\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 89, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/89\hfil Compact inverses] {Compact inverses of multipoint normal differential operators for first order} \author[Z. I. Ismailov, E. Otkun \c{C}evik, E. Unluyol\hfil EJDE-2011/??\hfilneg] {Zameddin I. Ismailov, Elif Otkun \c{C}evik, Erdal Unluyol} % in alphabetical order \address{Zameddin I. Ismailov \newline Department of Mathematics, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey} \email{zameddin@yahoo.com} \address{Elif Otkun \c{C}evik \newline Institute of Natural Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey} \email{e\_otkuncevik@hotmail.com} \address{Erdal Unluyol \newline Department of Mathematics, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey} \email{eunluyol@yahoo.com} \thanks{Submitted May 7, 2011. Published July 5, 2011.} \subjclass[2000]{47A05, 47A20} \keywords{Direct sum of Hilbert spaces and operators; extension; \hfill\break\indent multipoint selfadjoint operator; formally normal operator; normal operator} \begin{abstract} In this work, we describe all normal extensions of a multipoint minimal operators generated by linear multipoint differential-operator expressions for first order in the Hilbert space of vector functions, in terms of boundary values at the endpoints of infinitely many separated subintervals. Also we investigate compactness properties of the inverses of such extensions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} It is known that the traditional infinite direct sum of Hilbert spaces $H_n$, $n\ge 1$ and infinite direct sum of operators $A_n $ in $H_n$, $n\ge 1$ are defined as \begin{gather*} H=\oplus_{n=1}^{\infty } H_n =\{u=(u_n ):u_n \in H_n ,\; n\ge 1,\;\sum_{n=1}^{\infty }\| u_n \|_{H_n }^2 <+\infty \}, \\ A=\oplus_{n=1}^{\infty } A_n, \\ D(A)=\{ u=(u_n)\in H:u_n \in D(A_n),\; n\ge 1,\; Au=(A_n u_n )\in H \}. \end{gather*} Note that $H$ is a Hilbert space with norm induced by the inner product \[ (u,v)_{H}=\sum_{n=1}^{\infty}(u_n,v_n)_{H_n},\quad u, v\in H\,; \] see \cite{Dun,Lin,NaFo}. The general theory of linear closed operators in Hilbert spaces and its applications to physical problems have been investigated by many researches (see for example \cite{Dun,RoKh}). Furthermore, many physical problems require studying the theory of linear operators in direct sums in Hilbert spaces. This is the case in \cite{GaKr,Ism,Koc,So,Tim,Ze} and their references, which is the motivation for this work. We note that a detail analysis of normal subspaces and operators in Hilbert spaces have been studied in \cite{Cod} and the references there in. Besides the introduction, this study contains three sections. In section 2, the multipoint minimal and maximal operators for the first order differential-operator expression are determined. In section 3, all normal extensions of multipoint formally normal operators are described