emph{On a Dirichlet problem with a singular nonlinearity}, Comm. Partial Differential Equations 2 (1977) 193-222. \bibitem{ed} A. L. Edelson; \emph{Entire solutions of singular elliptic equations}, J. Math. Anal. 139 (1989) 523-532. \bibitem{rad} M. Ghergu, V. D. Radulescu; \emph{Ground state solutions for the singular Lane-Emden-Fowler equation with sublinear convection term}, J. Math. Anal. Appl. 333 (2007) 265-273. \bibitem{sy} S. Gontara, H. M\^{a}agli, S. Masmoudi, S. Turki; \emph{Asymptotic behavior of positive solutions of a singular nonlinear Dirichlet problem}, J. Math. Anal. Appl. 369 (2010) 719-729. \bibitem{ls} A. V. Lair, A. W. Shaker; \emph{Classical and weak solutions of a singular semilinear elliptic problem}, J. Math. Anal. Appl. 211 (1997) 371-385. \bibitem{ma} H. M\^{a}agli; \emph{Asymptotic behavior of positive solution of a semilinear Dirichlet problem}, Nonlinear Anal. 74 (2011) 2941-2947. \bibitem{mz} H. M\^{a}agli, M. Zribi; \emph{Existence and estimates of solutions for singular nonlinear elliptic problems}, J. Math. Anal. Appl. 263 (2001) 522-542. \bibitem{MO} A. Mohammed; \emph{Ground state solutions for singular semi-linear elliptic equations}, Nonlinear Anal. 71 (2009) 1276-1280. \bibitem{SC} S. C. Port, C. J. Stone; \emph{Brownian motion and classical potential theory}, Academic Press, San Diego, 1978. \bibitem{san} C. A. Santos; \emph{On ground state solutions for singular and semilinear problems including super linear terms at infinity}, Nonlinear Anal. 71 (2009$)$ 6038--6043. \bibitem{SEN} R. Seneta; \emph{Regular varying functions, Lecture Notes in Math.} Vol. 508. Springer-Verglag, Berlin 1976. \bibitem{20} Z. Zhang; \emph{The asymptotic behaviour of the unique solution for the singular Lane-Emden-Fowler equation}, J. Math. Anal. Appl. 312 (2005) 33-43. \end{thebibliography} \end{document}