\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 122, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/122\hfil Multiple symmetric solutions] {Multiple symmetric solutions for a singular semilinear elliptic problem with critical exponent} \author[A. Cano, E. Hern\'andez-Mart\'inez\hfil EJDE-2012/122\hfilneg] {Alfredo Cano, Eric Hern\'andez-Mart\'inez} % in alphabetical order \address{Alfredo Cano \newline Universidad Aut\'onoma del Estado de M\'exico, Facultad de Ciencias, Departamento de Matem\'aticas, Campus El Cerrillo Piedras Blancas, Carretera Toluca-Ixtlahuaca, Km 15.5, Toluca, Estado de M\'exico, M\'exico} \email{calfredo420@gmail.com} \address{Eric Hern\'andez-Mart\'{\i}nez \newline Universidad Aut\'onoma de la Ciudad de M\'exico, Colegio de Ciencia y Tecnolog\'{\i}a, Acade\-mia de Matem\'aticas, Calle Prolongaci\'on San Isidro No. 151, Col. San Lorenzo Tezonco, Del. Iztapalapa, C.P. 09790, M\'exico D.F., M\'exico} \email{ebric2001@hotmail.com} \thanks{Submitted March 27, 2012. Published July 20, 2012.} \thanks{This work was presented in the II Joint meeting RSME-SMM, 2012, M\'alaga, Espa\~na} \subjclass[2000]{35J75, 35J57, 35J60} \keywords{Critical exponent; singular problem; symmetric solutions} \begin{abstract} Let be $\Gamma$ a closed subgroup of $O(N)$. We consider the semilinear elliptic problem \begin{gather*} -\Delta u-\frac{b(x)}{| x|^2}u-a(x)u=f(x)| u|^{2^{\ast }-2}u\quad \text{in }\Omega ,\\ u=0 \quad\text{on } \partial \Omega , \end{gather*} where $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, $N\geq 4$. We establish the multiplicity of symmetric positive solutions, nodal solutions, and solutions which are $\Gamma$ invariant but are not $\widetilde{\Gamma }$ invariant, where $\Gamma \subset \widetilde{\Gamma}\subset O(N)$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} We consider the singular semilinear elliptic problem with critical nonlinearity, \begin{equation} \begin{gathered} -\Delta u-b(x)\frac{u}{| x|^2}-a(x)u=f(x)| u|^{2^{\ast }-2}u \quad \text{in } \Omega , \\ u=0 \quad \text{on } \partial \Omega , \end{gathered} \label{problem-abf} \end{equation} where $\Omega \subset \mathbb{R}^{N}$ $(N\geq 4) $ is a smooth bounded domain, $0\in \Omega $, $2^{\ast }:=\frac{2N}{N-2}$ is the critical Sobolev exponent, and $f$, $a$, $b$ are continuous real function defined on $\mathbb{R}^{N}$, $f>0$ on $\overline{\Omega }$, $00$ and $C_{b(0) }(N)=(\frac{4N(\overline{\mu }-b(0) )}{N-2})^{(N-2)/4}$. In this case the solutions are minimizers for \begin{equation*} S_{b(0) }:=\min_{u\in D^{1,2}(\mathbb{R}^{N})\backslash \{0\}} \frac{\int_{\mathbb{R}^{N}}(| \nabla u| ^2-b(0) \frac{u^2}{| x|^2}) dx}{ \big(\int_{\mathbb{R}^{N}}| u|^{2^{\ast}}dx\big)^{2/2^*}}. \end{equation*} In the following we denote by \begin{equation*} M:=\{ y\in \overline{\Omega }:\frac{\#\Gamma y}{f(y)^{(N-2)/2}} =\min_{x\in \overline{\Omega }}\frac{\#\Gamma x}{f(x)^{(N-2)/2}}\} . \end{equation*} We shall assume that $f$, $a$, and $b$ satisfy: \begin{itemize} \item[(F1)] $f(x) >0$ for all $x\in \overline{\Omega }$ and $f(0)=1$. \item[(F2)] $f$ is locally flat at $M$; that is, there exist $r>0$, $\nu >N$ and $A>0$ such that \begin{equation*} | f(x) -f(y) | \leq A|x-y|^{\nu }\quad \text{if }y\in M\text{ and }|x-y| 0$ for all $x\in M$. \end{itemize} With the above conditions we define \begin{equation*} \langle u,v\rangle _{a,b}:=\int_{\Omega }\Big(\nabla u\cdot \nabla v-b(x)\frac{uv}{| x|^2}-a(x)uv\Big) dx \end{equation*} which is an inner product in $H_0^1(\Omega ) $ and its induced norm is \begin{equation*} \| u\| _{a,b}:=\sqrt{\langle u,u\rangle _{a,b}} =\Big(\int_{\Omega }(| \nabla u|^2-b(x) \frac{u^2}{| x|^2}-a(x)u^2) dx\Big)^{1/2}. \end{equation*} Using the Hardy inequality, \begin{equation} \int_{\Omega }\frac{u^2}{| x|^2}dx\leq \frac{1 }{\overline{\mu }}\int_{\Omega }| \nabla u| ^2dx,\quad \forall u\in H_0^1(\Omega ) , \label{DHardy} \end{equation} we will prove the equivalence of the norms $\| u\| _{a,b}$ and $\| u\| :=\| u\| _{0,0}$ in $H_0^1(\Omega ) $. Since $\lambda _{1,b}$ is the first eigenvalue of $-\Delta -\frac{b_0}{| x|^2}$ on $H_0^1(\Omega ) $, \begin{equation} \int_{\Omega }a_0| u|^2dx\leq \frac{a_0}{ \lambda _{1,b}}\int_{\Omega }\Big(| \nabla u| ^2-b_0\frac{u^2}{| x|^2}\Big) dx. \label{DvalorPropio} \end{equation} Therefore, \begin{equation} \label{NEquivalentes1} \begin{aligned} \| u\| _{a,b}^2 &:=\int_{\Omega }\Big( | \nabla u|^2-b(x)\frac{u^2}{| x|^2}-a(x)| u|^2|Big) dx \\ &\geq \int_{\Omega }\Big(| \nabla u|^2-b_0 \frac{u^2}{| x|^2}\Big) dx -\frac{a_0}{\lambda_{1,b}}\int_{\Omega }(| \nabla u|^2-b_0\frac{u^2}{| x|^2}) \\ &\geq (1-\frac{a_0}{\lambda _{1,b}}) \int_{\Omega} \Big(| \nabla u|^2-b_0\frac{u^2}{| x|^2}\Big) dx,\quad \text{and by \eqref{DHardy}} \\ &\geq (1-\frac{a_0}{\lambda _{1,b}}) (1-\frac{b_0}{ \overline{\mu }}) \int_{\Omega }| \nabla u|^2dx \\ &= (1-\frac{a_0}{\lambda _{1,b}}) (1-\frac{b_0}{\overline{\mu }}) \| u\|^2. \end{aligned} \end{equation} The other inequality holds since $00$ let \begin{equation} M_{\delta }^{-}:=\{ y\in M:\mathsf{dist}(y,\partial \Omega ) \geq \delta \} ,\;B_{\delta }(M) :=\{ z\in \mathbb{R}^{N}:\mathsf{dist}(z,M) \leq \delta \} . \label{Mdelta} \end{equation} \begin{theorem}\label{teoremaUNO} Let $N\geq 4$, {\rm (A1), (A2), (B1), (F1), (F2), (A3)} and $\ell _f^{\Gamma }\leq S_{b(0) }^{N/2}$ hold. Given $\delta ,\delta'>0 $ there exist $\lambda^{\ast }\in (0,\lambda _{1,b}) $, $ \mu^{\ast }\in (0,\overline{\mu }) $ such that for all $a(x)\in (0,\lambda^{\ast }) $, $b(x)\in (0,\mu^{\ast }) $ $ \forall x\in \Omega $ the problem \eqref{problem abf GAMMA} has at least \begin{equation*} \operatorname{cat}{}_{B_{\delta }(M) /\Gamma }(M_{\delta }^{-}/\Gamma) \end{equation*} positive solutions which satisfy \begin{equation*} \ell _f^{\Gamma }-\delta'\leq \| u\|_{a,b}^2<\ell _f^{\Gamma }. \end{equation*} \end{theorem} \subsection{Multiplicity of nodal solutions} Let $G$ be a closed subgroup of $O(N)$ for which $\Omega $ and $f:\mathbb{R} ^{N}\to \mathbb{R}$ are $G$-invariant. We denote by $\Gamma $ the kernel of an epimorphism $\tau :G\to \mathbb{Z}/2:=\{-1,1\} $. A real valued function $u$ defined in $\Omega $ will be called $\tau $-equivariant if \begin{equation*} u(gx)=\tau (g)u(x)\quad \forall x\in \Omega ,\text{ }g\in G. \end{equation*} In this section we study the problem \begin{equation} \begin{gathered} -\Delta u-b(x)\frac{u}{| x|^2}-a(x)u=f(x)|u|^{2^{\ast }-2}u \quad \text{in } \Omega \\ u=0\quad \text{on } \partial \Omega \\ u(gx) =\tau (g)u(x) \quad \forall x\in \Omega ,\;g\in G \end{gathered} \label{problem abf TAU} \end{equation} If $g\in \Gamma $ then all $\tau $-equivariant functions $u$ satisfy $u(gx)=u(x)$ for all $x\in \Omega $; i.e., are $\Gamma $-invariant. If $u$ is a $\tau $-equivariant function and $g\in \tau^{-1}(-1)$ then $u(gx)=-u(x)$ for all $x\in \Omega $. Thus all non trivial $\tau $-equivariant solution of \eqref{problem abf TAU} change sign. \begin{definition} \label{def1} \rm A subset $X$ of $\mathbb{R}^{N}$ is $\Gamma $-connected if it is a $\Gamma $-invariant subset $X$ of $\mathbb{R}^{N}$ and if cannot be written as the union of two disjoint open $\Gamma $-invariant subsets. A real valued function $u:\Omega \to \mathbb{R}$ is $(\Gamma ,2) $-nodal if the sets \begin{equation*} \{ x\in \Omega :u(x) >0\} \quad \text{and}\quad \{ x\in \Omega :u(x) <0\} \end{equation*} are nonempty and $\Gamma $-connected. \end{definition} For each $G$-invariant subset $X$ of $\mathbb{R}^{N}$, we define \begin{equation*} X^{\tau }:=\{ x\in X:Gx=\Gamma x\} . \end{equation*} Let $\delta >0$, define \begin{equation*} M_{\tau ,\delta }^{-}:=\{ y\in M:\operatorname{dist}(y,\partial \Omega \cup \Omega^{\tau }) \geq \delta \} , \end{equation*} and $B_{\delta }(M) $ as in \eqref{Mdelta}. The next theorem is a multiplicity result for $\tau $-equivariant $(\Gamma,2)$-nodal solutions for \eqref{problem abf GAMMA}. \begin{theorem}\label{teoremaDOS} Let $N\geq 4$, {\rm (A1), (A2), (B1), (F1), (F2), (A3)}, and $\ell _f^{\Gamma }\leq S_{b(0) }^{N/2}$ hold. If $\Gamma $ is the kernel of an epimorphism $\tau :G\to \mathbb{Z}/2$ defined on a closed subgroup $G$ of $O(N) $ for which $\Omega $ and the functions $a$, $b$, $f$ are $G$-invariant. Given $\delta ,\delta '>0$ there exists $\lambda^{\ast }\in (0,\lambda_{1,b}) $, $\mu^{\ast }\in (0,\overline{\mu }) $ such that for all $a(x)\in (0,\lambda^{\ast }) $, $b(x)\in (0,\mu^{\ast }) $ for all $x\in \Omega $ problem \eqref{problem abf GAMMA} has at least \begin{equation*} \operatorname{cat}{}_{(B_{\delta }(M) \backslash B_{\delta }(M) ^{\tau }) /G}(M_{\tau ,\delta }^{-}/G) \end{equation*} pairs $\pm u$ of $\tau $-equivariants $(\Gamma ,2) $-nodal solutions which satisfy \begin{equation*} 2\ell _f^{\Gamma }-\delta'\leq \| u\|_{a,b}^2<2\ell _f^{\Gamma }. \end{equation*} \end{theorem} \subsection{Non symmetric properties for solutions} Let $\Gamma\subset\widetilde{\Gamma}\subset O (N)$. Next we give sufficient conditions for the existence