\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 120, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/120\hfil Solutions of $p(x)$-Laplacian equations] {Solutions of $p(x)$-Laplacian equations with critical exponent and perturbations in $\mathbb{R}^N$} \author[X. Zhang, Y. Fu \hfil EJDE-2012/120\hfilneg] {Xia Zhang, Yongqiang Fu} \address{Xia Zhang \newline Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China. \newline Department of Mathematics, Pohang University of Science and Technology, Pohang, Korea} \email{piecesummer1984@163.com} \address{Yongqiang Fu \newline Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China} \email{fuyqhagd@yahoo.cn} \thanks{Submitted June 19, 2012. Published July 19, 2012.} \thanks{Supported by grants HIT.NSRIF.2011005 from the Fundamental Research Funds for \hfill\break\indent the Central Universities, and BK21 from POSTECH.} \subjclass[2000]{35J60, 46E35} \keywords{Variable exponent Sobolev space; critical exponent; weak solution} \begin{abstract} Based on the theory of variable exponent Sobolev spaces, we study a class of $p(x)$-Laplacian equations in $\mathbb{R}^{N}$ involving the critical exponent. Firstly, we modify the principle of concentration compactness in $W^{1,p(x)}(\mathbb{R}^{N})$ and obtain a new type of Sobolev inequalities involving the atoms. Then, by using variational method, we obtain the existence of weak solutions when the perturbation is small enough. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} We study the solutions to the problem \begin{equation}\label{1} -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)+|u|^{p(x)-2}u =|u|^{p^*(x)-2}u+h(x),\quad x\in\mathbb{R}^{N}, \end{equation} where $p$ is Lipschitz continuous on $\mathbb{R}^{N}$ and satisfies \begin{equation}\label{5} 10$. $L^{p(x)}(\Omega)$ is a Banach space equipped with the norm \begin{equation*} \|u\|_{p(x)}=\inf\{\lambda>0:\rho_{p(x)}(\frac{u}{\lambda})\leq1\}. \end{equation*} For any $p\in\mathbf{P}(\Omega)$, we define the conjugate function $p'(x)$ as \[ p'(x)= \begin{cases}\infty, & x\in\Omega_1=\{x\in\Omega:p(x)=1\},\\ 1, & x\in\Omega_{\infty},\\ \frac{p(x)}{p(x)-1}, & x\in\Omega\setminus(\Omega_1\cup\Omega_{\infty}). \end{cases} \] \begin{theorem} \label{thm2.1}%\label{a} Let $p\in\mathbf{P}(\Omega)$. For any $u\in L^{p(x)}(\Omega)$ and $v\in L^{p'(x)}(\Omega)$, $$ \int_{\Omega} |uv|\,dx\leq 2\|u\|_{p(x)}\|v\|_{p'(x)}. $$ \end{theorem} For any $p\in\mathbf{P}(\Omega)$, we denote $$ p_{+}=\underset{x\in \Omega}\sup\,p(x),\quad p_{-}=\underset{x\in \Omega}\inf\, p(x) $$ and denote by $p_1\ll p_{2}$ the fact that $\inf_{x\in\Omega}\,(p_{2}(x)-p_1(x))>0$. \begin{theorem} \label{thm2.2} Let $p\in\mathbf{P}(\Omega)$ with $p_{+}<\infty$. For any $u\in L^{p(x)}(\Omega)$, we have \begin{itemize} \item[(1)] if $\|u\|_{p(x)}\geq1$, then $\|u\|_{p(x)}^{p_{-}}\leq\int_{\Omega} |u|^{p(x)}\,dx\leq \|u\|_{p(x)}^{p_{+}}$; \item[(2)] if $\|u\|_{p(x)}<1$, then $\|u\|_{p(x)}^{p_{+}}\leq\int_{\Omega} |u|^{p(x)}\,dx\leq \|u\|_{p(x)}^{p_{-}}$. \end{itemize} \end{theorem} The variable exponent Sobolev space $W^{1,p(x)}(\Omega)$ is the class of all functions $u\in L^{p(x)}(\Omega)$ such that $|\nabla u|\in L^{p(x)}(\Omega)$. $W^{1,p(x)}(\Omega)$ is a Banach space equipped with the norm \begin{equation*}%\label{norm2} \|u\|_{1,p(x)}=\|u\|_{p(x)}+\|\nabla u\|_{p(x)}. \end{equation*} By $W_{0}^{1,p(x)}(\Omega)$ we denote the subspace of $W^{1,p(x)}(\Omega)$ which is the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm $\|\cdot\|_{1,p(x)}$. Under the condition $1\leq p_{-}\leq p(x)\leq p_{+}<\infty$, $W^{1,p(x)}(\Omega)$ and $W_{0}^{1,p(x)}(\Omega)$ are reflexive. And we denote the dual space of $W_{0}^{1,p(x)}(\Omega)$ by $W^{-1,p'(x)}(\Omega)$. For $u\in W^{1,p(x)}(\Omega),$ if we define \begin{equation*}\label{norm3} \||u\||=\inf \{t>0:\int_{\Omega} \frac{|u|^{p(x)}+|\nabla u|^{p(x)}}{t^{p(x)}}\,dx\leq1\}, \end{equation*} then $\||\cdot\||$ and $\|\cdot\|_{1,p(x)}$ are equivalent