\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 95, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/95\hfil p-Laplacian problem with competing nonlinearities] {Existence results for a p-Laplacian problem with competing nonlinearities and nonlinear boundary conditions} \author[D. A. Kandilakis, M. Magiropoulos\hfil EJDE-2011/95\hfilneg] {Dimitrios A. Kandilakis, Manolis Magiropoulos} % in alphabetical order \address{ Dimitrios A. Kandilakis \newline Department of Sciences \\ Technical University of Crete \\ 73100 Chania, Greece} \email{dkan@science.tuc.gr} \address{Manolis Magiropoulos \newline Department of Sciences \\ Technological Educational Institute of Crete \\ 71500 Heraklion, Greece} \email{mageir@staff.teicrete.gr} \thanks{Submitted July 14, 2010. Published July 28, 2011.} \subjclass[2000]{35J60, 35J92, 35J25} \keywords{Quasilinear elliptic problems; subcritical nonlinearities; \hfill\break\indent fibering method} \begin{abstract} By using the fibering method we study the existence of non-negative solutions for a class of quasilinear elliptic problems in the presence of competing subcritical nonlinearities. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \section{Introduction} In this paper we study the problem \begin{equation} \begin{gathered} \Delta_{p}u=a(x)|u|^{p-2}u-b(x)|u|^{q-2}u\quad \text{in }\Omega\\ |\nabla u|^{p-2}\frac{\partial u}{\partial\nu} =\lambda c(x)|u|^{p-2}u\quad\text{on }\partial\Omega, \end{gathered} \label{h} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^N$ with a sufficiently smooth boundary $\partial\Omega$, $\nu$ is the outward unit normal vector on $\partial\Omega$, $1\theta>0$, $b(x)>0$ a.e., $c(x)\in$ $L^{\infty}(\partial\Omega)$, with $c(x)>0$ a.e. As usual, $\Delta_{p}u=\operatorname{div}(| \nabla u| ^{p-2}\nabla u)$ denotes the $p$-Laplacian operator. When $b\equiv0$, problem \eqref{h} appears naturally in the study of the Sobolev trace inequality. Since the embedding $W^{1,p}(\Omega)\subseteq L^{p}(\Omega)$ is compact there exists a constant $\lambda_1$ such that \[ \lambda_1^{1/p}\| u\| _{L^{p}(\partial\Omega)} \leq\| u\| _{W^{1,p}(\Omega)}. \] The functions at which equality holds; that is, \begin{equation} \lambda_1:=\inf_{u\in W^{1,p}(\Omega)\backslash\{0\}} \frac{\| u\| _{W^{1,p}(\Omega)}^{p}}{\| u\| _{L^{p}(\partial\Omega)}^{p}}, \label{2} \end{equation} are called extremals and are the solutions to the problem \begin{equation} \begin{gathered} \Delta_{p}u=a(x)|u|^{p-2}u\quad\text{in }\Omega\\ |\nabla u|^{p-2}\frac{\partial u}{\partial\nu} =\lambda_1c(x)|u|^{p-2}u\quad\text{on }\partial\Omega, \end{gathered} \label{1} \end{equation} For more details we refer the reader to \cite{Mart-Ros}. Problems of the form $\Delta_{p}u=\pm\lambda |u|^{p-2}u+f(x,u)$ with Dirichlet boundary conditions has been extensively studied, see for example \cite{Chip-chl,Garcia-Peral,Hu,Mihail,Ter}. Recently, this problem with nonlinear boundary conditions has been considered in \cite{pino-fl,Far-Ian,So-Wa-Zh}. In this paper we employ Pohozaev's fibering method in order to show that if $\lambda<\lambda_1$, then \eqref{h} admits