in terms of boundary values in the endpoints of the infinitely many separated subintervals. Finally in section 4, compactness properties of the inverses of such extensions have been established. \section{Minimal and maximal operators} Throughout this work $(a_n )$ and $(b_n )$ will be sequences of real numbers such that \[ -\infty 0$, $n\geq1$, then the relation \[ \operatorname{Re}(L'_{n0} u_n ,u_n )_{L_n^2 } =2(A_n u_n ,u_n )_{L_n^2 } \ge 0, \quad u_n \in D'_{n0} \] implies that $L'_{n0} $ is an accretive in $L_n^2$, $n\ge 1$. Hence the operator $L'_{n0} $ has a closure in $L_n^2$, $n\ge 1$. The closure $\operatorname{cl}(L'_{n0} )$ of the operator $L'_{n0} $ is called the minimal operator generated by differential-operator expression \eqref{eq2.2} and is denoted by $L_{n0} $ in $L_n^2$, $n\ge 1$. The operator $L_0$ defined by \[ D(L_0 ):=\{u=(u_n):u_n \in D(L_{n0} ),\; n\ge 1,\; \sum_{n=1}^{\infty }\| L_{n0} u_n \|_{L_n^2 }^2 <+\infty \} \] with $L_0 u:=(L_{n0}u_n)$, $u\in D(L_0 )$, $ L_0 :D(L_0 )\subset L^2 \to L^2$ is called a minimal operator (multipoint) generated by differential-operator expression \eqref{eq2.1} in Hilbert space $L^2 $ and denoted by $L_0 =\oplus_{n=1}^{\infty } L_{n0} $. In a similar way the minimal operator for two points denoted by $L_{n0}^{+} $ in $L_n^2 , n\ge 1$ for the formally adjoint linear differential-operator expression \eqref{eq2.3} can be constructed. In this case the operator $L_0^{+} $ defined by \[ D(L_0^{+} ):=\{v:=(v_n ):v_n \in D(L_{n0}^{+} ),\; n\ge 1,\; \sum_{n=1}^{\infty }\| L_{n0}^{+} v_n \|_{L_n^2 }^2 <+\infty \} \] with $L_0^{+} v:=(L_{n0}^{+} v_n )$, $v\in D(L_0^{+} )$, $L_0^{+} :D(L_0^{+} )\subset L^2 \to L^2$ is called a minimal operator (multipoint) generated by $l^{+} (v)=(l_n^{+}(v_n))$ in the Hilbert space $L^2 $ and denoted by $L_0^{+} =\oplus_{n=1}^{\infty } L_{n0}^{+}$. Now we state the following relevant result. \begin{theorem} \label{thm2.1} The minimal operators $L_0 $ and $L_0^{+} $ are densely defined closed operators in $L^2 $. \end{theorem} \begin{proof} Let $w=(w_n)$ be any element in $L^2=\oplus_{n=1}^{\infty } L_n^2$ and $\varepsilon$ be an arbitrary positive number. In this case $w_n \in L_n^2$, $n\geq1$ and $\sum_{n=1}^{\infty }\| w_n\|_{L_n^2 }^2 <+\infty$. Since the linear manifold $D(L_{n0})$, $n\geq 1$ is densely defined in $L_n^2$, $n\geq1$ , then there exist $w_n(\varepsilon)\in D(L_{n0})$ such that \[ \|w_n-w_n(\varepsilon)\|_{L_n^2}<\frac{\varepsilon}{n}, \quad n\geq1. \] Then for the element $w(\varepsilon)=(w_n(\varepsilon))$ we have \begin{align*} \|w(\varepsilon)\|_{L^2}^2 &=\sum_{n=1}^{\infty }\|w_n(\varepsilon)\|_{L_n^2}^2\\ &\leq \sum_{n=1}^{\infty } (\|w_n-w_n(\varepsilon)\|_{L_n^2} +\|w_n(\varepsilon)\|_{L_n^2})^2\\ &\leq 2\sum_{n=1}^{\infty }\|w_n-w_n(\varepsilon)\|_{L_n^2}^2 +2\sum_{n=1}^{\infty }\|w_n(\varepsilon)\|_{L_n^2}^2 \\ &\leq 2{\varepsilon}^2\sum_{n=1}^{\infty }\frac{1}{n^2} +2 \sum_{n=1}^{\infty }\|w_n(\varepsilon)\|_{L_n^2}^2<+\infty; \end{align*} that is, $w(\varepsilon)\in L^2$. On the other hand since $$ \|w-w(\varepsilon)\|_{L^2}^2=\sum_{n=1}^{\infty } \|w_n-w_n(\varepsilon)\|_{L_n^2}^2\leq {\varepsilon}^2 \sum_{n=1}^{\infty }\frac{1}{n^2}<2{\varepsilon}^2, $$ the linear manifold $D(L_0)$ is dense in $L^2$. Now we show that the minimal operator $L_0$ is closed in $L^2$. Let $w^{(m)}\subset D(L_0)$ be any sequence such that for $w,z \in L^2$, $w^{(m)}\to w$ as $m\to \infty$ and $L_0w^{(m)}\to z$ as $m\to \infty$ in $L^2$. In this situation, in the space $L_n^2$, $w_n^{(m)}\to w_n$ as $m\to \infty$ and $L_{n0}w_n^{(m)}\to z_n$ as $m\to \infty$, $n\geq 1$, where $w=(w_n)$ and $z=(z_n)$. Since the operator $L_{n0}$ is closed in $L_n^2$, then $w_n \in D(L_{n0})$ and $z_n=L_{n0}w_n, n\geq1$. The above relations and $(w_n),(z_n)\in L^2$ imply that $w=(w_n)\in D(L_0)$ and $z=L_0w$. In similar way it could be shown that the minimal operator $L_0^+$ is densely defined and closed operator in $\in L^2$. The operators in $L^2$ defined by $L:=(L_0^{+} )^{*} =\oplus_{n=1}^{\infty } L_n $ and $L^{+} :=(L_0 )^{*} =\oplus_{n=1}^{\infty } L_n^{+}$ are called maximal operators (multipoint) for the differential-operator expression $l(\cdot)$ and $l^{+} (\cdot )$ respectively.It is clear that $Lu=(l_n (u_n )), u\in D(L)$, \begin{gather*} D(L):=\{u=(u_n )\in L^2 :u_n \in D(L_n ),\; n\ge 1,\; \sum_{n=1}^{\infty }\| L_n u_n \|_{L_n^2 }^2 <\infty \},\\ L^{+} v=(l_n^{+} (v_n )), v\in D(L^{+} ), \\ D(L^{+} ):=\{v=(v_n )\in L^2 :v_n \in D(L_n^{+} ),\; n\ge 1 ,\; \sum_{n=1}^{\infty }\| L_n^{+} v_n \|_{L_n^2 }^2 <\infty \} \end{gather*} and $L_0 \subset L$, $L_0^{+} \subset L^{+} $. \end{proof} From \cite{Krall} and the definition of direct sum of operators, the validity of following theorem is clear. \begin{theorem} \label{thm2.2} The domain of the operator $L$ consists of $u=(u_n )\in L^2$ such that: (1) for each $n\ge 1$ vector function $u_n \in L_n^2$, $u_n$ is absolutely continuous in the interval $\Delta_n$; (2) $l_n (u_n )\in L_n^2$, $n\ge 1$; (3) $l(u)=(l_n (u_n ))\in L^2 \}$; i.e., \[ D(L)=\{u=(u_n )\in L^2 :u_n \in D(L_n ),\; n\ge 1,\; l(u)=(l_n (u_n ))\in L^2 \}. \] The domain of $L_0$ is $ D(L_0)=\{u=(u_n )\in D(L):u_n (a_n )=u_n (b_n )=0,\; n\ge 1\}$. \end{theorem} \begin{remark} \label{rmk2.3}\rm If $A_n \in B(H)$, $n\ge 1$ and $\sup_{n\ge 1} \| A_n \| \le c<+\infty $, then for any $u=(u_n )\in L^2 $ we have $(Au)=(A_n u_n )\in L^2 $. \end{remark} \begin{theorem} \label{thm2.4} If a minimal operator $L_0 $ is formally normal in $L^2 $, then $D(L_0 )\subset \mathaccent"7017{W_2^1} $ and $AD(L_0 )\subset L^2 $. \end{theorem} \begin{proof} In this case for every $u=(u_n)\in D(L_0)\subset D(L^+)$ we have $u'+Au \in L^2$ and $-u'+Au \in L^2$. From this it is obtained that $u' \in L^2, Au \in L^2$. This means that $D(L_0)\subset \mathaccent"7017{W_2^1}$ and $AD(L_0)\subset