\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 126, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/126\hfil Three-point Laplacian BVPs via homotopic deformations] {Existence of positive solutions to three-point $\phi$-Laplacian BVPs via homotopic deformations} \author[N. Benkaci, A. Benmeza\"i, J. Henderson \hfil EJDE-2012/126\hfilneg] {Nadir Benkaci, Abdelhamid Benmeza\"i, Johnny Henderson} % in alphabetical order \address{Nadir Ali Benkaci \newline Faculty of Sciences, University M'Hmed Bouguerra, Boumerdes, Algeria} \email{radians\_2005@yahoo.fr} \address{Abdelhamid Benmezai \newline Dynamical Systems Laboratory, Faculty of Mathematics, USTHB P.O. Box 32, El-Alia Bab-ezouar, Algiers, Algeria} \email{abenmezai@yahoo.fr} \address{Johnny Henderson \newline Department of Mathematics, Baylor University, Waco, Texas 76798-7328, USA} \email{Johnny\_Henderson@baylor.edu} \thanks{Submitted March 12, 2012. Published August 14, 2012.} \subjclass[2000]{34B15, 34B18} \keywords{$\phi$-Laplacian BVP; positive solution; fixed point; index theory} \begin{abstract} Under suitable conditions and via homotopic deformation, we provide existence results for a positive solution to the three-point $\phi $-Laplacian boundary-value problem \begin{gather*} -( a\phi(u'))'(x)=b(x) f(x,u(x)),\quad x\in ( 0,1), \\ u(0)=\alpha u(\eta),\quad u'(1)=0, \end{gather*} where $\phi :\mathbb{R}\to\mathbb{R}$ is an increasing homeomorphism with $\phi ( 0) =0$, $b$ does not vanish identically, and $f$ is continuous. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} We are interested in the existence of a positive solution to the three-point boundary-value problem \begin{equation} \begin{gathered} -( a\phi ( u') ) '(x)=b(x) f(x,u(x)),\quad x\in ( 0,1), \\ u(0)=\alpha u( \eta ),\quad u'(1)=0, \end{gathered} \label{bvpa} \end{equation} where $\phi :\mathbb{R}\to\mathbb{R}$ is an increasing homeomorphism with $\phi ( 0) =0$, $\alpha,\eta \in [ 0,1)$, $a, b\in C( [ 0,1] ,[0,+\infty ) )$, $a>0$ in $[0,1] $, $b$ does not vanish identically, and $f:[ 0,1] \times [ 0,+\infty ) \to [ 0,+\infty ) $ is continuous. Because of their physical applications, the study of $\phi$-Laplacian second-order differential equations subject to various boundary conditions have received a great deal of attention during the latter two decades; see \cite{benmezai1}-\cite{greaf1}, \cite{b20}-\cite{b13} and references therein. The differential operator in all of the cited papers, corresponds to the case where $a$ is identically equal to $1$. When seeking a positive solution when the nonlinearity positivity is guaranteed, authors are frequently led to using Krasnoselskii's compression and expansion of a cone principal to prove existence of a fixed point for some completely continuous operator $T:K\to K$ where $K$ is a cone in some functional Banach space. For example, if we want use Krasnoselskii's theorem on norm compression and expansion of a cone, we may look for $01$, $\phi _p( x) =| x| ^{p-2}x$ and $\psi_p=\phi _p^{-1}$. We will use the following lemmas concerning computations of the fixed point index, $i$, for a compact map $A:B(0,R)\cap K\to K$ where $K$ is a cone in a Banach space $E$. \begin{lemma}\label{index01} If $\| Ax\| <\| x\| $ for all $x\in \partial B(0,R)\cap K$, then $$ i( A,B(0,R)\cap K,K) =1\,.