a nonnegative solution. In the case $\lambda=\lambda_1$, the fibering method is no longer applicable, so we introduce the term $\varepsilon d(\cdot)|u|^{s-2}u$ in the equation, where $\varepsilon>0$ and $d(\cdot)\in L^{\infty}(\Omega),d(\cdot)>0$ a.e., and examine the behavior of the solutions $u_{\varepsilon}$ as $\varepsilon\to0$. It turns out that $\|u_{\varepsilon}\|_{W^{1,p}(\Omega)}\to+\infty$ and the energy of the solutions diverges to $-\infty$. \section{Main results} Our reference space is $W^{1,p}(\Omega)$ equipped with the norm $\|u\| ^{p}=\int_{\Omega}[ |\nabla u|^{p}+a(x)|u|^{p}] dx$, which is equivalent to its usual one. In what follows, $\sigma(\cdot)$ is the surface measure on the boundary of $\Omega$. The energy functional associated with \eqref{h} is \begin{equation} \Phi_{\lambda}(u) :=\frac{1}{p}\int_{\Omega}[ |\nabla u|^{p} dx+a(x)|u|^{p}] dx-\frac{1}{q}\int_{\Omega}b(x)|u|^qdx -\frac{\lambda}{p}\int_{\partial\Omega}c(x)|u|^{p}d\sigma(x). \label{S} \end{equation} Following \cite{Mart-Ros}, let $\lambda_1\in\mathbb{R}$ be the first positive eigenvalue of \eqref{1}, given by \eqref{2}. \begin{theorem} \label{thm1} Suppose that $10$ and $v\in W^{1,p}(\Omega)$, we have \begin{equation} \label{F(r(v)v)} \begin{split} \Phi_{\lambda}(rv) & =\frac{r^{p}}{p}\int_{\Omega}|\nabla v|^{p} dx+\frac{r^{p}}{p}\int_{\Omega}a(x)|v|^{p}dx-\frac{r^q}{q}\int_{\Omega }b(x)|v|^qdx \\ &\quad -\frac{\lambda r^{p}}{p}\int_{\partial\Omega}c(x)|v|^{p}d\sigma (x). \end{split} \end{equation} For $u\neq0$ to be a critical point, it should hold $\frac{\partial \Phi_{\lambda}(rv)}{\partial r}=0$, from which we obtain \begin{equation} \begin{split} & r^{p-q}\int_{\Omega}|\nabla v|^{p}dx+r^{p-q}\int_{\Omega}a(x)|v|^{p} dx -\lambda r^{p-q}\int_{\partial\Omega}c(x)|v|^{p}d\sigma(x)\\ &=\int_{\Omega }b(x)|v|^qdx, \end{split} \label{3} \end{equation} ensuring the existence of a unique $r=r(v)>0$ satisfying \eqref{3}. By the implicit function theorem \cite[Thm. 4.B]{Zeid}, the function $v\to r(v)$ is continuously differentiable for $v\neq 0$. Notice that \begin{equation} r(kv)kv=r(v)v\quad \text{for }k>0.\label{l} \end{equation} In view of \eqref{F(r(v)v)} and \eqref{3}, \[ \Phi_{\lambda}(r(v)v)=\big( \frac{1}{p}-\frac{1}{q}\big) r(v)^q \int_{\Omega}b(x)|v|^qdx<0. \] Consider the functional \[ H(u):=\int_{\Omega}|\nabla u|^{p}dx+\int_{\Omega}a(x)|u|^{p}dx-\lambda \int_{\partial\Omega}c(x)|u|^{p}d\sigma(x). \] By the way we chose $\lambda$, for $u\in W^{1,p}(\Omega)$, $H(u)\geq0$ (equality holds exactly when $u=0$). Define $V=\{ v\in W^{1,p} (\Omega):H(v)=1\}$. Evidently, $( H'(v),v) \neq0$ for $v\in V$. In view of \cite[Lemma 3.4]{Dra-Poh}, any conditional critical point of $\widehat{\Phi}_{\lambda}(v)=\Phi_{\lambda}(r(v)v)$ subject to $H(v)=1$, provides a critical point $r(v)v$ of $\Phi_{\lambda}$. Notice that $V$ is bounded. To see this, let $\varepsilon>0$ be such that $\lambda +\varepsilon<\lambda_1$. Then, for $v\in V$, by the definition of $\lambda_1$, \[ \lambda+\varepsilon<\frac{{\int_{\Omega}}|\nabla v|^{p}+ {\int_{\Omega}} a|v|^{p}}{{\int_{\partial\Omega}} c(x)|v|^{p}d\sigma(x)}, \] which