L^2$. \end{proof} \begin{theorem} \label{thm2.5} If $A^{1/2} W_{2}^{1} \subset W_{2}^{1} $, then minimal operator $L_0 $ is formally normal in $L^2 $. \end{theorem} \begin{proof} In this case from the relations \[ L_0^{+} u=L_0 u-2Au, u\in D(L_0 ),\quad L_0 u=L_0^{+} u+2Au, u\in D(L_0^{+} ) \] imply that $D(L_0 )=D(L_0^{+} )$. Since $D(L_0^{+} )\subset D(L_0^{*} )=D(L^{+} )$, it is obtained that $D(L_0 )\subset D(L^{+} )$. On the other hand for any $u\in D(L_0 )$, \begin{align*} \| L_0 u\|_{L^2 }^2 &=(u'+Au,u'+Au)_{L^2 } \\ &=\| u'\|_{L^2 }^2 +[(u',Au)_{L^2 } +(Au,u')_{L^2 }] +\| Au\|_{L^2 }^2 \\ &=\| u'\|_{L^2 }^2 +\| Au\|_{L^2 }^2 \end{align*} and \begin{align*} \| L^{+} u\|_{L^2 }^2 &=(-u'+Au,-u'+Au)_{L^2 } \\ &=\| u'\|_{L^2 }^2 -[(u',Au)_{L^2 } +(Au,u')_{L^2 }] +\| Au\|_{L^2 }^2 \\ &=\| u'\|_{L^2 }^2 +\| Au\|_{L^2 }^2 . \end{align*} Thus, it is established that operator $L_0 $ is formally normal in $L^2 $. \end{proof} \begin{remark} \label{rmk2.6}\rm If $A_n \in B(H), n\ge 1$ and $\sup_{n\ge 1} \| A_n \| \le c<+\infty $, then $D(L_0 )=D(L_0^{+} )$ and $D(L)=D(L^{+} )$. If $AW_{2}^{1} \subset L^2 $, then $D(L_0 )=D(L_0^{+} )$ and $D(L)=D(L^{+} )$. \end{remark} \section{Description of normal extensions of the minimal operator} In this section the main purpose is to describe all normal extensions of the minimal operator $L_0 $ in $L^2 $ in terms in the boundary values of the endpoints of the subintervals. Firstly, we will show that there exists normal extension of the minimal operator $L_0 $. Consider the following extension of the minimal operator $L_0$, \begin{gather*} \widetilde{L}u:=u'+Au,\quad AW_{2}^{1} \subset W_{2}^{1} , \\ D(\widetilde{L})=\{u=(u_n )\in W_{2}^{1} :u_n (a_n )=u_n (b_n ), n\ge1\}. \end{gather*} Under the condition on the coefficient $A$, we have \begin{align*} (\widetilde{L}u,v)_{L^2} &=(u',v)_{L^2 } +(Au,v)_{L^2 }\\ &=(u,v)_{L^2} ' +(u,-v'+Av)_{L^2}\\ &=\sum_{n=1}^{\infty }[(u_n(b_n),v_n(b_n ))_{H_n} - (u_n(a_n),v_n(a_n ))_{H_n}]+(u,-v'+Av)_{L^2} \end{align*} From this it is obtained that \begin{gather*} \widetilde{L}^{*} v:=-v'+Av,\\ D(\widetilde{L}^{*})=\{v=(v_n )\in W_{2}^{1} :v_n (a_n )=v_n (b_n ), n\ge 1\}. \end{gather*} In this case it is clear that $D(\widetilde{L})=D(\widetilde{L}^{*} )$. On the other hand, since for each $u\in D(\widetilde{L})$, \begin{gather*} \| \widetilde{L}u\|_{L^2 }^2 =\| u'\|_{L^2 }^2 +[(u',Au)_{L^2 } +(Au,u')_{L^2 } ]+\| Au\|_{L^2 }^2 , \\ \| \widetilde{L}^{*} u\|_{L^2 }^2 =\| u'\|_{L^2 }^2 -[(u',Au)_{L^2 } +(Au,u')_{L^2 }]+\| Au\|_{L^2 }^2 \end{gather*} and \begin{align*} (u',Au)_{L^2 } +(Au,u')_{L^2 } &=(u,Au)_{L^2 } ' \\ &=\sum_{n=1}^{\infty}[(u_n(b_n),A_nu_n(b_n))_{H_n}-(u_n(a_n), A_nu_n(a_n))_{H_n} ]=0. \end{align*} Then $\| \widetilde{L}u\|_{L^2 } =\| \widetilde{L}^{*} u\|_{L^2 } $ for every $u\in D(\widetilde{L})$. Consequently, $\widetilde{L}$ is a normal extension of the minimal operator $L_0 $. The following