$$ \end{lemma} \begin{lemma}\label{index00} If $\| Ax\| >\| x\| $ for all $x\in \partial B(0,R)\cap K$, then $$ i( A,B(0,R)\cap K,K) =0\,.$$ \end{lemma} An elaborate presentation of the fixed point index theory can be found in \cite{ht}. In what follows, we let $E$ be the Banach space of all continuous functions defined on $[ 0,1] $ equipped with its sup-norm, for $u\in E$, $\|u\| =\sup\{ | u(t)| :t\in [ 0,1]\}$. $K$ is the normal cone of nonnegative functions in $E$, $K = \{u \in E : u(t) \geq 0, t \in [0,1]\}$. \section{Related lemmas} Let $N:E\to E$ be defined for $u\in E$ by \[ Nu( x) =\frac{\alpha }{1-\alpha }\int_0^{\eta }\psi \Big( \frac{1}{a( t) }\int_{t}^{1}b(s)\phi ( u(s)) ds\Big)dt +\int_0^{x}\psi \Big( \frac{1}{a( t) }\int_{t}^{1}b(s)\phi ( u(s)) ds\Big) dt, \] $F:K\to K$, the Nemitski operator defined for $u\in K$ by $Fu( x) =\psi ( f(x,u(x)))$, and $T=NF$. When $\phi =\phi _p$ with $p>1$, $\psi ,N$ and $T$ are denoted, respectively, $\psi _p,N_p$ and $T_p$. It is easy to see that $N$ is completely continuous (by the Ascoli-Arzela theorem), that $F$ is bounded (maps bounded sets into bounded sets), and that $u$ is a positive solution to \eqref{bvpa} if and only if $u$ is a nontrivial fixed point to the completely continuous operator $T=NF$. For $p>1$, the set $K_p=\{ u\in K:u(x)\geq \rho _p(x)\| u\| \text{ in }[ 0,1] \} $ is a cone in $E$ where \[ \rho _p(x)=\frac{1}{\overline{\rho }}\int_0^{x}\frac{dt}{\psi _p(a(t)) },\quad \overline{\rho }=\int_0^{1}\frac{dt}{\psi _p( a(t)) }. \] \begin{lemma}\label{l1} For all $p>1$, $T_p(K)\subset K_p$. \end{lemma} \begin{proof} Let $u\in K$, $v=T_pu$ and set $w=v-\rho _p\| v\| $. We have that $v$ is nondecreasing on $[ 0,1] $ and $\|v\| =v(1)$. Indeed, from $( a\phi _p( u') ) '=-b(t)f(t,u(t))\leq 0$, we deduce that $a\phi _p( u') $ is non-increasing in $[ 0,1] $. Furthermore, it follows from $u'( 1) =0$ that $u'\geq 0$ in $[ 0,1] $ and $u$ is nondecreasing on $[ 0,1] $, which leads in turn to $v( x) \geq v(0)$ on $[ 0,1] $. Assume that $v(0)<0$. Then we get from $v(0)=\alpha v(\eta )$ that $\alpha \neq 0$ and $v(\eta )=\frac{1}{\alpha }v(0)0, \] we obtain \[ a( t_1) ( \phi _p(v'( t_1) )-\phi_p(\rho _p'(t_1)\| v\| )) <01$, let \begin{align*} c(p) &=\frac{\alpha }{1-\alpha }\int_0^{\eta }\psi _p\Big( \frac{1}{a(t)} \int_{t}^{1}b(s)\phi _p( \rho _p( s) ) ds\Big) dt\\ &\quad +\int_0^{1}\psi _p\Big( \frac{1}{a(t)} \int_{t}^{1}b(s)\phi _p(\rho _p( s) ) ds\Big) dt. \end{align*} Then for all $u\in K_p$, $\| N_pu\| \geq c( p) \| u\|$. \end{lemma} In the remainder of this section, we will present two results providing fixed point index calculations in the case where $\phi =\phi _p$. These are needed for the proofs of the main results of this paper. Set for $p>1$ \[ \gamma ( p) =\int_{\frac{1}{2}}^{1}\psi _p\Big( \frac{1}{a(t)} \int_{t}^{1}b(s)\phi _p( \rho _p( s) ) ds\Big) dt. \] \begin{lemma}\label{l2} Assume