\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 128, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/128\hfil Energy decay in thermoelasticity] {Energy decay in thermoelasticity type III with viscoelastic damping and delay term} \author[T. A. Apalara, S. A. Messaoudi , M. I. Mustafa \hfil EJDE-2012/128\hfilneg] {Tijani A. Apalara, Salim A. Messaoudi, Muhammad I. Mustafa} % in alphabetical order \address{Tijani A. Apalara \newline Department of Mathematics and Statistics\\ King Fahd University of Petroleum and Minerals\\ Dhahran 31261, Saudi Arabia} \email{tijani@kfupm.edu.sa} \address{Salim A. Messaoudi \newline Department of Mathematics and Statistics\\ King Fahd University of Petroleum and Minerals\\ Dhahran 31261, Saudi Arabia} \email{messaoud@kfupm.edu.sa} \address{Muhammad I. Mustafa \newline Department of Mathematics and Statistics\\ King Fahd University of Petroleum and Minerals\\ Dhahran 31261, Saudi Arabia} \email{mmustafa@kfupm.edu.sa} \thanks{Submitted June 11, 2012. Published August 15, 2012.} \subjclass[2000]{35B37, 35L55, 74D05, 93D15, 93D20} \keywords{Damping; delay; relaxation function; thermoelasticity; viscoelasticity.} \begin{abstract} In this article, we consider a thermoelastic system of type III with a viscoelastic damping and internal delay. We use the multiplier method to prove, under suitable assumptions, general energy decay results from which the exponential and polynomial types of decay are only special cases. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} %\newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In this article, we consider the problem \begin{equation}\label{E:First} \begin{gathered} \begin{aligned} &u_{tt}(x,t)-\mu \Delta u(x,t)-(\mu+\lambda)\nabla(\operatorname{div}u( x,t)) +\beta\nabla \theta(x, t)\\ &+\int_0^{t}g( s)\Delta u( x,t-s)ds +\mu _1u_t( x,t)+\mu _2 u_t( x,t-\tau)=0, \quad x\in\Omega,\; t > 0 \end{aligned}\\ \theta_{tt}(x,t)-\kappa \Delta\theta(x,t)-\delta\Delta\theta_{t}(x,t) +\beta \operatorname{div}u_{tt}( x,t),=0, \quad x\in\Omega,\; t > 0 \\ u(x,0)=u_0(x),\quad u_{t}(x, 0)=u_1(x), \quad x\in\Omega, \\ \theta(x, 0)=\theta_0(x), \quad \theta_{t}(x, 0)=\theta_1(x), \quad x\in\Omega, \\ u_{t}(x, -t)=f_0(x, t), \quad x\in\Omega,\; t\in(0, \tau)\\ u(x,t)=\theta(x,t)=0,\quad x\in\partial\Omega,\; t \ge 0 \end{gathered} \end{equation} where $\Omega$ is a bounded domain of $\mathbb{R}^n (n\geq2)$ with a boundary $\partial\Omega$ of class $C^{2}$, $ u=u(x,t)\in\mathbb{R}^n$ is the displacement vector, $\theta (x,t) $ is the difference temperature, the relaxation function $g$ is positive and decreasing, the coefficients $\mu, \lambda,\beta, \mu_1, \kappa, \delta$ are positive constants, $\mu_2$ is a real number, and $\tau >0$ represents the time delay. This is a (type III) thermoelastic system with the presence of a viscoelastic damping and constant internal delay supplemented by initial data $ u_0, u_1, \theta_0, \theta_1$ and a history function $f_0$. Time delays so often arise in many physical, chemical, biological, thermal and economical phenomena. In recent years, the control of PDEs with time delay effects has become an active area of research, see for example \cite{Abdallah,Suh} and the references therein. The presence of delay may be a source of instability. See, for example \cite{Datko,Nicaise,Xu}, where it was proved that an arbitrarily small delay may destabilize a system which is uniformly asymptotically stable in the absence of delay unless additional conditions or control terms have been used. Consider the system \begin{equation}\label{E:Scd} \begin{gathered} u_{tt}(x,t)-\Delta u(x,t)=0, \quad x\in\Omega,\; t > 0\\ u(x,t)=0,\quad x\in\Gamma_0,\; t > 0\\ \frac{\partial u}{\partial \nu}{(x, t)}=-\mu _1u_t( x,t)-\mu _2u_t( x,t-\tau), \quad x\in\Gamma_1,\; t > 0. \end{gathered} \end{equation} It is well known that in the absence of delay $(\mu_2=0, \mu_1>0)$, system \eqref{E:Scd} is exponentially stable, see \cite{Komonik}--\cite{Lasiecka 2}, \cite{Zuazua}. Whereas, in the presence of delay $(\mu_2>0)$, Nicaise and Pignotti \cite{Nicaise} proved, under the assumption $\mu_2<\mu_1$, that the energy is exponentially stable. However, for the opposite case $(\mu_2\ge \mu_1),$ they were able to construct a sequence of delays for which the corresponding solution is unstable. The same results were obtained for the case when both the damping and the delay act internally in the domain, see also \cite{Ait} for the treatment of this problem in more general abstract form. Nicaise and Pignotti \cite{Nicaise 2} treated the situation when the constant delay in system \eqref{E:Scd} is replaced with a distributed delay of the form \begin{equation*} \int_{\tau_1}^{\tau_2}\mu_2(s)u_{t}(x, t- s)ds \end{equation*} and established an exponential stability result similar to the one in \cite{Nicaise} under the condition that \begin{equation*} \int_{\tau_1}^{\tau_2}\mu_2(s)ds<\mu_1. \end{equation*} Kirane and Said-Houari \cite{Kirane} considered a viscoelastic wave equation of the form \begin{equation*} u_{tt}(x,t)-\Delta