of many solutions which are $\Gamma$-invariant but are not $\widetilde{\Gamma}$-invariant. \begin{theorem}\label{teorema TRES} Let $N\geq 4$, {\rm (A1), (A2), (B1), (F1), (F2), (A3)}, and $\ell _f^{\Gamma }\leq S_{b(0) }^{N/2}$ hold. Let $ \widetilde{\Gamma }$ be a closed subgroup of $O(N) $ containing $\Gamma $, for which $\Omega $ and the functions $a$, $b$, $f$ are $ \widetilde{\Gamma }$-invariant and \begin{equation*} \min_{x\in \overline{\Omega }}\frac{\#\Gamma x}{f(x)^{\frac{N-2 }{2}}}<\min_{x\in \overline{\Omega }}\frac{\#\widetilde{\Gamma }x}{f( x)^{(N-2)/2}}. \end{equation*} Given $\delta ,\delta'>0$ there exist $\lambda^{\ast }\in (0,\lambda _{1,b}) $, $\mu^{\ast }\in (0,\overline{\mu }) $ such that for all $a(x)\in (0,\lambda^{\ast }) $, $b(x)\in(0,\mu^{\ast }) $ for all $x\in \Omega $ problem \eqref{problem abf GAMMA} has at least \begin{equation*} \operatorname{cat}{}_{B_{\delta }(M) /\Gamma }(M_{\delta }^{-}/\Gamma) \end{equation*} positive solutions which are not $\widetilde{\Gamma }$-invariant and satisfy \begin{equation*} 2\ell _f^{\Gamma }-\delta'\leq \| u\|_{a,b}^2<2\ell _f^{\Gamma }. \end{equation*} \end{theorem} \section{The variational problem} To generalize the notation we introduce a homomorphism $\tau:G\to \mathbb{Z}/2$ defined on a closed subgroup $G$ of $O(N) $. Recall the problem \eqref{problem abf TAU}, \begin{gather*} -\Delta u-b(x)\frac{u}{| x|^2}-a(x)u=f(x)| u|^{2^{\ast }-2}u \quad \text{in } \Omega \\ u=0\quad \text{on } \partial \Omega \\ u(gx) =\tau (g) u(x) \quad \forall x\in \Omega ,\; g\in G, \end{gather*} where $\Omega $ is a $G$-invariant bounded smooth subset of $\mathbb{R}^{N}$, and $a$, $b$, and $f$ are a $G$-invariant continuous functions which satisfy (A1), (A2), (B1), (F1) and (F2). Let $\Gamma :=\ker \tau $. If $\tau $ is not an epimorphism then the problems \eqref{problem abf TAU} and \eqref{problem abf GAMMA} coincide. In the other case we obtain solutions for the problem \eqref{problem abf TAU} and in particular are sign changing solutions of \eqref{problem abf GAMMA}. The homomorphism $\tau $ induces the natural action of $G$ on $H_0^1(\Omega ) $ given by \begin{equation*} (gu) (x) :=\tau (g) u(g^{-1}x) . \end{equation*} Due the symmetries, the solutions are in the fixed point space of the action or the space of $\tau $-equivariant functions \begin{align*} H_0^1(\Omega )^{\tau }&:= \{ u\in H_0^1(\Omega ) :gu=u\; \forall g\in G\} \\ &= \{ u\in H_0^1(\Omega ) :u(gx) =\tau(g) u(x) \; g\in G,\; \forall x\in \Omega \} . \end{align*} The fixed point space of the restriction of this action to $\Gamma $ \begin{equation*} H_0^1(\Omega )^{\Gamma }=\{ u\in H_0^1(\Omega ) :u(gx) =u(x) \; \forall g\in \Gamma ,\; \forall x\in \Omega \} \end{equation*} are the $\Gamma $-invariant functions of $H_0^1(\Omega ) $. The norms $\| \cdot \| _{a,b}$, $\| \cdot\| $ on $H_0^1(\Omega ) $ and $| \cdot | _{2^{\ast }}$, $| \cdot | _{f,2^{\ast }}$ on $L^{2^{\ast }}(\Omega ) $ are $G$-invariant with respect to the action induced by $\tau$; therefore the functional \begin{align*} E_{a,b,f}(u) &:=\frac{1}{2}\int_{\Omega }\Big(| \nabla u|^2-a(x)\frac{u^2}{| x|^2} -b(x)| u|^2\Big) dx-\frac{1}{2^{\ast }} \int_{\Omega }f(x)| u|^{2^{\ast }}dx \\ &= \frac{1}{2}\| u\| _{a,b}^2-\frac{1}{2^{\ast }} | u| _{f,2^{\ast }}^{2^{\ast }} \end{align*} is $G$-invariant, with derivative \begin{equation*} DE_{a,b,f}(u)v=\int_{\Omega }\Big(\nabla u\cdot \nabla v-b(x)\frac{uv}{ | x|^2}-a(x)uv\Big) dx-\int_{\Omega }f(x)|u|^{2^{\ast }-2}uv\,dx. \end{equation*} By the principle of symmetric criticality \cite{p}, the critical points of its restriction to $H_0^1(\Omega )^{\tau }$ are the solutions of \eqref{problem abf TAU}, and all non trivial solutions lie on the Nehari manifold \begin{align*} \mathcal{N}_{a,b,f}^{\tau } &:=\{ u\in H_0^1(\Omega )^{\tau }:u\neq 0,DE_{a,b,f}(u)u=0\} \\ &= \{u\in H_0^1(\Omega )^{\tau }:u\neq 0,\| u\| _{a,b}^2=| u| _{f,2^{\ast }}^{2^{\ast }}\}. \end{align*} which is of class $C^2$ and radially diffeomorphic to the unit sphere in $H_0^1(\Omega )^{\tau }$ by the radial projection \begin{equation*} \pi _{a,b,f}:H_0^1(\Omega )^{\tau }\setminus \{ 0\} \to \mathcal{N}_{a,b,f}^{\tau }\quad \pi _{a,b,f}(u):=(\frac{\| u\| _{a,b}^2}{| u| _{f,2^{\ast }}^{2^{\ast }}})^{(N-2)/4}u. \end{equation*} Therefore, the nontrivial solutions of \eqref{problem abf TAU} are precisely the critical points of the restriction of $E_{a,b,f}$ to $\mathcal{N}_{a,b,f}^{\tau }$. If $\tau \equiv 1$ we write $\mathcal{N}_{a,b,f}^{\Gamma} $. An easy computation gives \begin{equation} E_{a,b,f}(u)=\frac{1}{N}\| u\| _{a,b}^2=\frac{1}{N} | u| _{f,2^{\ast }}^{2^{\ast }}\quad \forall u\in \mathcal{N}_{a,b,f}^{\tau } \label{enerneh} \end{equation} and \begin{equation*} E_{a,b,f}(\pi _{a,b,f}(u)) =\frac{1}{N}(\frac{\| u\| _{a,b}^2}{| u| _{f,2^{\ast }}^2}) ^{N/2}\quad \forall u\in H_0^1(\Omega )^{\tau }\backslash \{0\}. \end{equation*} We define \begin{align*} m(a,b,f) &:= \inf_{\mathcal{N}_{a,b,f}}E_{a,b,f}(u)=\inf_{\mathcal{N} _{a,b,f}}\frac{1}{N}\| u\| _{a,b}^2 \\ &= \inf_{u\in H_0^1(\Omega )\setminus \{0\}}\frac{1}{N}(\frac{ \| u\| _{a,b}^2}{| u| _{f,2^{\ast }}^2})^{N/2}. \end{align*} In the restrictions for the Nehari manifolds we denote by \begin{equation*} m^{\Gamma }(a,b,f):=\inf_{\mathcal{N}_{a,b,f}^{\Gamma }}E_{a,b,f},\quad m^{\tau }(a,b,f):=\inf_{\mathcal{N}_{a,b,f}^{\tau }}E_{a,b,f}. \end{equation*} \subsection{Estimates for the infimum} From the definition of Nehari Manifold and \eqref{enerneh} we obtain that $m^{\Gamma }(a,b,f)>0$. \begin{proposition} Let $a(x)\leq a'(x)<\lambda _{1,b}$, $b(x) \leq b'(x) <\bar{\mu}$, for all $x\in \bar{\Omega}$, and $f: \mathbb{R}^{N}\to \mathbb{R}$, with the conditions above. Then \begin{equation*} m(a',b',f) \leq m(a,b,f), \quad m^{\Sigma }(a',b',f) \leq m^{\Sigma}(a,b,f) , \end{equation*} with $\Sigma =\Gamma $ or $\Sigma =\tau $. \end{proposition} \begin{proof} By definition of $\| \cdot \| _{a,b}$ we obtain $\|u\| _{a',b'}^2\leq \| u\|_{a,b}^2$. Let $u\in H_0^1(\Omega )\setminus \{0\}$, then \begin{align*} m(a',b',f) &\leq E_{a',b',f}(\pi_{a',b',f}(u)) \\ &= \frac{1}{N}\Big(\frac{\| u\| _{a',b'}^2}{| u| _{f,2^{\ast }}^2}\Big)^{N/2} \\ &\leq \frac{1}{N}\Big(\frac{\| u\| _{a,b}^2}{ | u| _{f,2^{\ast }}^2}\Big)^{N/2} = E_{a,b,f}(\pi _{a,b,f}(u)), \end{align*} and from this inequality, the conclusion follows. \end{proof} We denote by $\lambda _{1,b}$ the first Dirichlet eigenvalue of $-\Delta -\frac{b_0}{| x|^2}$ in $H_0^1(\Omega )$. \begin{lemma}\label{comparacionE} With the conditions $(a_1)$ and $(b)$, for $u\in H_0^1(\Omega )^{\tau }$, we obtain \begin{equation*} E_{0,0,f}(\pi _{0,0,f}(u) ) \leq \Big(\frac{\bar{ \mu}}{\bar{\mu}-b_0}\Big)^{N/2}(\frac{\lambda _{1,b}}{ \lambda _{1,b}-a_0})^{N/2}E_{a,b,f}(\pi_{a,b,f}(u) ) . \end{equation*} \end{lemma} \begin{proof} Since \[ E_{a,b,f}(\pi _{a,b,f}(u) ) = \frac{1}{N}\Big(\frac{\| u\| _{a,b}^2}{| u|_{f,2^{\ast }}^2}\Big)^{N/2} = \frac{1}{N}\Big(\frac{\| u\| _{a,b}^{N}}{|u| _{f,2^{\ast }}^{N}}\Big) , \] by \eqref{NEquivalentes1} we have \begin{equation*} \big(1-\frac{a_0}{\lambda _{1,b}}\big)^{N/2}\big(1-\frac{ b_0}{\overline{\mu }}\big)^{N/2}\| u\|^{N}\leq \| u\| _{a,b}^{N} \end{equation*} then \begin{equation*} \big(1-\frac{a_0}{\lambda _{1,b}}\big)^{N/2}\big(1-\frac{ b_0}{\overline{\mu }}\big)^{N/2}\frac{1}{N}\frac{\| u\|^{N}}{| u| _{f,2^{\ast }}^{N}}\leq E_{a,b,f}(\pi _{a,b,f}(u) ) \end{equation*} so \begin{equation*} E_{0,0,f}(\pi _{0,0,f}(u) ) \leq \big(\frac{\bar{ \mu}}{\bar{\mu}-b_0}\big)^{N/2}\big(\frac{\lambda _{1,b}}{ \lambda _{1,b}-a_0}\big)^{N/2}E_{a,b,f}(\pi_{a,b,f}(u) ) , \end{equation*} which completes the proof. \end{proof} \begin{corollary}\label{corolario7} $m^{\tau }(0,0,f) \leq (\frac{\bar{\mu} }{\bar{\mu}-b_0})^{N/2}(\frac{\lambda _{1,b}}{ \lambda _{1,b}-a_0})^{N/2}m^{\tau }(a,b,f) $. \end{corollary} For the proof of the next lemma we refer the reader to \cite{CnC}. \begin{lemma}\label{lema9} If $\Omega \cap M\neq \emptyset $ then: (a) $m^{\Gamma }(0,0,f) \leq \frac{1}{N}\ell _f^{\Gamma }$. (b) If there exists $y\in \Omega \cap M$ with $\Gamma x\neq Gy$, then $ m^{\tau }(0,0,f) \leq \frac{2}{N}\ell _f^{\Gamma }$. \end{lemma} \subsection{A compactness result} \begin{definition}\label{def2} A sequence $\{u_n\}\subset H_0^1(\Omega ) $ satisfying \begin{equation*} E_{a,b,f}(u_n)\to c\quad \text{and}\quad \nabla E_{a,b,f}(u_n)\to 0. \end{equation*} is called a Palais-Smale sequence for $E_{a,b,f}$ at $c$. We say that $E_{a,b,f}$ satisfies the Palais-Smale condition $(PS) _{c}$ if every Palais-Smale sequence for $E_{a,b,f}$ at $c $ has a convergent subsequence. If $\{u_n\}\subset H_0^1(\Omega )^{\tau }$ then $\{u_n\}$ is a $\tau $-equivariant Palais-Smale sequence and $E_{a,b,f}$ satisfies the $\tau $-equivariant Palais-Smale condition, $(PS) _{c}^{\tau }$. If $\tau \equiv 1$ $\{u_n\}$ is a $\Gamma $-invariant Palais-Smale sequence and $E_{a,b,f}$ satisfies the $\Gamma $-invariant Palais-Smale condition $(PS) _{c}^{\Gamma }$. \end{definition} To