that $\phi =\phi _p$ with $p>1$ and \[ \liminf_{x\to \infty }\Big( \underset{t\in [ 0,1 ] }{\min }\ \frac{f(t,x)}{\phi _p( x) }\Big) =l_{\infty }\quad \text{with}\quad l_{\infty }\phi _p( \gamma ( p)) >1. \] Then there exists $R_{\infty }( p) >0$ such that $i(T_p,B( 0,R) \cap K,K) =0$ for all $R\geq R_{\infty}( p) $. \end{lemma} \begin{proof} It follows, from the permanence property of the fixed point index and Lemma \ref{l1}, that \[ i( T_p,B( 0,R) \cap K,K) =i( T_p,B( 0,R) \cap K_p,K_p) . \] Let $\epsilon >0$ be such that $( l_{\infty }+\epsilon ) \phi _p( \gamma ( p) ) >1$. We deduce from the definition of $l_{\infty }$ that there exists $r_{\infty }( p) >0$ such that \[ f( t,u) \geq ( l_{\infty }+\epsilon ) \phi _p(u) \quad \text{for all }( t,u) \in [ 0,1] \times [ r_{\infty }( p) ,+\infty ) . \] Thus, we have for all $u\in K_p\cap B(0,r)$, with $r>R_{\infty }(p) =( r_{\infty }( p) /\rho _p( \frac{1}{2}) ), $ \[ \| Lu\| \geq Lu\big( \frac{1}{2}\big) \geq \int_0^{1/2} \psi _p( \frac{1}{a( t) } \int_{t}^{1}b(s)f(s,u(s))ds) dt \geq \psi _p( l_{\infty }+\epsilon ) \gamma ( p) \| u\| \geq \| u\| \] and by Lemma \ref{index00}, $i( T_p,B( 0,r) \cap K,K) =0$. \end{proof} \begin{lemma} \label{l3} Assume that $\phi =\phi _p$ with $p>1$, and \[ \liminf_{x\to 0} \Big( \min_{t\in [ 0,1]} \frac{f(t,x)}{\phi _p( x) }) =l_0,\quad \text{with }l_0\phi _p( \gamma ( p) ) >1. \] Then there exists $R_0>0$ such that $i( T_p,B( 0,R) \cap K,K) =0$, for all $R\leq R_0$. \end{lemma} \begin{proof} Let $\epsilon >0$ be such that $( l_0+\epsilon ) >\phi_p( \gamma ( p) )$. We deduce from the definition of $l_0$ that there exists $R_0( p) >0$ such that \[ f( t,u) \geq ( l_0+\epsilon ) \phi _p(u) \quad \text{for all }( t,u) \in [ 0,1] \times [ 0,R_0( p) ] . \] As in the proof of Lemma \ref{l2}, for all $u\in K_p\cap \partial B(0,r) $ with $01$ such that \begin{equation} \lim_{x\to +\infty } \frac{\phi ( x) }{\phi _p( x) }=1, \label{p} \end{equation} \[ c(p)< \liminf_{x\to +\infty } \Big(\min_{t\in [ 0,1] } \frac{f(t,x)}{\phi _p( x) }\Big) =l_{\infty } \leq \limsup_{x\to +\infty } \Big( \max_{t\in [ 0,1] } \frac{f(t,x)}{\phi _p( x) }\Big) =l^{\infty } <\infty, \] Then Problem \eqref{bvpa} admits a positive solution. \end{theorem} \begin{proof} Let $\epsilon >0$ be such that $(f^{0}+\epsilon ) \Gamma <1$. There exists $r_0>0$ such that \[ f(s,u)\leq \phi ( ( f^{0}+\epsilon ) u) \quad \text{for all } ( s,u) \in [ 0,1] \times [ 0,r_0] . \] Let $u\in K\cap \partial B( 0,r) $ with $0R_{\infty }(p)$ such that $i( T,B( 0,r) \cap K,K) =0$. Let for $\theta \in [0,1]$, $\phi _{\theta }=\theta \phi +( 1-\theta ) \phi_p$, $\psi _{\theta }=\phi _{\theta }^{-1}$ and consider the equation \begin{equation} u=T_{\theta }u, \label{f1} \end{equation} where $T_{\theta }:K\to K$ is given for $u\in K$ by \begin{align*} T_{\theta }u( x) & = \frac{\alpha }{1-\alpha }\int_0^{\eta }\psi _{\theta }\Big( \frac{1}{a( t) }\int_{t}^{1}b(s)f(s,u(s))ds \Big) dt \\ &\quad +\int_0^{x}\psi _{\theta }\Big( \frac{1}{a( t) } \int_{t}^{1}b(s)f(s,u(s))ds\Big) dt. \end{align*} It is clear that $u$ is a positive