result establishes the relationship between normal extensions of $L_0 $ and normal extensions of $L_{n0}$, $n\ge 1$. \begin{theorem} \label{thm3.1} The extension $\widetilde{L}=\oplus_{n=1}^{\infty }\widetilde{L_n}$ of the minimal operator $L_0$ in $ L^2$ is a normal if and only if for any $n\geq 1$, $\widetilde{L_n}$ is so in $L_n^2$. \end{theorem} \begin{proof} Let $\widetilde{L}=\oplus_{n=1}^{\infty }\widetilde{L_n}$ be a normal extension of the minimal operator $L_0=\oplus_{n=1}^{\infty }L_{n0}$. In this case it is clear that for each $n\geq1$ an operator $\widetilde{L_n}:D(\widetilde{L_n})\subset L_n^2 \to L_n^2$ defined by \[ \widetilde{L_n}u_n=L_nu_n,\quad D(\widetilde{L_n})=P_nD(\widetilde{L}), \] where $P_n$ is an orthogonal projection operator from $L^2$ to $L_n^2$, is a normal extension of the minimal operator $L_{n0}$. On the contrary, assume that $\widetilde{L_n}:D(\widetilde{L_n})\subset L_n^2 \to L_n^2$ is any normal extension of the minimal operator for each $n\geq1$, and $\widetilde{L}:=\oplus_{n=1}^{\infty }\widetilde{L_n}$. In this case for any $u=(u_n)\in D(\widetilde{L})$ we have $\|\widetilde{L}u\|_{L^2}=\sum_{n=1}^{\infty }\| \widetilde{L_n}u_n\|_{L_n^2}^2< +\infty$. Since for any $n\geq1$, $\widetilde{L_n}$ is a normal extension, it follows that $u_n\in D(\widetilde{L_n})$, $n\geq1$ and $\sum_{n=1}^{\infty }\| \widetilde{L_n}^*u_n\|_{L_n^2}^2 =\sum_{n=1}^{\infty }\| \widetilde{L_n}u_n\|^2< +\infty$. From this for every $u=(u_n)\in D(\widetilde{L})$ it is obtained that $(u_n)\in D(\widetilde{L}^*)$; i.e., $D(\widetilde{L}) \subset D(\widetilde{L}^*)$. In the similar way it can be shown that $D(\widetilde{L}^*)\subset D(\widetilde{L})$. Hence $D(\widetilde{L})=D(\widetilde{L}^*)$. On the other hand for any $n\geq1$ since $\widetilde{L_n}$ is a normal extension, then for each $u=(u_n)\in D(\widetilde{L})$, \[ \| \widetilde{L}u\|_{L^2}^2 =\sum_{n=1}^{\infty }\| \widetilde{L_n}u_n\|_{L_n^2}^2 =\sum_{n=1}^{\infty }\| \widetilde{L_n}^*u_n\|_{L_n^2}^2 =\| \widetilde{L}^*u\|_{L^2}^2 <+ \infty. \] This complete the proof. \end{proof} Now using Theorem \ref{thm3.1} and \cite{Krall} we can formulate the following main result of this section, where it is given a description of all normal extension of the minimal operator $L_0 $ in $L^2 $ in terms of boundary values of vector functions at the endpoints of subintervals. \begin{theorem} \label{thm3.2} Let $A^{1/2} W_{2}^{1} \subset W_{2}^{1} $. If $\widetilde{L}=\oplus_{n=1}^{\infty }\widetilde{L_n }$ is a normal extension of the minimal operator $L_0 $ in $L^2 $, then it is generated by differential-operator expression \eqref{eq2.1} with boundary conditions \begin{equation} \label{eq3.0} u_n(b_n)=W_nu_n(a_n), u_n\in D(L_n), \end{equation} where $W_n$ is a unitary operator in $H_n$ and $W_nA_n^{-1}=A_n^{-1}W_n, n\geq 1$. The unitary operator $W=\oplus_{n=1}^{\infty }W_n$ in $H=\oplus_{n=1}^{\infty }H_n$ is determined