describe the $\tau $-equivariant Palais-Smale sequence for $E_{a,b,f}$ we use the next theorem proved by Guo and Niu \cite{gn}. which is based on results of Struwe \cite{s}. \begin{theorem} \label{thm4} Let $(u_n)$ be a $\tau $-equivariant Palais-Smale sequence in $ H_0^1(\Omega )^{\tau }$ for $E_{a,b,f}$ at $c\geq 0$. Then there exist a solution $u$ of \eqref{problem abf TAU}, $m$, $l\in \mathbb{N}$; a closed subgroup $G^i$ of finite index in $G$, sequences $\{y_n^i\}\subset \Omega $, $\{r_n^i\}\subset (0,\infty )$, a solution $\widehat{u}_0^i $ of \eqref{criticalproblemUNO} for $i=1,\dots,m$; and $\{R_n^{j}\}\subset (0,\infty )$, a solution $\widehat{u}_{b}^{j}$ of \eqref{critical problem DOS} for $j=1,\dots,l$. Such that \begin{itemize} \item[(i)] $G_{y_n^i}=G^i$, \item[(ii)] $(r_n^i)^{-1}\operatorname{dist}(y_n^i,\partial \Omega )\to \infty $, $y_n^i\to y^i$, if $n\to \infty $, for $i=1,\dots,m$, \item[(iii)] $(r_n^i)^{-1}| gy_n^i-g'y_n^i|\to \infty $, if $n\to \infty $, and $[g]\neq [g']\in G/G^i$ for $i=1,\dots,m$, \item[(iv)] $\widehat{u}_0^i(gx)=\tau (g)\widehat{u}_0^i(x)$, $\forall x\in \mathbb{R}^{N}$ and $g\in G^i$, \item[(v)] $\widehat{u}_{b}^{j}(gx)=\tau (g)\widehat{u}_{b}^{j}(x)$, for all $x\in \mathbb{R}^{N}$ and $g\in G$, $R_n^{j}\to 0$ for $j=1,\dots,l$, \item[(vi)] \begin{align*} u_n(x)&=u(x)+\sum_{i=1}^{m}\sum_{[g]\in G/G^i}( r_n^i)^{(2-N)/2}f(y^i)^{(2-N)/4}\\ &\quad\times \tau (g)\widehat{u}_0^i(g^{-1}(\frac{x-gy_n^i}{r_n^i}) ) +\sum_{j=1}^{l}(R_n^{j})^{\frac{2-N}{2}}\widehat{u}_{b}^{j} (\frac{x}{R_n^{j}})+o(1) \end{align*} \item[(vii)] $E_{a,b,f}(u_n)\to E_{a,b,f}(u)+\sum_{i=1}^{m}(\frac{ \#(G/G^i)}{f(y^i)^{(N-2)/2}}) E_{0,0,1}^{\infty }(\widehat{u} _0^i)+\sum_{j=1}^{l}E_{0,b(0),1}^{\infty }(\widehat{u}_{b}^{j})$, as $n\to \infty $ \end{itemize} \end{theorem} \begin{corollary}\label{existsoluc} $E_{a,b,f}$ satisfies $(PS)_{c}^{\tau }$ at every value \begin{equation*} c<\min \big\{ \#(G/\Gamma ) \frac{\ell _f^{\Gamma }}{N}, \frac{\#(G/\Gamma ) }{N}S_{b(0) }^{N/2}\big\} . \end{equation*} \end{corollary} \begin{proof} From the inequality of the value $c$ and the part (vii) of the theorem, we obtain that $m$ and $l$ are equal to zero. The convergence follows from (vi). \end{proof} \section{The bariorbit map} In the following we suppose the condition $\ell _f^{\Gamma }\leq S_{b(0)}^{N/2}$ hold and we will assume the next nonexistence condition. \begin{itemize} \item[(NE)] The infimum of $E_{0,0,f}$ is not achieved in $\mathcal{N}_{0,0,f}^{\Gamma }$. \end{itemize} With these conditions, Corollary \ref{existsoluc} and Lemma \ref{lema9} imply that \begin{equation} m^{\Gamma }(0,0,f):=\inf_{\mathcal{N}_{0,0,f}^{\Gamma }}E_{0,0,f} =\Big(\min_{x\in \overline{\Omega }}\frac{\#\Gamma x}{f(x)^{(N-2)/2}} \Big) \frac{1}{N}S^{N/2}. \label{inf0} \end{equation} Let \begin{equation*} M:=\{ y\in \overline{\Omega }:\frac{\#\Gamma y}{f(y)^{(N-2)/2}} =\min_{x\in \overline{\Omega }}\frac{\#\Gamma x}{f(x)^{(N-2)/2}} \}. \end{equation*} For every $y\in \mathbb{R}^{N}$, $\gamma \in \Gamma $, the isotropy subgroups satisfy $\Gamma _{\gamma y}=\gamma \Gamma _{y}\gamma^{-1}$. Therefore the set of isotropy subgroups of $\Gamma $-invariant subsets consists of complete conjugacy classes. We choose $\Gamma _i\subset \Gamma $, $i=1,..,m,$\ one in each conjugacy class of an isotropy subgroup of $M$. Set \begin{gather*} M^i := \{y\in M:\Gamma _{y}=\Gamma _i\} =\{y\in M:\gamma y=y\; \forall \gamma \in \Gamma _i\}, \\ \Gamma M^i := \{\gamma y:\gamma \in \Gamma ,\; y\in M^i\} =\{y\in M:(\Gamma _{y})=(\Gamma _i)\}. \end{gather*} By definition of $M$ it follows that $f$ is constant on each $\Gamma M^i$, then we can define \begin{equation*} f_i:=f(\Gamma M^i)\in \mathbb{R}. \end{equation*} The compactness of $M$ allows us to fix $\delta _0>0$ such that \begin{equation} \begin{gathered} | y-\gamma y| \geq 3\delta _0\quad \forall y\in M, \; \gamma \in \Gamma \text{ if }\gamma y\neq y, \\ \operatorname{dist}(\Gamma M^i,\Gamma M^{j})\geq 3\quad \forall i,j=1,\dots,m\text{ if }i\neq j, \end{gathered}\label{desig2} \end{equation} and such that the isotropy subgroup of each point in $M_{\delta_0}^i:=\{z\in \mathbb{R}^{N}:\gamma z=z \forall \gamma \in \Gamma _i, \operatorname{dist}(z,M^i)\leq \delta _0\}$ is precisely $\Gamma _i$. Define \begin{equation*} W_{\varepsilon ,z}:=\sum_{[g]\in \Gamma /\Gamma _i}f_i^{\frac{2-N }{4}}U_{\varepsilon ,gz}\quad \text{if }z\in M_{\delta _0}^i, \end{equation*} where $U_{\varepsilon ,y}:=U_0^{\varepsilon ,y}$ is defined by \eqref{instanton AT}. For each $\delta \in (0,\delta _0)$ define \begin{gather*} M_{\delta } := M_{\delta }^1\cup \cdot \cdot \cdot \cup M_{\delta }^{m},\\ B_{\delta } := \{(\varepsilon ,z):\varepsilon \in (0,\delta ),\text{ }z\in M_{\delta }\}, \\ \Theta _{\delta } := \{\pm W_{\varepsilon ,z}:(\varepsilon ,z)\in B_{\delta }\},\text{ \ \ \ \ }\Theta _0:=\Theta _{\delta _0}. \end{gather*} We mention the next result proved in \cite{CnC} about the construction of bariorbit maps. \begin{proposition}\label{teodeckr} Let $\delta \in (0,\delta _0)$, and assume that {\rm (NE)} holds. There exists $\eta >m^{\Gamma }(0,0,f)$ with following properties: For each $u\in \mathcal{N}_{0,0,f}^{\Gamma }$ such that $E_{0,0,f}(u)\leq \eta $ we have \begin{equation*} \inf_{W\in \Theta _0}\| u-W\| <\sqrt{\frac{1}{2} Nm^{\Gamma }(0,0,f)}, \end{equation*} and there exist precisely one $\nu \in \{-1,1\}$, one $\varepsilon \in (0,\delta _0)$ and one $\Gamma $-orbit $\Gamma z\subset M_{\delta _0}$ such that \begin{equation*} \| u-\nu W_{\varepsilon ,z}\| =\inf_{W\in \Theta_0}\| u-W\| . \end{equation*} Moreover $(\varepsilon ,z)\in B_{\delta }$ \end{proposition} \subsection{Definition of the bariorbit map} Fix $\delta \in (0,\delta _0)$ and choose $\eta >m^{\Gamma }(0,0,f)$ as in Proposition \ref{teodeckr}. Define \begin{gather*} E_{0,0,f}^{\eta } := \{u\in H_0^1(\Omega ):E_{0,0,f}(u)\leq \eta \}, \\ B_{\delta }(M) := \{z\in \mathbb{R}^{N}:\operatorname{dist}(z,M)\leq \delta \}, \end{gather*} and the space of $\Gamma $-orbits of $B_{\delta }(M)$ by $B_{\delta}(M)/\Gamma $. From Proposition \ref{teodeckr} we have the following definition. \begin{definition}\label{defbeta}\rm The \emph{bariorbit map} $\beta^{\Gamma }:\mathcal{N}_{0,0,f}^{\Gamma }\cap E_{0,0,f}^{\eta }\to B_{\delta }(M)/\Gamma$ is defined by \begin{equation*} \beta^{\Gamma }(u)=\Gamma y\overset{\emph{def}}{\Longleftrightarrow } \| u\pm W_{\varepsilon ,y}\| =\min_{W\in \Theta_0}\| u-W\| . \end{equation*} \end{definition} This map is continuous and $\mathbb{Z}/2$-invariant by the compactness of $M_{\delta }$. If $\Gamma $ is the kernel of an epimorphism $\tau :G\to \mathbb{Z} /2$, choose $g_{\tau }\in \tau^{-1}(-1)$. Let $u\in \mathcal{N}_{0,0,f}^{\tau }$ then $u$ changes sign and $u^{-}(x)=-u^{+}(g_{\tau}^{-1}x). $ Therefore, $\| u^{+}\|^2=\|u^{-}\|^2$ and $| u^{+}| _{f,2^{\ast }}^{2^{\ast }}=| u^{-}| _{f,2^{\ast }}^{2^{\ast }}$. So \begin{equation} u\in \mathcal{N}_{0,0,f}^{\tau }\Rightarrow u^{\pm }\in \mathcal{N} _{0,0,f}^{\Gamma }\text{ and }E_{0,0,f}(u)=2E_{0,0,f}(u^{\pm }). \label{relneh} \end{equation} \begin{lemma}\label{dobinf} $E_{0,0,f}$ does not achieve its infimum at $\mathcal{N}_{0,0,f}^{\tau }$, moreover \begin{equation*} m^{\tau }(0,0,f) :=\inf_{\mathcal{N}_{0,0,f}^{\tau }}E_{0,0,f}=\Big(\min_{x\in \overline{\Omega }}\frac{\#\Gamma x}{ f(x)^{(N-2)/2}}\Big) \frac{2}{N}S^{N/2}=2m^{\Gamma }(0,0,f). \end{equation*} \end{lemma} \begin{proof} Suppose that there exists $u\in \mathcal{N}_{0,0,f}^{\tau }$ such that $E_{0,0,f}(u)=m^{\tau }(0,0,f)$. Then $u^{+}\in \mathcal{N}_{0,0,f}^{\Gamma }$ and by Lemma \ref{lema9}, \begin{equation*} m^{\tau }(0,0,f)\leq \Big(\min_{x\in \overline{\Omega }}\frac{ \#\Gamma x}{f(x)^{(N-2)/2}}\Big) \frac{2}{N}S^{N/2}. \end{equation*} Hence \begin{equation*} m^{\Gamma }(0,0,f)\leq E_{0,0,f}(u^{+})=\frac{1}{2}m^{\tau }(0,0,f)\leq \Big(\min_{x\in \overline{\Omega }}\frac{\#\Gamma x}{f(x)^{\frac{N-2 }{2}}}\Big) \frac{1}{N}S^{N/2}=m^{\Gamma }(0,0,f). \end{equation*} Thus $u^{+}$ is a minimum of $E_{0,0,f}$ on $\mathcal{N}_{0,0,f}^{\Gamma }$, which contradicts (NE). The corollary \ref{existsoluc} implies \begin{equation*} m^{\tau }(0,0,f)=\Big(\min_{x\in \overline{\Omega }}\frac{\#\Gamma x }{f(x)^{(N-2)/2}}\Big) \frac{2}{N}S^{N/2}. \end{equation*} \end{proof} The property \eqref{relneh} implies $u^{\pm }\in \mathcal{N}_{0,0,f}^{\Gamma }\cap E_{0,0,f}^{\eta }$ for all $u\in \mathcal{N}_{0,0,f}^{\tau }\cap E_{0,0,f}^{2\eta }$, so \begin{equation} \| u^{+}-\nu W_{\varepsilon ,y}\| =\min_{W\in \Theta _0}\| u^{+}-W\|\Leftrightarrow \| u^{-}+\nu W_{\varepsilon ,g_{\tau }y}\| =\min_{W\in \Theta _0}\| u^{-}-W\| . \label{sim} \end{equation} Therefore, \begin{equation} \beta^{\Gamma }(u^{+})=\Gamma y\Longleftrightarrow \beta^{\Gamma }(u^{-})=\Gamma (g_{\tau }y), \label{simbeta} \end{equation} and \begin{equation} \beta^{\Gamma }(u^{+})\neq \beta^{\Gamma }(u^{-})\quad \forall u\in \mathcal{N}_{0,0,f}^{\tau }\cap E_{0,0,f}^{2\eta }. \label{difbariorbita} \end{equation} Set $B_{\delta }(M)^{\tau }:=\{z\in B_{\delta }(M):Gz=\Gamma z\}$. \begin{proposition}\label{barorbequiv} The map \begin{equation*} \beta^{\tau }:\mathcal{N}_{0,0,f}^{\tau }\cap E_{0,0,f}^{2\eta }\to (B_{\delta }(M)\setminus B_{\delta }(M)^{\tau }) /\Gamma ,\quad \beta^{\tau }(u):=\beta^{\Gamma }(u^{+}), \end{equation*} is well defined, continuous and $\mathbb{Z}/2$-equivariant; i.e., $\beta^{\tau }(-u)=\Gamma (g_{\tau }y)$ if and only if $\beta^{\tau }(u)=\Gamma y$. \end{proposition} \begin{proof} If $u\in \mathcal{N}_{0,0,f}^{\tau }\cap E_{0,0,f}^{2\eta }$ and $\beta^{\tau }(u)=\Gamma y\in B_{\delta }(M)^{\tau }/\Gamma $ then $\beta^{\Gamma}(u^{+})=\Gamma y=\Gamma (g_{\tau }y)=\beta^{\Gamma }(u^{-})$, this is a contradiction to \eqref{difbariorbita}. We conclude that $\beta^{\tau}(u)\not\in B_{\delta }(M)^{\tau }/\Gamma $. The continuity and $\mathbb{Z}/2 $-equivariant properties follows by $\beta^{\Gamma }$ ones. \end{proof} \section{Multiplicity of solutions} \subsection{Lusternik-Schnirelmann theory} An involution on a topological space $X$ is a map $\varrho _{X}:X\to X$, such that $\varrho _{X}\circ \varrho _{X}=id_{X}$. Providing $X$ with an involution amounts to defining an action of $\mathbb{Z}/2$ on $X$ and viceversa. The trivial action is given by the identity $\varrho _{X}=id_{X}$, the action of $G/\Gamma \simeq \mathbb{Z}/2$ on the orbit space $\mathbb{R} ^{N}/\Gamma $ where $G\subset O(N) $ and $\Gamma $ is the kernel of an epimorphism $\tau :G\to \mathbb{Z}/2$, and the antipodal action $\varrho (u) =-u$ on $\mathcal{N}_{a,b,f}^{\tau }$. A map $f:X\to Y$ is called $\mathbb{Z}/2$-equivariant $(\text{or a } \mathbb{Z}/2\text{-map}) $ if $\varrho _{Y}\circ f=f\circ \varrho _{X}, $ and two $\mathbb{Z}/2$-maps, $f_0,f_1:X\to Y$, are said to be $\mathbb{Z}/2$-homotopic if there exists a homotopy $\Theta :X\times \left[ 0,1\right] \to Y$ such that $\Theta (x,0) =f_0(x) $, $\Theta (x,1) =f_1(x) $ and $\Theta (\varrho _{X}x,t) =\varrho _{Y}\Theta ( x,t) $ for every $x\in X$, $t\in \left[ 0,1\right] $. A subset $A$ of $ X$ is $\mathbb{Z}/2$-equivariant if $\varrho _{X}a\in A$ for every $a\in A$. \begin{definition} \label{def4} \rm The $\mathbb{Z}/2$-category of a $\mathbb{Z}/2$-map $f:X\to Y$ is the smallest integer $k:=\mathbb{Z}/2-{\rm cat}(f) $ with following properties \begin{itemize} \item[(i)] There exists a cover of $X=X_1\cup \ldots \cup X_{k}$ by $k$ open $\mathbb{Z}/2$-invariant subsets, \item[(ii)] The restriction $f\mid _{X_i}:X_i\to Y$ is $\mathbb{Z}/2$-homotopic to the composition $\kappa _i\circ \alpha _i$ of a $\mathbb{Z}/2$-map $\alpha _i:X_i\to \{ y_i,\varrho_{Y}y_i\} $, $y_i\in Y$, and the inclusion $\kappa _i:\{y_i,\varrho _{Y}y_i\} \hookrightarrow Y$. \end{itemize} If not such covering exists, we define $\mathbb{Z}/2-{\rm cat}(f):=\infty $. \end{definition} If $A$ is a $\mathbb{Z}/2$-invariant subset of $X$ and $\iota :A\hookrightarrow X$ is the inclusion we write \begin{equation*} \mathbb{Z}/2-\operatorname{cat}{}_{X}(A) :=\mathbb{Z}/2-{\rm cat}(\iota ) ,\quad \mathbb{Z}/2-\operatorname{cat}{}_{X}(X) :=\mathbb{Z}/2-{\rm cat}(X) . \end{equation*} Note that if $\varrho _{x}={\rm id}_{X}$ then \begin{equation*} \mathbb{Z}/2-\operatorname{cat}{}_{X}(A) :=\operatorname{cat}{}_{X}(A) ,\quad \mathbb{Z}/2-{\rm cat}(X) :={\rm cat}(X) , \end{equation*} are the usual Lusternik-Schnirelmann category (see \cite[definition 5.4]{w}). \begin{theorem} \label{thm5} Let $\phi :M\to \mathbb{R}$ be an even functional of class $C^1$, and $M$ a submanifold of a Hilbert space of class $C^2$, symmetric with respect to the origin. If $\phi $ is bounded below and satisfies $(PS)_{c}$ for each $c\leq d$, then $\phi $ has at least $\mathbb{Z}/2$-cat$(\phi^{d})$ pairs critical points such that $\phi (u)\leq d$ (see \cite{cp}). \end{theorem} \subsection{Proof of Theorems} We prove Theorem \ref{teoremaDOS}; the proof of Theorem \ref{teoremaUNO} is analogous. Recall that if $\tau $ is the identity or an epimorphism then $\#(G/\Gamma ) $ is $1$ or $2$. \begin{proof}[Proof of Theorem \ref{teoremaDOS}] By Corollary \ref{existsoluc}, $E_{a,b,f}$ satisfies $(PS)_{\theta }^{\tau }$ for \begin{equation*} \theta <\min \big\{ \#(G/\Gamma ) \frac{\ell _f^{\Gamma }}{N} ,\frac{\#(G/\Gamma ) }{N}S_{b(0) }^{N/2}\big\} . \end{equation*} By Lusternik-Schnirelmann theory $E_{a,b,f}$ has at least $\mathbb{Z}/2$-cat$ (\mathcal{N}_{a,b,f}^{\tau }\cap E_{a,b,f}^{\theta }) $ pairs $ \pm u$ of critical points in $\mathcal{N}_{a,b,f}^{\tau }\cap E_{a,b,f}^{\theta }$. We are going to estimate this category for an appropriate value of $\theta $. Without lost of generality we can assume that $\delta \in (0,\delta_0) $, with $\delta _0$ as in \eqref{desig2}. Let $\eta >\frac{\ell _f^{\Gamma }}{N}$, $\mu^{\ast }\in (0,\overline{\mu }) $ and $\lambda^{\ast }\in (0,\lambda _{1,b}) $ such that \begin{equation*} (\frac{\bar{\mu}}{\bar{\mu}-\mu^{\ast }})^{N/2}(\frac{ \lambda _{1,b}}{\lambda _{1,b}-\lambda^{\ast }})^{N/2} =\min \{2,\frac{N\eta }{\#(G/\Gamma ) \ell _f^{\Gamma }},\frac{\ell _f^{\Gamma }}{\ell _f^{\Gamma }-\delta'}\} . \end{equation*} By Lemma \ref{comparacionE}, if $u\in \mathcal{N}_{a,b,f}^{\tau }\cap E_{a,b,f}^{\theta }$, $b_0\in (0,\mu^{\ast }) $, $a_0\in (0,\lambda^{\ast }) $ we have \begin{align*} E_{0,0,f}(\pi _{0,0,f}(u) ) &\leq (\frac{\bar{\mu}}{\bar{\mu}-b_0})^{N/2}(\frac{\lambda _{1,b}}{\lambda _{1,b}-a_0})^{N/2}E_{a,b,f}(u) \\ &< (\frac{\bar{\mu}}{\bar{\mu}-b_0})^{N/2}( \frac{\lambda _{1,b}}{\lambda _{1,b}-a_0})^{N/2}\#( G/\Gamma ) \frac{\ell _f^{\Gamma }}{N} \\ &\leq \#(G/\Gamma ) \eta . \end{align*} Let $\beta^{\tau }$ be the $\tau$-bariorbit function, defined in Proposition \ref{barorbequiv}. Hence the composition map \begin{equation*} \beta^{\tau }\circ \pi _{0,0,f}:\mathcal{N}_{a,b,f}^{\tau }\cap E_{a,b,f}^{\theta }\to (B_{\delta }(M)\setminus B_{\delta }(M)^{\tau }) /\Gamma , \end{equation*} is a well defined $\mathbb{Z}/2$-invariant continuous function. Since $N\geq 4$, by \cite[Lemma 3 and Proposition 3]{CnC}, using (F2) we can choose $\varepsilon >0$ small enough and $\theta :=\theta_{\varepsilon }<\#(G/\Gamma ) \frac{\ell _f^{\Gamma }}{N}$ such that \begin{equation*} E_{a,b,f}(\pi _{a,b,f}(w_{\varepsilon ,y}^{\tau }) ) \leq \theta <\#(G/\Gamma ) \frac{\ell _f^{\Gamma }}{N},\quad \forall y\in M_{\delta }^{-}, \end{equation*} where $w_{\varepsilon ,y}^{\tau }=w_{\varepsilon ,y}^{\Gamma }-w_{\varepsilon ,g_{\tau }y}^{\Gamma }$, $\tau (g_{\tau })=-1$, and \begin{equation*} w_{\varepsilon ,y}^{\Gamma }(x)=\sum_{[\gamma ]\in \Gamma /\Gamma _{y}}f(y)^{ \frac{2-N}{4}}U_{\varepsilon ,\gamma y}(x)\varphi _{\gamma y}(x). \end{equation*} Thus the map $\alpha _{\delta }^{\tau }: M_{\tau ,\delta }^{-}/\Gamma \to \mathcal{N}_{a,b,f}^{\tau }\cap E_{a,b,f}^{\theta }$, defined by \[ \alpha _{\delta }^{\tau }(\Gamma y) := \pi _{a,b,f}( w_{\varepsilon ,y}^{\tau }) \] is a well defined $\mathbb{Z}/2$-invariant continuous function. Moreover $\beta^{\tau }(\pi _{0,0,f}(\alpha _{\delta }^{\tau }( \Gamma y) ) ) =\Gamma y$ for all $y\in M_{\tau ,\delta }^{-}$. Therefore, \begin{equation*} \mathbb{Z}/2-{\rm cat}(\mathcal{N}_{a,b,f}^{\tau }\cap E_{a,b,f}^{\theta }) \geq \operatorname{cat}{}_{((B_{\delta }(M)\setminus B_{\delta }(M)^{\tau }) /\Gamma ) }(M_{\tau ,\delta }^{-}/\Gamma ) . \end{equation*} So \eqref{problem abf TAU} has at least \begin{equation*} {\rm ca}t_{((B_{\delta }(M)\setminus B_{\delta }(M)^{\tau }) /G) }(M_{\tau ,\delta }^{-}/G) \end{equation*} pairs $\pm u$ solution which satisfy \begin{equation*} E_{a,b,f}(u) <\#(G/\Gamma ) \frac{\ell _f^{\Gamma }}{N}. \end{equation*} By the choice of $\lambda^{\ast }$ and $\mu^{\ast }$ we have that \begin{equation*} (\frac{\bar{\mu}}{\bar{\mu}-\mu^{\ast }})^{N/2}(\frac{ \lambda _1}{\lambda _1-\lambda^{\ast }})^{N/2}\leq \frac{\ell _f^{\Gamma }}{\ell _f^{\Gamma }-\delta'}, \end{equation*} then \begin{align*} \#(G/\Gamma ) \frac{\ell _f^{\Gamma }-\delta'}{N} &\leq (\frac{\bar{\mu}-b_0}{\bar{\mu}})^{N/2}(\frac{ \lambda _1-a_0}{\lambda _1})^{N/2}\#(G/\Gamma ) \frac{\ell _f^{\Gamma }}{N} \\ &\leq m^{\tau }(a,b,f)\leq E_{a,b,f}(u) \\ &= \frac{1}{N}\| u\| _{a,b}^2<\#(G/\Gamma ) \frac{\ell _f^{\Gamma }}{N} \end{align*} therefore, $\#(G/\Gamma ) \ell _f^{\Gamma }-\delta^{\prime \prime }\leq \| u\| _{a,b}^2<\#(G/\Gamma ) \ell _f^{\Gamma }$. \end{proof} \begin{proof}[Proof of Theorem \protect\ref{teorema TRES}] By Theorem \ref{teoremaUNO} there exist $\lambda $ and $\mu $ sufficiently close to zero such that \eqref{problem abf GAMMA} has at least $\operatorname{cat}{}_{B_{\delta }(M) /\Gamma }(M_{\delta }^{-}/\Gamma) $ positive solutions with $E_{a,b,f}(u)<\frac{\ell _f^{\Gamma }}{N}$. Observe that $\frac{\ell _f^{\Gamma }}{N}\frac{\ell _f^{\Gamma }}{N}$. On the other hand if $u\in\mathcal{N}_{0,0,f}^{\widetilde{\Gamma }}\subset \mathcal{N}_{0,0,f}^{\Gamma}$ satisfies $E_{0,0,f}(u)=m^{\widetilde{\Gamma }}(0,0,f)$ we obtain \begin{equation*} \frac{\ell _f^{\Gamma }}{N}=m^{\Gamma }(0,0,f)