solution of \begin{gather*} -( a\phi _{\theta }( u') ) '(x)=b( x) f(x,u(x)),\quad x\in ( 0,1), \\ u(0)=\alpha u( \eta ) ,\quad u'(1)=0, \end{gather*} if and only if $u$ is a nontrivial fixed point of $T_{\theta }$, that $T_{\theta } $ is completely continuous, that $T_1=T$ and $T_0=T_p$. To use the homotopy property of the fixed point index, let us prove that there exists $r_{\infty }>R_{\infty }(p)$ such that \eqref{f1} has no solution in $\partial B(0,r_{\infty })\cap K$. Assume to the contrary. Then there exists sequences $( \theta_{n}) \subset [ 0,1]$, $( r_{n}) \subset (R_{\infty }(p),+\infty ) $ and $( u_{n}) \subset K$ with $\lim r_{n}=+\infty$, $u_{n}\in \partial B(0,r_{n})\cap K$ such that \begin{equation} \frac{u_{n}}{\| u_{n}\| } =\frac{T_{\theta _{n}}u_{n}}{\| u_{n}\| }. \label{fn20} \end{equation} It is easy to see that hypothesis \eqref{p} implies $ \lim_{x\to +\infty } \\phi _{\theta }( x)/\phi _p( x)=1$. Then $\lim_{x\to +\infty } \psi_{\theta }( x)/\psi _p( x)=1$. Set $\psi _{\theta }=\psi _p+\delta _{\theta }$ and $T_{\theta }=T_p+\widetilde{T}_{\theta}$, where $\widetilde{T}_{\theta}:K\to E$ is given for $u\in K$ by \begin{align*} \widetilde{T}_{\theta }u( x) &= \frac{\alpha }{1-\alpha } \int_0^{\eta }\delta _{\theta }\Big(\frac{1}{a( t) } \int_{t}^{1}b(s)f(s,u(s))ds\Big) dt \\ &\quad +\int_0^{x}\delta _{\theta }\Big( \frac{1}{a( t) } \int_{t}^{1}b(s)f(s,u(s))ds\Big) dt. \end{align*} Then \eqref{fn20} becomes \begin{equation} \frac{u_{n}}{\| u_{n}\| } =N_p\Big( \frac{Fu_{n}}{\phi _p( \| u_{n}\| ) }\Big) +\frac{\widetilde{T}_{\theta _{n}}u_{n}}{\| u_{n}\| }. \label{fn1} \end{equation} At this stage, we claim that $\lim_{n\to \infty } \widetilde{T}_{\theta _{n}}u_{n}/\| u_{n}\| =0$. Indeed, because of $l_{\infty }\leq l^{\infty }<\infty $, there exists $c_1>0$ such that \[ \frac{Fu_{n}}{\phi _p( \| u_{n}\| ) }\leq c_1. \] Also, see that $\lim_{x\to +\infty }( | \delta_{\theta }( x) | /\psi _p( x) ) =0$ means that for arbitrary $\epsilon >0$ there exists $c_{\epsilon }>0$ such that for all $x>0$ \[ | \delta _{\theta }( x) | \leq \epsilon \psi_p( x) +c_{\epsilon }. \] Thus, we have from the definition of $T_{\theta }$ that for all $x\in [0,1] $ \[ \big| \frac{T_{\theta }u_{n}(x)}{\| u_{n}\| }\big| \leq \frac{\epsilon }{1-\alpha }\int_0^{1}\psi _p\Big( \frac{1}{a(t)}\int_{t}^{1}b(s)\frac{f(s,u_{n}(s))}{\phi _p( \| u_{n}\| ) }ds\Big) dt +\frac{c_{\epsilon }}{\| u_{n}\| } \] which implies that \[ \lim \sup_{n\to \infty }\frac{\| T_{\theta }u_{n}\| }{\| u_{n}\| }\leq \epsilon \frac{c_1}{1-\alpha } \int_0^{1}\psi _p\Big( \frac{1}{a(t)}\int_{t}^{1}b(s)ds\Big) dt \] and since $\epsilon $ is arbitrary $\lim_{n\to \infty }(\widetilde{T}_{\theta _{n}}u_{n}/\| u_{n}\|) =0$. Set $v_{n}=u_{n}/\| u_{n}\|$ and $z_{n}=\widetilde{T}_{\theta _{n}}u_{n}/\| u_{n}\|$. From the compacteness of $N_p$ and the boundness of $Fu_{n}/\phi_p( \| u_{n}\| )$ it follows that there exists subsequences $( \theta _{n_{k}}) $ and $(v_{n_{k}}) $ converging respectively to $\overline{\theta }\in [ 0,1] $ and $v\in \partial B( 0,1) \cap K_p\ $ (see that $v_{n_{k}}-z_{n_{k}}=N_p(Fu_{n}/\phi _p( \|u_{n}\| )) \in K_p$). Furthermore, it follows from $l_{\infty }>c(p)$ that, for $\epsilon >0$ with $( l_{\infty }-\epsilon) >c(p)$, there exists a constant $c_0>0$ such that for all $s\in [ 0,1] $ and $u\geq 0$, \begin{equation} f(s,u)\geq ( l_{\infty }-\epsilon ) \phi _p( u)-c_0. \label{f2} \end{equation} Inserting \eqref{f2} into \eqref{fn1}, we obtain \[ v_{n_{k}}-z_{n_{k}} =N_p\Big( \frac{Fu_{n}}{\phi _p( \|u_{n}\| ) }\Big) \geq N_p\Big( ( l_{\infty}-\epsilon ) \phi _p( v_{n_{k}}) -\frac{c_0}{\| u_{n_{k}}\| }\Big) . \] Letting $n\to \infty$, we get $v\geq N_p( ( l_{\infty}-\epsilon ) v)$, from which follows the contradiction, \[ 1=\| v\| \geq \| N_p( ( l_{\infty}-\epsilon ) v) \| \geq c(p)( l_{\infty }-\epsilon ) \| v\| =c(p)( l_{\infty }-\epsilon ) >1. \] Thus there exists $r_{\infty }>R_{\infty }(p)$ such \eqref{f1} admits no solution in $\partial B(0,r_{\infty })\cap K$ and taking into account that $c(p)>\gamma ( p) $, we deduce from the homotopy property of the fixed point index and Lemma \ref{l2}, $i( T,B(0,r_{\infty })\cap K,K) =i( T_p,B(0,r_{\infty })\cap K,K) =0$. At the end by excision and solution properties of the fixed point index, we deduce that $i( T,( B(0,r_{\infty })\setminus \overline{B}(0,r)) \cap K,K) =-1$, where $r>0$ is small enough, and Problem \eqref{bvpa} admits a positive solution $u$ with $r<\| u\| 1$ such that \begin{equation} \lim_{x\to 0} \frac{\phi( x) }{\phi _p( x) }=1, \label{q} \end{equation} \[ c(p)<\liminf_{x\to 0} \Big( \min_{t\in [ 0,1] } \frac{f(t,x)}{\phi _p( x) }\Big) =l_0\leq \limsup_{x\to 0} \Big(\max_{t\in [ 0,1] } \frac{f(t,x)}{\phi_p( x) }\Big) =l^{0}<\infty, \] Then \eqref{bvpa} admits a positive solution. \end{theorem} \begin{proof} Let $\epsilon >0$ be such that $( f^{\infty }+\epsilon ) \Gamma <1$. There exists $C_{\epsilon }>0$ such that \[ f(s,u)\leq \phi ( ( f^{0}+\epsilon ) u+C_{\epsilon }) \quad \text{for all }( s,x) \in [ 0,1] \times [ 0,+\infty ) . \] We have for all $u\in K$, \begin{align*} \| Tu\|&= Tu( 1) \\ &\leq \frac{\alpha }{1-\alpha }\int_0^{\eta }\psi \Big( \frac{1}{a( t) }\int_{t}^{1}b(s)\phi ( ( f^{\infty }+\epsilon ) u(s)+C_{\epsilon }) ds\Big) dt \\ &\quad +\int_0^{1}\psi \Big( \frac{1}{a( t) }\int_{t}^{1}b(s)\phi ( ( f^{\infty }+\epsilon ) u( s) +C_{\epsilon }) ds\Big) dt \\ &\leq \Gamma \big( ( f^{0}+\epsilon ) \| u\| +C_{\epsilon }\big) . \end{align*} So, for all $u\in K\cap B(0,r)$ with $r>\frac{C_{\epsilon }\Gamma ( f^{0}+\epsilon ) }{1-\Gamma ( f^{0}+\epsilon ) }$, we have $\| Tu\| <\| u\| $, and by Lemma \ref{index01}, $i( T,B( 0,r) \cap K,K) =1$. Arguing as in the proof of Theorem \ref{thm1}, we prove the existence of $ r_0>0 $ small enough such that $i( T,B(0,r_0)\cap K,K) =0$, and by excision and solution properties of the fixed point index, we deduce that $i( T,( \overline{B}(0,r_{\infty })\setminus B(0,r_0)) \cap K,K) =1$, and that \eqref{bvpa} admits a positive solution $u$ with $r_0<\| u\|0$ (resp. $\lim_{x\to +\infty } \frac{\phi (x) }{\phi _p( x) }=l>0$). \end{remark} \begin{remark} \rm $\phi (x)=\phi _{p_1}( x) +\phi _{p_2}( x)$, where $1