norms on $W^{1,p(x)}(\Omega)$. In fact, we have $$ \frac{1}{2}\|u\|_{1,p(x)}\leq\||u\||\leq2\|u\|_{1,p(x)}. $$ \begin{theorem} \label{thm2.3}%\label{g} For any $u\in W^{1,p(x)}(\Omega)$, we have \begin{itemize} \item[(1)] if $\||u\||\geq1$, then $\||u\||^{p_{-}}\leq\int_{\Omega} (|\nabla u|^{p(x)}+|u|^{p(x)})\,dx\leq \||u\||^{p_{+}};$ \item[(2)] if $\||u\||<1$, then $\||u\||^{p_{+}}\leq\int_{\Omega} (|\nabla u|^{p(x)}+|u|^{p(x)})\,dx\leq \||u\||^{p_{-}}$. \end{itemize} \end{theorem} \begin{theorem} \label{thm2.4}%\label{e} Let $\Omega$ be a bounded domain with the cone property. If $p\in C(\bar{\Omega})$ satisfying \eqref{5} and $q$ is a measurable function defined on $\Omega$ with $$ p(x)\leq q(x)\ll p^*(x)\triangleq\frac{Np(x)}{N-p(x)}\quad\text{a.e. } x\in\Omega, $$ then there is a compact embedding $W^{1,p(x)}(\Omega)\hookrightarrow L^{q(x)}(\Omega)$. \end{theorem} \begin{theorem} \label{thm2.5} Let $\Omega$ be a domain with the cone property. If $p$ is Lipschitz continuous and satisfies \eqref{5}, $q$ is a measurable function defined on $\Omega$ with $$ p(x)\leq q(x)\leq p^*(x)\quad\text{ a.e. }x\in\Omega, $$ then there is a continuous embedding $W^{1,p(x)}(\Omega)\hookrightarrow L^{q(x)}(\Omega)$. \end{theorem} In the proof of main results in Section 3, we will use the following principle of concentration compactness in $W^{1,p(x)}(\mathbb{R}^{N})$ established in \cite{Fu14}. \begin{theorem} \label{thm2.6} Let $\{u_n\}\subset W^{1,p(x)}(\mathbb{R}^{N})$ with $\||u_n\||\leq1$ such that \begin{gather*} u_n\to u \quad\text{weakly in }W^{1,p(x)}(\mathbb{R}^{N}),\\ |\nabla u_n|^{p(x)}+|u_n|^{p(x)}\to\mu \quad\text{weak-$*$ in } M(\mathbb{R}^{N}),\\ |u_n|^{p^*(x)}\to\nu \quad\text{weak-$*$ in } M(\mathbb{R}^{N}), \end{gather*} as $n\to\infty$. Denote \[ C^*=\sup\{\int_{\mathbb{R}^{N}}|u|^{p^*(x)}\,dx: \||u\||\leq1, u\in W^{1,p(x)}(\mathbb{R}^{N})\}. \] Then the limit measures are of the form \begin{gather*} \mu=|\nabla u|^{p(x)}+|u|^{p(x)}+\sum_{j\in J}\mu_{j}\,\delta_{x_{j}} +\widetilde{\mu},\quad \mu(\mathbb{R}^{N})\leq1,\\ \nu=|u|^{p^*(x)}+\sum_{j\in J}\nu_{j} \delta_{x_{j}},\quad \nu(\mathbb{R}^{N})\leq C^*, \end{gather*} where $J$ is a countable set, $\{\mu_{j}\},\{\nu_{j}\}\subset[0,\infty)$, $\{x_{j}\}\subset\mathbb{R}^{N}$, $\widetilde{\mu}\in M(\mathbb{R}^{N})$ is a non-atomic nonnegative measure. The atoms and the regular part satisfy the generalized Sobolev inequality \begin{equation} \label{7} \begin{gathered} \nu(\mathbb{R}^{N}) \leq 2^{(p_{+}p_{+}^*)/p_{-}}C^*\max\{\mu(\mathbb{R}^{N}) ^{p^*_{+}/p_{-}},\mu(\mathbb{R}^{N})^{p^*_{-}/p_{+}}\}, \\ \nu_{j}\leq C^*\max\{\mu_{j}^{\frac{p^*_{+}}{p_{-}}},\mu_{j}^{p^*_{-}/p_{+}}\}, \end{gathered} \end{equation} where $p^*_{+}=\sup_{x\in \mathbb{R}^{N}}\,p^*(x)$, $p^*_{-}=\inf_{x\in \mathbb{R}^{N}}\,p^*(x)$. \end{theorem} To obtain the main result, we prove the following modified version of Theorem \ref{thm2.6} in which we give a new form of the inequality \eqref{7}. \begin{theorem} \label{thm2.6p} Under the hypotheses of Theorem \ref{thm2.6}, for any $j\in J$, the atom $x_{j}$ satisfies: \begin{equation}\label{8} \nu_{j}\leq C^*\mu_{j}^{\frac{p^*(x_{j})}{p(x_{j})}}, \end{equation} where $J$ and $x_{j}$ are as in Theorem \ref{thm2.6}. \end{theorem} Firstly, we give two lemmas. \begin{lemma} \label{lem2.1} Let $x\in\mathbb{R}^{N}$. For any $\delta>0$, there exists $k(\delta)>0$ independent of $x$ such that for $00$ and $\frac{r}{R}0$, there exists $k(\delta)>0$ such that for $0R$. Let $\eta_1\in C_{0}^{\infty}(B_r(x_{0}))$ such that $0\leq\eta_1\leq1$; $\eta_1\equiv1$ in $B_{r'}(x_{0})$, $\eta_{2}\in C_{0}^{\infty}(B_{R'}(x_{0}))$ such that $0\leq\eta_{2}\leq1$; $\eta_{2}\equiv1$ in $B_R(x_{0})$. We obtain \begin{align*} &\int_{\mathbb{R}^{N}}|u_n|^{p^*(x)}\eta_1\,dx\\ &\leq \int_{B_r(x_{0})}|u_n|^{p^*(x)}\,dx\\ &\leq C^*\max\Big\{\Big(\int_{B_R(x_{0})}(|\nabla u_n|^{p(x)}+|u_n|^{p(x)})\,dx+\delta\Big) ^{p^*_{x_{0},R,+}/p_{x_{0},R,-}},\\ &\quad \Big(\int_{B_R(x_{0})}(|\nabla