implies that \[ 1={\int_{\Omega}}|\nabla v|^{p}+ {\int_{\Omega}} a|v|^{p}-\lambda {\int_{\partial\Omega}} c(x)|v|^{p}d\sigma(x)>\varepsilon {\int_{\partial\Omega}} c(x)|v|^{p}d\sigma(x). \] Thus ${\int_{\partial\Omega}}c(x)|v|^{p}d\sigma(x)$, $v\in V$, is bounded. Consequently, $V$ is a bounded set. Because of the embedding $W^{1,p}(\Omega)\hookrightarrow L^q(\Omega)$, \eqref{3} guarantees that $r(V)$ is bounded. Consequently, $I=\{ \Phi_{\lambda,\mu}(r(v)v):v\in V\} $ is a bounded interval in $\mathbb{R}$ with endpoints $a$ and $b$, $a0$, $q0$ a.e. in $\Omega$. The energy functional is \begin{equation} F_{\lambda_1,\varepsilon}(u):=\Phi_{\lambda_1}(u)+\frac{\varepsilon} {s}D(u), \label{9} \end{equation} where \[ D(u):=\ \int_{\Omega}d(x)|u|^{s}dx. \] \begin{theorem} \label{thm2} Suppose that $10$ and $d(\cdot)\in L^{\infty} (\Omega)$ with $d(\cdot)>0$ a.e. in $\Omega.$Then problem \eqref{8} admits a nonnegative solution $u_{\varepsilon}$ for every $\varepsilon>0$. Furthermore, $F_{\lambda_1,\varepsilon}(u_{\varepsilon})\to-\infty$ and $\|u_{\varepsilon}\|\to+\infty\ $as $\varepsilon\to0$. \end{theorem} \begin{proof} Following a similar reasoning, we obtain the counterpart of \eqref{3}, \begin{equation} \begin{split} &r^{p-q}\big[ \int_{\Omega}|\nabla v|^{p}dx+\int_{\Omega}a(x)|v|^{p} dx-\lambda_1\int_{\partial\Omega}c(x)|v|^{p}d\sigma(x)\big]\\ &+\varepsilon r^{s-q}\int_{\Omega}d(x)|v|^{s}dx\\ &=\int_{\Omega}b(x)|v|^q dx. \end{split}\label{10} \end{equation} The function $R(y)=Hy^{p-q}+\varepsilon Dy^{s-q}-B$, with $H\geq0$, $D$, $B>0$, has a unique root in $(0,+\infty)$, since it is strictly increasing, $R(0)=-B$ and $R(y)\to+\infty$, for $y\to+\infty$. Thus, for $v\in W^{1,p}(\Omega)$ there exists a unique positive $r_{\varepsilon}(v)$ satisfying \eqref{10}. The so defined function $v\to r_{\varepsilon}(v)$ is once more continuously differentiable for $v\neq0$, by another application of the implicit function theorem. In addition, it is easily checked that \eqref{l} remains true. We notice also that, due to \eqref{10}, if $v\neq0$, \begin{equation} F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v)v) =\big( \frac{1}{p}-\frac{1}{q}\big) r_{\varepsilon}(v)^{p}H(v)+\varepsilon\big( \frac{1}{s} -\frac{1}{q}\big) r_{\varepsilon}(v)^{s}D(v)<0. \label{Fneg} \end{equation} We define next the positive functional (except at $u=0$), \begin{equation} L(u):=H(u)+D(u). \label{L} \end{equation} Consider the set \[ W=\{ v\in W^{1,p}(\Omega):L(v)=1\} . \] Because of our hypothesis on $d(\cdot)$, $( L'(v),v) >D(v)>0$ for $v\in W$. As usual, the conditional critical points of $\widehat {F}_{\lambda_1,\varepsilon}(v) =F_{\lambda_1,\varepsilon}(r_{\varepsilon }(v)v)$ subject to $L(v)=1$ provide critical points $r_{\varepsilon}(v)v$ of $F_{\lambda_1}$. We claim that $W$ is bounded. Indeed, if not, there would exist $v_{n}\in W,n\in \mathbb{N}$, such that $\|v_{n}\|\to+\infty$. Let $v_{n}:=t_{n}u_{n}$ with $t_{n}>0$ and $\|u_{n}\|=1$. Since $u_{n}$, $n\in \mathbb{N}$, is bounded, by passing to a subsequence if necessary, we may assume that $u_{n}\to u_0$ weakly in $W^{1,p}(\Omega)$ and strongly in $L^{p}(c,\partial\Omega)$ and $L^{s}(\Omega)$. By \eqref{L}, \begin{align*} &t_{n}^{p}\big[ \int_{\Omega}|\nabla u_{n}|^{p}dx+\int_{\Omega} a(x)|u_{n}|^{p}dx\\ &-\lambda_1\int_{\partial\Omega}c(x)|u_{n}|^{p} d\sigma(x)\big] +t_{n}^{s}\int_{\Omega}d(x)|u_{n}|^{s}dx=1, \end{align*} and so \begin{equation} 0\leq\int_{\Omega}|\nabla u_{n}|^{p}dx+\int_{\Omega}a(x)|u_{n}|^{p} dx-\lambda_1\int_{\partial\Omega}c(x)|u_{n}|^{p}d\sigma(x)\leq\frac{1} {t_{n}^{p}}\to0 \label{lim1} \end{equation} and \begin{equation} 0<\int_{\Omega}d(x)|u_{n}|^{s}dx\leq\frac{1}{t_{n}^{s}}\to0. \label{lim2} \end{equation} By \eqref{lim2}, $u_0=0$. On the other hand, since $\|u_{n}\|=1$, \eqref{lim1} yields \[ \lambda_1\int_{\partial\Omega}c(x)|u_0|^{p}d\sigma(x)=1 \] and so $u_0\neq0$, a contradiction, thereby proving the claim. We can now continue as in the previous case. Namely, we notice that by the way it was defined, $r_{\varepsilon}(v)$ is bounded on $W$ (we use now the embedding $W^{1,p}(\Omega)\hookrightarrow L^q(\Omega)$). Thus $I'=\{F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v)v):v\in W\}$ is a bounded interval with endpoints $a'$ and $b'$, $a'0$, has its derivative \[ G'(y)=y^{q-1}\big( y^{p-q}H(v_{\varepsilon})+y^{s-q}\varepsilon D(v_{\varepsilon})-B(v_{\varepsilon})\big) \] which is negative in $[r_{\varepsilon}$, $r_{\varepsilon}(v_{\varepsilon})]$ except at $y=r_{\varepsilon}(v_{\varepsilon})$, where it is zero. Thus $G(y)$ decreases strictly in the above interval, meaning \begin{equation} F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v_{\varepsilon}) v_{\varepsilon}) 0$ be the eigenfunction of \eqref{1} corresponding to $\lambda_1$, with $L(\varphi_1)=1$. By \eqref{10}, \begin{equation} r_{\varepsilon}(\varphi_1)^{s-q}=\frac{\int_{\Omega}b(x)|\varphi_1|^q dx}{\varepsilon\int_{\Omega}d(x)|\varphi_1|^{s}dx}, \label{re} \end{equation} which implies that $r_{\varepsilon}(\varphi_1)\to+\infty$ as $\varepsilon\to0$. In view of \eqref{Fneg} and \eqref{10} \[ F_{\lambda_1,\varepsilon}(r_{\varepsilon}(\varphi_1)\varphi_1 )=\varepsilon\big( \frac{1}{s}-\frac{1}{q}\big) r_{\varepsilon} (\varphi_1)^{s}D(\varphi_1) =\big( \frac{1}{s}-\frac{1}{q}\big) r_{\varepsilon}(\varphi_1)^q\int_{\Omega}b(x)|\varphi_1|^qdx. \] Since $F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v_{\varepsilon })v_{\varepsilon})\leq F_{\lambda_1,\varepsilon} (r_{\varepsilon}(\varphi _1)\varphi_1)$, we conclude that $$ F_{\lambda_1,\varepsilon}(u_{\varepsilon}) =F_{\lambda_1,\varepsilon}(r_{\varepsilon}(v_{\varepsilon })v_{\varepsilon})\to-\infty $$ as $\varepsilon\to 0$. By \eqref{Fneg} we also get that $r_{\varepsilon}(v_{\varepsilon})\to +\infty$ as $\varepsilon\to0$. Let $\widehat{v}$ be a weak accumulation point of $v_{\varepsilon}$; that is, $\widehat{v}=w-\lim_{n\to+\infty} v_{\varepsilon_{n}}$ where $\varepsilon_{n} \to 0$ as $n\to+\infty$. Since $L(v_{\varepsilon_{n}})=1$, necessarily \[ 0\leq\int_{\Omega}|\nabla v_{\varepsilon_{n}}|^{p}dx+\int_{\Omega }a(x)|v_{\varepsilon_{n}}|^{p}dx-\lambda_1\int_{\partial\Omega }c(x)|v_{\varepsilon_{n}}|^{p}d\sigma(x)\to0. \] Consequently, either $\widehat{v}=0$ or $\widehat{v}=\gamma\varphi_1$ for some $\gamma\neq0$. We cannot have $\widehat{v}=0$, because then, since $v_{\varepsilon_{n}}\in W$, we would get that $\int_{\Omega}d(x)|\widehat {v}|^{s}dx =\lim\int_{\Omega}d(x)|v_{\varepsilon_{n}}|^{s}dx=1$. Therefore, $\widehat{v}=\gamma\varphi_1$ and so $\|u_{\varepsilon_{n}} \| =r_{\varepsilon_{n}}(v_{\varepsilon_{n}})\|v_{\varepsilon_{n}} \|\to+\infty$ as $n\to+\infty$. \end{proof} \begin{thebibliography}{00} \bibitem{Chip-chl} M. Chipot, M. Chlebik, M. Fila, and I. Shafrir; \emph{Existence of positive solutions of a semilinear elliptic equation in $\mathbb{R}_{+}^{n}$ with a nonlinear boundary condition}, J. Math. Anal. Appl. 223, no. 2 (1998) 429--471. \bibitem{Dra-Poh} P. Dr\'{a}bek and S. I. Pohozaev; \emph{Positive solutions for the p-Laplacian: application of the fibering method}, Proc. Roy. Soc. Edinburgh Sect. A \textbf{127} (1997) 703-726. \bibitem{pino-fl} M. del Pino and C. Flores; \emph{Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains}, Commun. in Partial Diff. Equations, 26(11\&12) (2001) 2189-2210. \bibitem{Far-Ian} F. Faraci, A. Iannizzotto and C. Varga; \emph{Infinitely many bounded solutions for the p-Laplacian with nonlinear boundary conditions}, Monatsh. Math. (to appear). \bibitem{FenBon} J. Fernandez Bonder; \emph{Multiple solutions for the p-Laplace equation with nonlinear boundary conditions}, Electron. J. Differential Equations 2006 no. 37 (2006) 1-7. \bibitem{Garcia-Peral} J. P. Garcia Azorero and I. Peral Alonso; \emph{Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues}, Commun. in Partial Diff. Equations, 12(12) (1987) 1389-1430. \bibitem{Hu} B. Hu; \emph{Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition}, Differential Integral Equations 7, no. 2 (1994) 301--313. \bibitem{Kand-Lyb} D. A. Kandilakis and A. N. Lyberopoulos; \emph{Indefinite quasilinear elliptic problems with subcritical and supercritical nonlinearities on unbounded domains}, J. Differential Equations 230 (2006) 337--361. \bibitem{Mart-Ros} S. Martinez and J. D. Rossi; \emph{Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition}, Abstr. Appl. Anal. 7, no. 5 (2002) 287-293. \bibitem{Mihail} M. Mihailescu; \emph{Existence and multiplicity of weak solutions for a class of degenerate nonlinear elliptic equations}, Boundary Value Problems, Article ID 41295 (2006) 1-17. \bibitem{Poh} S. I. Pohozaev; \emph{The fibering method in nonlinear variational problems}, in \emph{Topological and Variational Methods for Nonlinear Boundary Value Problems}, Pitman Res. Notes Math. Ser., vol. 365, Longman, Harlow, 1997, pp. 35-88. \bibitem{So-Wa-Zh} X. Song, W. Wang and P. Zhao; \emph{Positive solutions of elliptic equations with nonlinear boundary conditions}, Nonlinear Analysis 70 (2009) 328-334. \bibitem{Ter} S. Terraccini; \emph{Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions}, Differential Integral Equations 8, no. 8 (1995) 1911--1922. \bibitem{Zeid} E. Zeidler; \emph{Nonlinear Functional Analysis and its Applications, Vol. I.} (New York: Springer-Verlag, 1986). \end{thebibliography} \end{document}