uniquely by the extension $\widetilde{L}$; that is, $\widetilde{L}=L_{W} $. \end{theorem} On the contrary, the restriction of the maximal operator $L$ to the linear manifold $u\in D(L)$ satisfying the condition \eqref{eq3.0} with any unitary operator $W=\oplus_{n=1}^{\infty }W_n$ in $H$ with property $WA^{-1}=A^{-1}W$ is a normal extension of the minimal operator $L_0$ in $L^2$. \section{Some compactness properties of the normal extensions} In this work $\mathscr{H}_n, \mathfrak{H_n}, H_n, n\geq1$ will denoted Hilbert spaces. First, we prove the following result. \begin{theorem} \label{thm4.1} For the point spectrum of ${\mathscr{A}}=\oplus_{n=1}^{\infty }\mathscr{A}_n$ in the direct sum ${\mathscr{H}}=\oplus_{n=1}^{\infty }\mathscr{H}_n$ of Hilbert spaces $\mathscr{H}_n, n\geq1$, it is true that \[ \sigma_{p}(\mathscr{A})=\cup_{n=1}^{\infty}\sigma_{p}(\mathscr{A}_n) \] \end{theorem} \begin{proof} Let $\lambda \in \sigma_p(\mathscr{A})$. In this case there exist non zero element $u=(u_n)\in D(\mathscr{A})$ such that $Au=\lambda u, u\ne 0$; i.e., $A_nu_n=\lambda u_n, n\geq1$. Since $u\ne0$, then there exist some $m \in \mathbb{N}$ such that $u_m \ne0$ and $A_mu_m=\lambda u_m$. This means that $\lambda \in \sigma_p(\mathscr{A}_{m})$. From this it is obtained that $\sigma_p(\mathscr{A})\subset \cup_{n=1}^{\infty } \sigma_p(\mathscr{A}_n)$. On the contrary, if for any $m \in \mathbb{N}$, $\lambda \in \sigma_p(A_m)$, then there exist $u_m\in D(A_m)$ such that $u_m\ne0$ and $A_mu_m=\lambda u_m$. In this case, if we choose the element $u_* :=\{0,0,\dots,u_m,0,\dots\}$, then $u_* \in D(\mathscr{A}), u_* \ne 0$ and $Au_*=\lambda u_*$. Hence $\lambda \in \sigma_{p}(\mathscr{A})$. This implies that $\cup_{n=1}^{\infty }\sigma_p(\mathscr{A}_n)\subset \sigma_p(\mathscr{A})$. Therefore, the claim of the theorem is valid. \end{proof} \begin{theorem}[\cite{NaFo}] \label{thm4.2} Let $\mathscr{A}_n\in B(\mathscr{H}_n)$, $n\geq 1$, $\mathscr{A}=\oplus_{n=1}^{\infty }\mathscr{A}_n$ and $\mathscr{H}=\oplus_{n=1}^{\infty }\mathscr{H}_n$. In order to $\mathscr{A}\in B(\mathscr{H})$ the necessary and sufficient condition is $\sup_{n\geq1}\|\mathscr{A}_n\|<+\infty$. In this case $\|\mathscr{A}\|= \sup_{n\geq1}\|\mathscr{A}_n\|$. \end{theorem} Let $C_{\infty}(\cdot)$ and $C_{p}(\cdot), 1\leq p<\infty$ denote the class of compact operators and the Schatten-von Neumann subclasses of compact operators in corresponding spaces respectively. \begin{definition}[\cite{Gor}] \label{def4.3} Let $T$ be a linear closed and densely defined operator in any Hilbert space $\mathscr{H}$. If $\rho(T)\neq\emptyset$ and for $\lambda\in\rho(T)$ the resolvent operator $R_{\lambda}(T)\in C_{\infty}(\mathscr{H})$, then operator $T:D(T)\subset{\mathscr{H}}\to{\mathscr{H}}$ is called an operator with discrete spectrum. \end{definition} First we note the following result. \begin{theorem} \label{thm4.4} If the operator $\mathscr{A}=\oplus_{n=1}^{\infty }\mathscr{A}_n$ as an operator with discrete spectrum in $\mathscr{H}=\oplus_{n=1}^{\infty }\mathscr{H}_n$, then for every $n\geq1$ the operator $\mathscr{A}_n$ is so in $\mathscr{H}_n$. \end{theorem} \begin{remark} \label{rmk4.5}\rm Unfortunately, the converse of the Theorem \ref{thm4.4} is not true in general case. Indeed, consider the sequence of operators $\mathscr{A}_nu_n=u_n, 0<\dim\mathscr{H}_n=d_n<\infty$, $n\geq1$. In this case for every $n\geq1$ operator $\mathscr{A}_n$ is an operator with discrete spectrum. But an inverse of the direct sum operator $\mathscr{A}=\oplus_{n=1}^{\infty }\mathscr{A}_n$ is not compact operator in $\mathscr{H}=\oplus_{n=1}^{\infty }\mathscr{H}_n$, because $\dim\mathscr{H}=\infty$ and $\mathscr{A}$ is an identity operator in $\mathscr{H}$. \end{remark} \begin{theorem} \label{thm4.6} If $\mathscr{A}=\oplus_{n=1}^{\infty }\mathscr{A}_n, \mathscr{A}_n$ is an operator with discrete spectrum in $\mathscr{H}_n$, $n\geq1$, $\cap_{n=1}^{\infty}{\rho(\mathscr{A}_n)}\neq \emptyset$ and for any $\lambda \in \cap_{n=1}^{\infty}\rho(\mathscr{A}_n)$, $\lim_{n\to\infty}\|R_{\lambda}(\mathscr{A}_n)\|=0$, then $\mathscr{A}$ is an operator with discrete spectrum in $\mathscr{H}$. \end{theorem} \begin{proof} For each $\lambda \in \cap_{n=1}^{\infty}{\rho(\mathscr{A}_n)}$ we have $R_{\lambda}(\mathscr{A}_n)\in C_{\infty}(\mathscr{H}_n)$, $n\geq1$. Now define the operators $\mathscr{K}_{m}:\mathscr{H}\to\mathscr{H}$, $m\geq1$, as \[ \mathscr{K}_{m}:=\{R_{\lambda}(\mathscr{A}_1)u_1, R_{\lambda}(\mathscr{A}_{2})u_{2},\dots, R_{\lambda}(\mathscr{A}_{m})u_{m}, 0, 0, \dots \},\quad u=(u_n)\in \mathscr{H}. \] The convergence of the operators $\mathscr{K}_{m}$ to the operator $\mathscr{K}$ in operator norm will be investigated. For $u=(u_n)\in \mathscr{H}$, we have \begin{align*} \|\mathscr{K}_{m}u-\mathscr{K}u\|_{\mathscr{H}}^2 & = \sum_{n=m+1}^{\infty}\|R_{\lambda}(\mathscr{A}_n) u_n\|_{\mathscr{H}_n}^2 \\ &\leq\sum_{n=m+1}^{\infty}\|R_{\lambda}(\mathscr{A}_n)\|^2\| \|u_n\|_{\mathscr{H}_n}^2\\ & \leq \Big(\sup_{n\geq m+1}{\|R_{\lambda}(\mathscr{A}_n)\|}\Big)^2 \sum_{n=1}^{\infty}\|u_n\|_{\mathscr{H}_n}^2\\ &=\Big(\sup_{n\geq m+1}{\|R_{\lambda}(\mathscr{A}_n)\|} \Big)^2\|u\|_{\mathscr{H}}^2 \end{align*} thus we get $\|\mathscr{K}_{m}u-\mathscr{K}u\| \leq \sup_{n\geq m+1}{\|R_{\lambda}(\mathscr{A}_n)\|}$, $m\geq1$. This implies that sequence of operators $(\mathscr{K}_{m})$ converges in operator norm to the operator $\mathscr{K}$. Then by the important theorem of the theory of compact operators it implies that $\mathscr{K}\in C_{\infty}(\mathscr{H})$ \cite{Dun}, because for any $m\geq1$, $\mathscr{K}_{m}\in C_{\infty}(\mathscr{H})$. \end{proof} Using the Theorem \ref{thm3.2} and Theorem \ref{thm4.6} can be proved the following result. \begin{theorem} \label{thm4.7} If ${A}_n^{-1}\in C_{\infty}(H_n)$, $n\geq1$, $\sup_{n\geq1}(b_n-a_n)<\infty$ and the sequence of first minimal eigenvalues $\lambda_1({A}_n)$ of the operators ${A}_n$, $n\geq1$ satisfy the condition \[ \lambda_1({A}_n)\to\infty \quad\text{as } n \to \infty, \] then the normal extension $\widetilde{L}$ of the minimal operator $L_0$ is an operator with discrete spectrum in $L^2$. \end{theorem} From the definition of the characteristic numbers $\mu(.)