u_n|^{p(x)}+|u_n|^{p(x)})\,dx+\delta\Big) ^{p_{x_{0},R,-}^*/p_{x_{0},R,+}}\Big\}. \end{align*} Letting $n\to\infty$, we obtain \begin{align*} &\nu(\bar{B}_{r'}(x_{0}))\\ &\leq\int_{\mathbb{R}^{N}}\eta_1\,d\nu\\ &\leq C^*\max\Big\{\Big(\int_{\mathbb{R}^{N}}\eta_{2}\,d\mu +\delta\Big)^{p^*_{x_{0},R,+}/p_{x_{0},R,-}}, \Big(\int_{\mathbb{R}^{N}}\eta_{2}\,d\mu +\delta\Big)^{p_{x_{0},R,-}^*/p_{x_{0},R,+}}\Big\}. \end{align*} Thus \begin{align*} &\nu(\{x_{0}\})\\ &\leq\nu(\bar{B}_{r'}(x_{0}))\\ &\leq C^*\max\Big\{\big(\mu(\bar{B}_{R'}(x_{0})) +\delta\big)^{p^*_{x_{0},R,+}/p_{x_{0},R,-}}, \Big(\mu(\bar{B}_{R'}(x_{0}))+\delta\Big)^{{p_{x_{0},R,-}^*/p_{x_{0},R,+}}}\Big\}, \end{align*} where $\bar{B}_{R'}(x_{0})$ is the closure of $B_{R'}(x_{0})$. Let $\delta\to0$, $R'\to0$. Thus we have \begin{align*} \nu(\{x_{0}\}) & \leq C^*\max\Big\{\mu(\{x_{0}\})^{p^*(x_{0})/p(x_{0})}, \mu(\{x_{0}\})^{p^*(x_{0})/p(x_{0})}\Big\}\\ &=C^*\mu(\{x_{0}\})^{p^*(x_{0})/p(x_{0})}. \end{align*} Then, for any $j\in J$, the atom $x_{j}$ satisfies $\nu_{j}\leq C^*\mu_{j}^{p^*(x_{j})/p(x_{j})}$. The proof is complete. \end{proof} \section{Main Results} In this section, we prove that \eqref{1} has at least one nontrivial weak solution $u_{0}\in W^{1,p(x)}(\mathbb{R}^{N})$. First, we prove the following preliminary result which will show that the weak limit of Palais-Smale sequence of $\varphi$ is a weak solution for \eqref{1} (see Theorem \ref{thm3.2}). Throughout this paper, we denote by $C$ universal positive constants unless otherwise specified. \begin{theorem} \label{thm3.1} Let $\{u_n\}$ be a sequence in $W^{1,p(x)}(\mathbb{R}^{N})$ such that $u_n\to u$ weakly in $W^{1,p(x)}(\mathbb{R}^{N})$ and $\varphi'(u_n)\to0$ in $W^{-1,p'(x)}(\mathbb{R}^{N})$, as $n\to\infty$. Then $\nabla u_n\to \nabla u$ a.e.\,in $\mathbb{R}^{N}$, as $n\to\infty$. Moreover, $\varphi'(u)=0$ . \end{theorem} \begin{proof} Since $u_n\to u$ weakly in $W^{1,p(x)}(\mathbb{R}^{N})$, passing to a subsequence, still denoted by $\{u_n\},$ we may assume that there exist $\mu, \,\nu\in M(\mathbb{R}^{N})$ such that $|\nabla u_n|^{p(x)}+|u_n|^{p(x)}\to \mu$ and $|u_n|^{p^*(x)}\to \nu$ weakly-$*$ in $M(\mathbb{R}^{N})$, where $M(\mathbb{R}^{N})$ is the space of finite nonnegative Borel measures on $\mathbb{R}^{N}$. By Theorems \ref{thm2.6} and \ref{thm2.6p}, there exist some countable set $J$, $\{\mu_{j}\},\{\nu_{j}\}\subset(0,\infty)$ and $\{x_{j}\}\subset\mathbb{R}^{N}$ such that \begin{gather}\label{4} \mu=|\nabla u|^{p(x)}+|u|^{p(x)} +\sum_{j\in J}\mu_{j}\,\delta_{x_{j}}+\widetilde{\mu}, \\ \label{2} \nu=|u|^{p^*(x)}+\sum_{j\in J}\nu_{j}\,\delta_{x_{j}},\\ \label{3} \nu_{j}\leq C^*\mu_{j}^{p^*(x_{j})/p(x_{j})}, \end{gather} where $$ C^*=\sup\big\{\int_{\mathbb{R}^{N}}|u|^{p^*(x)}\,dx: \||u\||\leq1, u\in W^{1,p(x)}(\mathbb{R}^{N})\big\}, $$ where $\widetilde{\mu}\in M(\mathbb{R}^{N})$ is a nonatomic positive measure, $\delta_{x_{j}}$ is the Dirac measure at $x_j$. In the following, we prove that $J$ is a finite set or empty. In fact, for any $\varepsilon>0$, let $\phi\in C_{0}^{\infty}(B_{2\varepsilon}(0))$ such that $0\leq\phi\leq1$, $|\nabla\phi|\leq\frac{2}{\varepsilon}$; $\phi\equiv1$ on $B_{\varepsilon}(0)$. For any $j\in J$, $\{\phi(\cdot-x_{j})u_n\}$ is bounded on $W^{1,p(x)}(\mathbb{R}^{N})$. Then we have $\langle \varphi'(u_n),\,\phi(\cdot-x_{j})u_n\big\rangle\to0$, as $n\to\infty$. Note that \begin{align*} &\langle \varphi'(u_n),\phi(\cdot-x_{j})u_n\big\rangle\\ &=\int_{\mathbb{R}^{N}}\big(|\nabla u_n|^{p(x)-2}\nabla u_n\nabla (u_n\phi(x-x_{j}))+|u_n|^{p(x)}\phi(x-x_{j}) -|u_n|^{p^*(x)}\phi(x-x_{j})\\ &\quad -h(x)u_n\phi(x-x_{j})\big)\,dx\\ &=\int_{\mathbb{R}^{N}}\big((|\nabla u_n|^{p(x)}+|u_n|^{p(x)})\phi(x-x_{j})+|\nabla u_n|^{p(x)-2}\nabla u_n\nabla\phi(x-x_{j}) \cdot u_n\\ &\quad -|u_n|^{p^*(x)}\phi(x-x_{j})-h(x)u_n\phi(x-x_{j})\big)\,dx. \end{align*} As $u_n\to u$ in $L^{p(x)}(B_{2\varepsilon}(x_{j}))$ and $h\in L^{p'(x)}(\mathbb{R}^{N})$, we obtain $$ \int_{\mathbb{R}^{N}}h(x)u_n\phi(x-x_{j})\,dx\to \int_{\mathbb{R}^{N}}h(x)u\phi(x-x_{j})\,dx, $$ as $n\to\infty$. Using \eqref{4} and \eqref{2} we obtain \begin{equation}\label{6} \begin{split} &\lim_{n\to\infty}\int_{\mathbb{R}^{N}}|\nabla u_n|^{p(x)-2}\nabla u_n\nabla\phi(x-x_{j})\cdot u_n\,dx\\ &=\int_{\mathbb{R}^{N}}-\phi(x-x_{j})\,d\mu +\int_{\mathbb{R}^{N}}h(x)u\phi(x-x_{j})\,dx +\int_{\mathbb{R}^{N}}\phi(x-x_{j})\,d\nu. \end{split} \end{equation} It is easy to verify that $\|\nabla\phi(x-x_{j})\cdot u_n\|_{p(x)}\to\|\nabla\phi(x-x_{j})\cdot u\|_{p(x)}$, as $n\to\infty$. Then \begin{align*} &\lim_{n\to\infty}|\int_{\mathbb{R}^{N}}|\nabla u_n|^{p(x)-2}\nabla u_n\nabla\phi(x-x_{j})\cdot u_n\,dx|\\ &\leq \limsup_{n\to\infty}\int_{\mathbb{R}^{N}}|\nabla u_n|^{p(x)-1}|\nabla\phi(x-x_{j})\cdot u_n|\,dx\\ &\leq \limsup_{n\to\infty}2\||\nabla u_n\|^{p(x)-1}|_{p'(x)}\cdot\|\nabla\phi(x-x_{j})\cdot u_n\|_{p(x)} \leq C\|\nabla\phi(x-x_{j})\cdot u\|_{p(x)}. \end{align*} Note that \begin{align*} &\int_{\mathbb{R}^{N}}|\nabla\phi(x-x_{j})\cdot u|^{p(x)}\,dx\\ &=\int_{B_{2\varepsilon}(x_{j})}|\nabla\phi(x-x_{j})\cdot u|^{p(x)}\,dx \\ &\leq 2\||\nabla\phi(x-x_{j})|^{p(x)}\|_{(\frac{p^*(x)}{p(x)})', B_{2\varepsilon}(x_{j})}\cdot\||u|^{p(x)}\|_{\frac{p^*(x)}{p(x)}, B_{2\varepsilon}(x_{j})} \end{align*} and \begin{align*} \int_{B_{2\varepsilon}(x_{j})}(|\nabla\phi(x-x_{j})|^{p(x)})^{(\frac{p^*(x)}{p(x)})'} \,dx &=\int_{B_{2\varepsilon}(x_{j})}|\nabla\phi|^{N}\,dx \leq(\frac{2}{\varepsilon})^{N}meas(B_{2\varepsilon}(x_{j}))\\ &=\frac{4^{N}}{N}\omega_{N}, \end{align*} where $\omega_{N}$ is the surface area of the unit sphere in $\mathbb{R}^{N}$. As $\int_{B_{2\varepsilon}(x_{j})}(|u|^{p(x)})^{\frac{p^*(x)}{p(x)}}\,dx\to0$, as $\varepsilon\to0$, we obtain $\|\nabla\phi(x-x_{j})\cdot u\|_{p(x)}\to0$, which implies $$ \lim_{n\to\infty}\int_{\mathbb{R}^{N}}|\nabla u_n|^{p(x)-2}\nabla u_n\nabla\phi(x-x_{j})\cdot u_n\,dx\to0, $$ as $\varepsilon\to0$. Similarly, we can also get $$ |\int_{\mathbb{R}^{N}}h(x)u\phi(x-x_{j})\,dx| \leq\int_{B_{2\varepsilon}(x_{j})}|h(x)u|\,dx\to0, $$ as $\varepsilon\to0$. Thus, it follows from \eqref{6} that $0=-\mu(\{x_{j}\})+\nu(\{x_{j}\})$; i.e., $\mu_{j}=\nu_{j}$ for any $j\in J$. Using \eqref{3} we obtain $$ \nu_{j}\leq C^*\mu_{j}^{p^*(x_{j})/p(x_{j})}, $$ which implies that $\nu_{j}\geq(C^*)^{\frac{p(x_{j})}{p(x_{j})-p^*(x_{j})}} \geq\min\{(C^*)^{-\frac{p_{-}}{(p^*-p)_{+}}},(C^*)^{-\frac{p_{+}}{(p^*-p)_{-}}}\}$ for any $j\in J$. As $\nu$ is finite, $J$ must be a finite set or empty. Next, we prove that $\nabla u_n\to \nabla u$ a.e. in $\mathbb{R}^{N}$, as $n\to\infty$. (1) If $J$ is a finite nonempty set, say $J=\{1,2,\dots,m\}$. Let $d=\min\{d(x_{i},x_{j}): i,j\in J\text{ with } i\neq j\}$. There exists $R_{0}>0$ such that $B_{d}(x_{j})\subset B_{R_{0}}$ for any $j\in J$. Take $0<\varepsilon<\frac{d}{4}$, $B_{2\varepsilon}(x_{i})\cap B_{2\varepsilon}(x_{j})=\emptyset$ for any $i,j\in J$ with $i\neq j$. Denote $\Omega_{R,\varepsilon}=\{x\in B_R: d(x,x_{j})>2\varepsilon\text{ for any } j\in J\}$. In the following, we will verify that for any $R>R_{0}$, $$ \int_{\Omega_{R,\varepsilon}}(|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\,dx\to0,\quad\text{as}\ n\to\infty. $$ Let $\psi\in C^{\infty}_{0}(B_{2R})$ such that $0\leq\psi\leq1$; $\psi\equiv1$ on $B_R$. Define $$ \psi_{\varepsilon}(x)=\psi(x)-\sum_{j=1}^{m}\phi(x-x_{j}). $$ We derive that $\psi_{\varepsilon}\in C_{0}^{\infty}(B_{2R})$ such that $0\leq\psi_{\varepsilon}\leq1$; $\psi_{\varepsilon}\equiv0$ on $\cup_{j=1}^{m}B_{\varepsilon}(x_{j})$ and $\psi_{\varepsilon}\equiv1$ on $(\mathbb{R}^{N}\setminus\cup_{j=1}^{m}B_{2\varepsilon}(x_{j}))\cap B_R$. Thus \begin{align*} 0&\leq \int_{\Omega_{R,\varepsilon}}(|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\,dx\\ &\leq \int_{B_{2R}}(|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\psi_{\varepsilon}\,dx\\ &= \langle\varphi'(u_n),u_n\psi_{\varepsilon}\rangle -\langle\varphi'(u_n),u\psi_{\varepsilon}\rangle -\int_{B_{2R}}|\nabla u|^{p(x)-2}\nabla u(\nabla u_n-\nabla u)\psi_{\varepsilon}\,dx\\ &\quad -\int_{B_{2R}}\big(|\nabla u_n|^{p(x)-2}\nabla u_n\nabla \psi_{\varepsilon} \cdot u_n+|u_n|^{p(x)}\psi_{\varepsilon} -|u_n|^{p^*(x)}\psi_{\varepsilon}-h(x)u_n\psi_{\varepsilon}\big)\,dx\\ &\quad +\int_{B_{2R}}\Big(|\nabla u_n|^{p(x)-2}\nabla u_n\nabla \psi_{\varepsilon}\cdot u+|u_n|^{p(x)-2} u_nu\psi_{\varepsilon}\\ &\quad -|u_n|^{p^*(x)-2}u_nu\psi_{\varepsilon} -h(x)u\psi_{\varepsilon}\Big)\,dx. \end{align*} Note that \begin{align*} %3.5 &|\int_{B_{2R}}(|\nabla u_n|^{p(x)-2}\nabla u_n\nabla \psi_{\varepsilon}\cdot u_n-|\nabla u_n|^{p(x)-2}\nabla u_n\nabla \psi_{\varepsilon}\cdot u)\,dx|\\ &\leq C\int_{B_{2R}}|\nabla u_n|^{p(x)-1}|u_n-u|\,dx\\ &\leq C\||\nabla u_n|^{p(x)-1}\|_{p'(x)}\|u_n-u\|_{p(x),B_{2R}}, \end{align*} which implies $$ \int_{B_{2R}}|\nabla u_n|^{p(x)-2}\nabla u_n\nabla \psi_{\varepsilon}\cdot u_n\,dx -\int_{B_{2R}}|\nabla u_n|^{p(x)-2}\nabla u_n\nabla \psi_{\varepsilon}\cdot u\,dx\to0, $$ as $n\to\infty$. Similarly, we obtain $$ \int_{B_{2R}}|u_n|^{p(x)}\psi_{\varepsilon}\,dx -\int_{B_{2R}}|u_n|^{p(x)-2}u_nu\psi_{\varepsilon}\,dx\to0, $$ and $$ \int_{B_{2R}}h(x)u_n\psi_{\varepsilon}\,dx -\int_{B_{2R}}h(x)u\psi_{\varepsilon}\,dx\to0. $$ As $u_n\to u$ weakly in $W^{1,p(x)}(\mathbb{R}^{N})$. Using Theorem \ref{thm2.4} we obtain $u_n\to u$ in $L^{p(x)}(B_{2R})$, for any $R>0$. Passing to a subsequence, still denoted by $\{u_n\}$, a diagonal process enables us to assume that $u_n\to u$ a.e.\,in $\mathbb{R}^{N}$, as $n\to\infty$. Thus $|u_n\psi_{\varepsilon}|^{p^*(x)}\to|u\psi_{\varepsilon}|^{p^*(x)}$ a.e. in $\mathbb{R}^{N}$. As $|u_n-u|^{p^*(x)}\leq2^{p_{+}^*}(|u_n|^{p^*(x)}+|u|^{p^*(x)})$, by Fatou's Lemma, we have \begin{align*} &\int_{\mathbb{R}^{N}}2^{p_{+}^*+1}|u\psi_{\varepsilon}|^{p^*(x)}\,dx\\ &= \int_{\mathbb{R}^{N}}\liminf_{n\to\infty}(2^{p_{+}^*}|u_n\psi_{\varepsilon}|^{p^*(x)} +2^{p_{+}^*}|u\psi_{\varepsilon}|^{p^*(x)}-|u_n\psi_{\varepsilon}-u\psi_{\varepsilon}|^{p^*(x)})\,dx\\ &\leq \liminf_{n\to\infty}\int_{\mathbb{R}^{N}}(2^{p_{+}^*}|u_n\psi_{\varepsilon}|^{p^*(x)} +2^{p_{+}^*}|u\psi_{\varepsilon}|^{p^*(x)}-|u_n\psi_{\varepsilon}-u\psi_{\varepsilon}|^{p^*(x)})\,dx\\ &= \int_{\mathbb{R}^{N}}2^{p_{+}^*+1}|u\psi_{\varepsilon}|^{p^*(x)}\,dx -\limsup_{n\to\infty}\int_{\mathbb{R}^{N}}|u_n\psi_{\varepsilon}-u\psi_{\varepsilon}|^{p^*(x)}\,dx. \end{align*} Using \eqref{2}, we have $\int_{\mathbb{R}^{N}}|u_n|^{p^*(x)}|\psi_{\varepsilon}|^{p^*(x)}\,dx \to\int_{\mathbb{R}^{N}}|u|^{p^*(x)}|\psi_{\varepsilon}|^{p^*(x)}\,dx$, thus $$ \int_{\mathbb{R}^{N}}|u_n\psi_{\varepsilon}-u\psi_{\varepsilon}|^{p^*(x)}\,dx\to0, $$ as $n\to\infty$. Moreover, we derive $$ \int_{B_{2R}}|u_n|^{p^*(x)}\psi_{\varepsilon}\,dx -\int_{B_{2R}}|u_n|^{p^*(x)-2}u_nu\psi_{\varepsilon}\,dx\to0. $$ Then $$ \int_{\Omega_{R,\varepsilon}}(|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\,dx\to0. $$ As in the proof of \cite[Theorem 3.1]{Chab}, $\Omega_{R,\varepsilon}$ is divided into two parts: $$ \Omega_{R,\varepsilon}^{1}=\{x\in \Omega_{R,\varepsilon}:p(x)<2\},\quad \Omega_{R,\varepsilon}^{2}=\{x\in \Omega_{R,\varepsilon}:p(x)\geq2\}. $$ On $\Omega_{R,\varepsilon}^{1}$, we obtain \begin{align*} &\int_{\Omega_{R,\varepsilon}^{1}}|\nabla u_n-\nabla u|^{p(x)}\,dx\\ &\leq C\int_{\Omega_{R,\varepsilon}^{1}}\big((|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\big)^{\frac{p(x)}{2}}\\ &\times\big(|\nabla u_n|^{p(x)}+|\nabla u|^{p(x)}\big)^{\frac{2-p(x)}{2}}\,dx\\ &\leq C\|\big((|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\big)^{\frac{p(x)}{2}} \|_{\frac{2}{p(x)},\,\Omega_{R,\varepsilon}^{1}}\\ &\times\|(|\nabla u_n|^{p(x)}+|\nabla u|^{p(x)})^{\frac{2-p(x)}{2}}\|_{\frac{2}{2-p(x)},\,\Omega_{R,\varepsilon}^{1}}. \end{align*} Note that \begin{align*} &\int_{\Omega_{R,\varepsilon}^{1}}(|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\,dx\\ &\leq \int_{\Omega_{R,\varepsilon}}(|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\,dx, \end{align*} which implies $$ \|\big((|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\big) ^{p(x)/2}\|_{2/p(x),\Omega_{R,\varepsilon}^{1}}\to0. $$ As $\{u_n\}$ is bounded in $W^{1,p(x)}(\mathbb{R}^{N})$, we obtain $\int_{\Omega_{R,\varepsilon}^{1}}|\nabla u_n-\nabla u|^{p(x)}\,dx\to0$, as $n\to\infty$. On $\Omega_{R,\varepsilon}^{2}$, we obtain \begin{align*} &\int_{\Omega_{R,\varepsilon}^{2}}|\nabla u_n-\nabla u|^{p(x)}\,dx\\ &\leq C\int_{\Omega_{R,\varepsilon}^{2}}(|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\,dx\to0, \end{align*} as $n\to\infty$. Thus, we obtain $$ \int_{\Omega_{R,\varepsilon}}|\nabla u_n-\nabla u|^{p(x)}\,dx\to0 $$ for any $R>R_{0}$, $0<2\varepsilon<\frac{d}{2}$. Moreover, up to a subsequence, we assume that $\nabla u_n\to\nabla u$ a.e. in $\mathbb{R}^{N}$. (2) If $J$ is empty. Let $\psi\in C^{\infty}_{0}(B_{2R})$ such that $0\leq \psi\leq1$; $\psi\equiv1$ in $B_R$, we obtain \begin{align*} 0&\leq\int_{B_R}(|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\,dx\\ &\leq \int_{B_{2R}}(|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\psi\,dx. \end{align*} Similarly to (1), we obtain $$ \int_{B_R}(|\nabla u_n|^{p(x)-2}\nabla u_n-|\nabla u|^{p(x)-2}\nabla u)(\nabla u_n-\nabla u)\,dx\to0, $$ as $n\to\infty$, which implies $$ \int_{B_R}|\nabla u_n-\nabla u|^{p(x)}\,dx\to0, $$ for any $R>0$. Thus, we may assume that $\nabla u_n\to\nabla u$ a.e. in $\mathbb{R}^{N}$. As $\{|\nabla u_n|^{p(x)-2}\nabla u_n\}$ is bounded in $(L^{p'(x)}(\mathbb{R}^{N}))^{N}$ and $|\nabla u_n|^{p(x)-2}\nabla u_n$ converges to $|\nabla u|^{p(x)-2}\nabla u$ a.e. in $\mathbb{R}^{N}$, we obtain $$ |\nabla u_n|^{p(x)-2}\nabla u_n\to|\nabla u|^{p(x)-2}\nabla u \quad \text{weakly in } (L^{p'(x)}(\mathbb{R}^{N}))^{N}. $$ Similarly, we obtain $$ |u_n|^{p(x)-2}u_n\to|u|^{p(x)-2}u\quad \text{weakly in } L^{p'(x)}(\mathbb{R}^{N}) $$ and $$ |u_n|^{p^*(x)-2}u_n\to|u|^{p^*(x)-2}u\quad \text{weakly in } L^{(p^*(x))'}(\mathbb{R}^{N}). $$ Thus, for any $v\in C^{\infty}_{0}(\mathbb{R}^{N})$, we have \begin{gather*} \int_{\mathbb{R}^{N}}|\nabla u_n|^{p(x)-2}\nabla u_n\nabla v \to\int_{\mathbb{R}^{N}}|\nabla u|^{p(x)-2}\nabla u\nabla v\,dx,\\ \int_{\mathbb{R}^{N}}|u_n|^{p(x)-2}u_nv \to\int_{\mathbb{R}^{N}}|u|^{p(x)-2}uv\,dx,\\ \int_{\mathbb{R}^{N}}|u_n|^{p^*(x)-2}u_nv \to\int_{\mathbb{R}^{N}}|u|^{p^*(x)-2}uv\,dx. \end{gather*} Note that $$ \langle\varphi'(u_n),v\rangle=\int_{\mathbb{R}^{N}} \big(|\nabla u_n|^{p(x)-2}\nabla u_n\nabla v+|u_n|^{p(x)-2}u_nv-|u_n| ^{p^*(x)-2}u_nv-h(x)v\big)\,dx $$ and $\varphi'(u_n)\to0$ in $W^{-1,p'(x)}(\mathbb{R}^{N})$, as $n\to\infty$, we obtain \begin{equation}\label{13} \begin{split} \langle\varphi'(u),v\rangle &=\int_{\mathbb{R}^{N}}\big(|\nabla u|^{p(x)-2}\nabla u\nabla v +|u|^{p(x)-2}uv-|u|^{p^*(x)-2}uv-h(x)v\big)\,dx\\ &=0. \end{split} \end{equation} As $p$ is Lipschitz continuous on $\mathbb{R}^{N}$, it follows that $p$ satisfies the weak Lipschitz condition \cite{Samko}. Thus, $C_{0}^{\infty}(\mathbb{R}^{N})$ is dense on $W^{1,p(x)}(\mathbb{R}^{N})$. Using \eqref{13}, we obtain $$ \langle\varphi'(u),v\rangle=0, $$ for any $v\in W^{1,p(x)}(\mathbb{R}^{N})$; i.e. $\varphi'(u)=0$. \end{proof} We remark that in the proof of Theorem \ref{thm3.1}, we use the inequality \eqref{8} in Theorem \ref{thm2.6p}. As $p(x)\ll p^*(x)$, $p^*(x)-p(x)\geq(p^*-p)_{-}>0$ for any $x\in\mathbb{R}^{N}$. Then, we avoided the assumption $p^*_{-}>p_{+}$ and obtained that the set of atoms $J$ is empty or finite. Next, using Theorem \ref{thm3.1} we prove that there exists a critical point for $\varphi$. The following result of the variational functional $\varphi$ is required by using Ekeland's variational principle. \begin{lemma} \label{lem3.1} There exist $\rho_{0}>0$, $h_{0}>0$ such that if $\|h\|_{p'(x)}\leq h_{0}$, we have $\varphi(u)>0$ for any $u\in\{u\in W^{1,p(x)}(\mathbb{R}^{N}):\||u\||=\rho_{0}\}$. \end{lemma} \begin{proof} For any $u\in W^{1,p(x)}(\mathbb{R}^{N})$, we obtain \begin{align*} \varphi(u) &\geq \int_{\mathbb{R}^{N}}\Big(\frac{|\nabla u|^{p(x)}+|u|^{p(x)}}{p_{+}} -\frac{|u|^{p^*(x)}}{(p^*)_{-}}-h(x)u\Big)\,dx\\ &= \int_{\mathbb{R}^{N}}\Big(\frac{|\nabla u|^{p(x)}+|u|^{p(x)}}{2p_{+}} -h(x)u\Big)\,dx\\ &\quad +\int_{\mathbb{R}^{N}}\Big(\frac{|\nabla u|^{p(x)}+|u|^{p(x)}}{2p_{+}} -\frac{|u|^{p^*(x)}}{(p^*)_{-}}\Big)\,dx. \end{align*} As $p(x)\ll p^{\ast}(x)$ and $p(x)$ are Lipschitz continuous on $\mathbb{R}^{N}$, as in the proof of \cite[Theorem 3.1]{Chab}, there exists a sequence of disjoint open $N$-cubes $\{Q_{i}\}_{i=1}^{\infty}$ with side $r>0$ such that $\mathbb{R}^{N}=\cup_{i=1}^{\infty}\overline{Q_{i}}$, $$p_{i+}\triangleq\underset{x\in Q_{i}}\sup p(x)\gamma\triangleq\frac{1}{2}\inf_{x\in\mathbb{R}^{N}}(p^*(x)-p(x))$, for $i=1,2,\dots$. By \cite[Corollary 8.3.2]{Diening}, there exists $r_{0}=r_{0}(r,N,p_{+},p_{-})>1$ independent of $i\in\mathbb{N}$ such that for any $v\in W^{1,p(x)}(Q_{i})$, $\|v\|_{p^*(x)}\leq r_{0}\||v\||$. Then, for any $u\in W^{1,p(x)}(\mathbb{R}^{N})$, we obtain $\|u\|_{p^*(x),Q_{i}}\leq r_{0}\||u\||_{Q_{i}}$. If $\||u\||\leq r_{0}^{-1}$, then $\||u\||_{Q_{i}}\leq\||u\||\leq r_{0}^{-1}$, for any $i\in\mathbb{N}$. Thus, $\|u\|_{p^*(x),Q_{i}}\leq1$. Using Theorems \ref{thm2.2} and \ref{thm2.3} we obtain \begin{align*} \int_{\mathbb{R}^{N}}\Big(\frac{|\nabla u|^{p(x)}+|u|^{p(x)}}{2p_{+}} -\frac{|u|^{p^*(x)}}{(p^*)_{-}}\Big)\,dx &= \sum_{i=1}^{\infty}\int_{Q_{i}}\Big(\frac{|\nabla u|^{p(x)}+|u|^{p(x)}}{2p_{+}}-\frac{|u|^{p^*(x)}}{(p^*)_{-}}\Big)\,dx\\ &\geq \sum_{i=1}^{\infty}\Big(\frac{\||u\||_{Q_{i}}^{p_{i+}}}{2p_{+}} -\frac{r_{0}^{p^*_{i-}}}{(p^*)_{-}}\||u\||_{Q_{i}}^{(p^*)_{i-}}\Big)\\ &\geq \sum_{i=1}^{\infty}\frac{\||u\||_{Q_{i}}^{p_{i+}}}{2p_{+}}\Big(1 -\frac{2p_{+}}{(p^*)_{-}}r_{0}^{p^*_{i-}}\||u\||_{Q_{i}}^{\gamma}\Big). \end{align*} Denote $\rho_{0}=\min\{r_{0}^{-1},(\frac{2p_{+}}{(p^*)_{-}}r_{0}^{p^*_{i-}}) ^{-1/\gamma}\}$. If $\||u\||\leq \rho_{0}$, then $$ \int_{\mathbb{R}^{N}}\Big(\frac{|\nabla u|^{p(x)}| +|u|^{p(x)}}{2}-|u|^{p^*(x)}\Big)\,dx\geq0. $$ We obtain \begin{equation}\label{20} \varphi(u)\geq\frac{\||u\||^{p_{+}}}{2p_{+}}-2\|h\|_{p'(x)}\|u\|_{p(x)} \geq\frac{\||u\||^{p_{+}}}{2p_{+}}-C\|h\|_{p'(x)}\||u\||. \end{equation} Thus, it suffices to take $\|h\|_{p'(x)}$ small enough. \end{proof} Then, using Ekeland's variational principle and Lemma \ref{lem3.1}, we obtain a Palais-Smale sequence for $\varphi$. Based on Theorem \ref{thm3.1}, we have the following result, which shows that $\varphi$ has a critical if $\|h\|_{p'(x)}$ is small. Moreover, we obtain a nontrivial weak solution for \eqref{1}. \begin{theorem} \label{thm3.2} If $\|h\|_{p'(x)}\leq h_{0}$, there exists $u_{0}\in\{u\in W^{1,p(x)}(\mathbb{R}^{N}):\||u\||\leq\rho_{0}\}$ such that $u_{0}$ is a weak solution of \text{\eqref{1}}, where $\rho_{0}$, $h_{0}$ are from Lemma \ref{lem3.1}. \end{theorem} \begin{proof} Denote $$ c_1=\inf\{\varphi(u):u\in W^{1,p(x)}(\mathbb{R}^{N})\text{ with } \||u\||\leq\rho_{0}\}. $$ It follows from \eqref{20} that $c_1>-\infty$. Note that $h(x)\geq0$ and $h(x)\not\equiv0$, there exists $v\in C_{0}^{\infty}(\mathbb{R}^{N})$ such that $\int_{\mathbb{R}^{N}}h(x)v\,dx>0$. Take $01$, we have $\||sv\||<\rho_{0}$ and $\varphi(sv)<0$, when $s$ is sufficiently small. Thus $c_1<0$. By Ekeland's variational principle, there exists $\{u_n\}\subset\{u\in W^{1,p(x)}(\mathbb{R}^{N}):\||u\||\leq\rho_{0}\}$ such that $\varphi(u_n)\to c_1$ and \begin{equation}\label{9} \varphi(w)\geq\varphi(u_n)-\frac{1}{n}\||w-u_n\||, \end{equation} for any $w\in W^{1,p(x)}(\mathbb{R}^{N})$ with $\||w\||\leq\rho_{0}$. Since $c_1<0$, we assume that $\varphi(u_n)<0$. It follows from Lemma \ref{lem3.1} that $\||u_n\||<\rho_{0}$. Using \eqref{9}, we obtain $\varphi'(u_n)\to0$ in $W^{-1,p'(x)}(\mathbb{R}^{N})$, as $n\to\infty$. As $\{u_n\}$ is bounded in $W^{1,p(x)}(\mathbb{R}^{N})$, we assume that $u_n\to u_{0}$ weakly in $W^{1,p(x)}(\mathbb{R}^{N})$, then $\||u_{0}\||\leq\rho_{0}$. By