$ of any compact operator in any Hilbert space \cite{Dun} and Theorem \ref{thm4.1} it is easy to prove that the validity of the following result. \begin{theorem} \label{thm4.8} \begin{itemize} \item[(i)] If $\mathscr{A}=\oplus_{n=1}^{\infty }{\mathscr{A}_n}$, $\mathscr{H}=\oplus_{n=1}^{\infty }{\mathscr{H}_n}$ and $\mathscr{A}\in C_\infty(\mathscr{H})$, then for every $n\geq1$, $\mathscr{A}_n \in C_\infty(\mathscr{H}_n)$ and $\{\mu_m(\mathscr{A}):m\geq1\}=\cup_{n=1}^{\infty } \{\mu_k(\mathscr{A}_n):k\geq1\}$; \item[(ii)] If $\mathscr{A}=\oplus_{n=1}^{\infty }{\mathscr{A}_n}$, $\mathscr{H}=\oplus_{n=1}^{\infty }{\mathscr{H}_n}$ and $\mathscr{A}\in C_p(\mathscr{H})$, $1\leq p\leq+\infty$, then for every $n\geq1$, $\mathscr{A}_n\in C_p(\mathscr{H}_n)$. \end{itemize} \end{theorem} \begin{theorem} \label{thm4.9} Let $\mathscr{H}=\oplus_{n=1}^{\infty }{\mathscr{H}_n}$, $\mathscr{A}=\oplus_{n=1}^{\infty }{\mathscr{A}_n}$ and $\mathscr{A}_n\in C_{p}(\mathscr{H}_n)$, $n\geq1$, $1\leq p<\infty$. In this case $\mathscr{A}\in C_{p}(\mathscr{H})$ if and only if the series $\sum_{n=1}^{\infty }{\sum_{k=1}^{\infty }}\mu_k^{p} (\mathscr{A}_n)$ is convergent. \end{theorem} \begin{proof} Let us $\mathscr{A}\in C_p(\mathscr{H})$. Then the series $\sum_{m=1}^{\infty }\mu_m^p(\mathscr{A})$ is convergent. In this case by the Theorem \ref{thm4.8} (i) and important theorem on the convergence of rearrangement series it is obtained that the series $\sum_{n=1}^{\infty }{\sum_{k=1}^{\infty }} \mu_k^{p}(\mathscr{A}_n)$ is convergent. On the contrary, if the series $\sum_{n=1}^{\infty } {\sum_{k=1}^{\infty }}\mu_k^{p}(\mathscr{A}_n)$ is convergent, then the series $\sum_{m=1}^{\infty }\mu_m^p(\mathscr{A})$ being a rearrangement of the above series, is also convergent. So $\mathscr{A}\in C_p(\mathscr{H})$. \end{proof} Now we will present an application the last theorem. For all $n\geq1$, Let $\mathfrak{H}_n$ be a Hilbert space, $\Delta_n=(a_n,b_n)$, $-\infty1$, then $L_{U_n}^{-1}\in C_{2p}(H_n), p>1$ for all $n\geq1$\cite{Ism2}. On the other hand, if $A_n^{-1}\in C_{\infty}(\mathfrak{H}_n), n\geq1$, then eigenvalues $\lambda_q(L_{U_n})$, $q\geq1$ of operator $L_{U_n}$ is in the form \[ \lambda_q(L_{U_n})=\lambda_{m}(A_n)+\frac{i}{a_n-b_n} (\arg\lambda_{m}(U_n^{*}e^{(-A_n(b_n-a_n))})+2k\pi ), \] where $m\geq1$, $k\in{\mathbb Z}$, $n\geq1$, $q=q(m,k)\in {\mathbb N}$. Therefore, we have the following result. \begin{theorem} \label{thm4.10} If $A=\oplus_{n=1}^{\infty}A_n, \mathfrak{H} =\oplus_{n=1}^{\infty}\mathfrak{H}_n$ and $A^{-1}\in C_{p/2}(\mathfrak{H}), 2