Theorem \ref{thm3.1}, we obtain $\varphi'(u_{0})=0$. \end{proof} \begin{thebibliography}{99} \bibitem{Adamowicz} T. Adamowicz, P. H\"ast\"o; \emph{Harnack's inequality and the strong $p(x)$-Laplacian}, J. Differential Equations 250 (2011), no. 3, 1631-1649. \bibitem{Alves} C. O. Alves; \emph{Multiple positive solutions for equations involving critical Sobolev exponent in $\mathbb{R}^{N}$}, Electronic Journal of Differential Equations 1997 (1997), no. 13, 1-10. \bibitem{A2005} C. O. Alves , M. A. S. Souto; \emph{ Existence of solutions for a class of problems in $\mathbb{R}^{N}$ involving $p(x)$-Laplacian}, Prog. Nonlinear Differ. Equ. Appl. 66 (2005) 17-32. \bibitem{An2007} S. Antontsev, M. Chipot, Y. Xie; \emph{Uniquenesss results for equation of the $p(x)$-Laplacian type}, Adv. Math. Sc. Appl. 17 (1) (2007) 287-304. \bibitem{Cao} D. M. Cao, G. B. Li, H. S. Zhou; \emph{Multiple solutions for non-homogeneous elliptic equations with critical sobolev exponent}, Proceeding of the Royal Society of Edinburgh 124A (1994) 1177-1191. \bibitem{Chab} J. Chabrowski, Y. Fu; \emph{Existence of solutions for $p(x)$-Laplacian problems on a bounded domain}, J. Math. Anal. Appl. 306 (2005) 604-618. Erratum in: J. Math. Anal. Appl. 323(2006)1483. \bibitem{ChenY} Y. Chen, S. Levine, M. Rao; \emph{Variable exponent, linear growth functionals in image restoration}, SIAM J. Appl. Math. 66 (2006) 1383-1406. \bibitem{Diening} L. Diening, P. Harjulehto, P. H\"ast\"o, M. R\r{u}\v{z}i\v{c}ka; \emph{ Legesgue and Sobolev spaces with variable exponents}, Lecture Notes in Mathematics 2017, Springer-Verlag, Heidelberg, 2011. \bibitem{Ekeland} I. Ekeland; \emph{Nonconvex minimization problems}, Bull. Amer. Math. Soc. 1 (1979) 443-474. \bibitem{Fan5} X. L. Fan, X. Han; \emph{Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$}, Nonlinear Anal. 59 (2004) 173-188. \bibitem{Fu5} Y. Q. Fu; \emph{The Principle of Concentration Compactness in $L^{p(x)}$ Spaces and Its Application}, Nonlinear Anal. 71 (2009) 1876-1892. \bibitem{Fu14} Y. Q. Fu, X. Zhang; \emph{Multiple solutions for a class of $p(x)$-Laplacian equations in $\mathbb{R}^{N}$ involving the critical exponent}, Proc. R. Soc. A 466 (2010) 1667-1686. \bibitem{O1991} O. Kov\'a\v{c}ik, J. R\'akosn\'ik; \emph{On spaces $L^{p(x)}$ and $W^{k,\,p(x)}$}, Czechoslovak Math. J. 41 (1991) 592-618. \bibitem{Li2009} G. B. Li, G. Zhang; \emph{Multiple solutions for the $p\&q$-Laplacian problem with critical exponent}, Acta Mathematica Scientia 29B (4) (2009) 903-918. \bibitem{M2006} M. Mih\v{a}ilescu, V. R\v{a}dulescu; \emph{ A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids}, Proc. R. Soc. A 462 (2006) 2625-2641. \bibitem{M2007} M. Mih\v{a}ilescu, V. R\v{a}dulescu; \emph{On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent}, Proc. Amer. Math. Soc. 135 (2007) 2929-2937. \bibitem{M2000} M. R\r{u}\u{z}i\u{c}ka; \emph{Electro-rheological fluids: modeling and mathematical theory}, Springer-Verlag, Berlin, 2000. \bibitem{Samko} S. Samko; \emph{Denseness of $C_{0}^{\infty}(\Omega)$ in the generalized Sobolev spaces $W^{m,p(x)}(\mathbb{R}^{N})$}, Direct and Inverse Problems of Mathematical Physics (Newark, DE, 1997), 333- 342, Int. Soc. Anal. Appl. Comput. 5, Kluwer Acad. Publ., Dordrecht, 2000. \bibitem{Silva} A. Silva; \emph{Multiple solutions for the $p(x)$-Laplace operator with critical growth}, Adv. Nonlinea Stud. 11 (2011) 63-75. \bibitem{Zhangc} C. Zhang, S. L. Zhou; \emph{Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$ data}, J. Differential Equations 248 (2010), no. 6, 1376-1400. \bibitem{Taran} G. Tarantello; \emph{On nonhomogeneous elliptic equations involving critical Sobolev exponent}, Ann. Inst. H. Poincar\'e Anal. Non Line\'aire 9 (1992) 243-261. \bibitem{Zhou} H. S. Zhou; \emph{Solutions for a quasilinear elliptic equation with critical Sobolev exponent and perturbations on $\mathbb{R}^{N}$}, Differ. Integral Equ. 13 (2000) 595-612. \end{thebibliography} \end{document}