u(x,t)+\int_0^{t}g(t-s)\Delta u( x,s)ds +\mu _1u_t( x,t)+\mu _2u_t( x,t-\tau)=0, \end{equation*} for $x\in\Omega,\; t > 0$, together with initial and Dirichlet boundary conditions. They established general energy decay results under the condition that $\mu_2\leq\mu_1$. In fact, the presence of a viscoelastic damping together with a frictional damping allowed $\mu_2=\mu_1$. Recently, Pignotti \cite{Pignotti} considered the equation \[ u_{tt}(x,t)-\Delta u(x,t)+a\chi _{\omega }u_{t}(x,t)+ku_{t}(x,t-\tau )=0,\quad\text{in }\Omega \times (0,\infty ) \] for $a,\tau >0$ and $k$ a real number. She established, under some geometry condition on the domain, a well posedness of the problem and an exponential decay result for $| k | < a$. In \cite{Mustafa}, Mustafa studied a thermoelastic system with boundary time-varying delay in one dimensional space and showed that the damping effect through heat conduction is still strong enough to uniformly stabilize the system even in the presence of boundary time-varying delay. For more results concerning time delay in one dimensional as well as multi-dimensional space, we refer the reader to \cite{Fridman}, \cite{Nicaise 3}--\cite{Nicaise 5}. We also recall some results regarding thermoelastic systems of type III. In one space dimension, Quintanilla and Racke \cite{Quintanilla} considered the equation \begin{gather*} u_{tt}-\alpha u_{xx}+\beta\theta_{x}=0, \quad \text{in } [0, \infty)\times(0, L)\\ \theta_{tt}-\delta\theta_{xx}+\gamma u_{ttx}-\kappa \theta_{txx}=0, \quad \text{in } [0, \infty)\times(0, L) \end{gather*} and used the spectral analysis method and the energy method to obtain the exponential stability for various boundary conditions; (Dirichlet-Dirichlet or Dirichlet-Neuman). Furthermore, they proved an energy decay result for the radially symmetric situations in the multi-dimensional case $(n=2,3)$. Zhang and Zuazua \cite{Zhang} analyzed the long time behavior of the solution of the n-dimensional system \eqref{E:First}, when $g=\mu_1=\mu_2=0$, and showed that (i) for most domains the energy of the system does not decay uniformly, (ii) under suitable conditions on the domain that may be described in terms of Geometric Optics, the energy of the system decays exponentially, and (iii) for most domains in two space dimensions, the energy of smooth solutions decays polynomially. Messaoudi and Soufyane \cite{Messaoudi 3} considered the system \begin{gather*} u_{tt}-\mu \Delta u-(\mu+\lambda)\nabla(\operatorname{div}u) +\beta\nabla \theta =0, \quad \text{in } \Omega \times \mathbb{R}^+ \\ \theta_{tt}-\kappa\Delta\theta-\delta\Delta\theta_{t} + \beta \operatorname{div}u_{tt}=0, \quad \text{in}\ \Omega \times \mathbb{R}^+ \end{gather*} subject to a boundary feedback of viscoelastic type that acts on a part of the boundary and established exponential and polynomial stability results. This result was later generalized by Messaoudi and Al-Shehri \cite{Messaoudi} by taking a wider class of relaxation functions. They proved a more general decay result, from which the exponential and polynomial decay estimates are only special cases. Recently, Qin and Ma \cite{Qin} considered the system \begin{gather*} u_{tt}- \Delta u +\int_0^{t}g( t-s)\Delta u(s)ds+\nabla \theta =0, \quad x\in\Omega,\; t > 0\\ \theta_{tt}-\Delta\theta_{t}-\Delta\theta + \operatorname{div}u_{tt}=0, \quad x\in\Omega,\; t > 0\\ \theta =0, \quad x\in\partial\Omega,\; t > 0\\ u=0, \quad x\in\Gamma_0,\; t > 0\\ \frac{\partial u}{\partial \nu}-\int_0^{t}g( t-s)\Delta u(s)ds+H(u_{t})=0, \quad x\in\Gamma_1,\; t > 0 \end{gather*} and established a general decay result depending on both $g$ and $H$. This result extends the decay result obtained by Messaoudi and Mustafa \cite{Messaoudi 2} obtained earlier for wave equations. For more results on Thermoelasticity type III, we refer the reader to \cite{Liu,Messaoudi 4,Messaoudi 5,Quintanilla} and references therein. In this article, we investigate system \eqref{E:First} under suitable assumptions on the weight of the delay term and prove general decay result from which the exponential and polynomial types of decay are only special cases. This work extends the result obtained by Kirane and Said-Houari \cite{Kirane} for a viscoelastic wave equation to the thermoviscoelastic system with a delay. We should mention here that, to the best of our knowledge, there is no result concerning systems of thermoelasticty of type III with the presence of delays. The rest of our paper is organized as follows. In section 2, we introduce some transformations and assumptions needed in our work. Some technical lemmas and the statement with proof of our main results will be given in section 3 and section 4 respectively. Finally, we give some examples to illustrate our results. \section{Assumptions and Transformations} In this section, we present some materials needed in the proof of our results. We use the standard Lebesgue space $ L^2(\Omega)$ and the Sobolev space $H_0^1(\Omega)$ with their usual scalar products and norms. Throughout this paper, $c$ is used to denote a generic positive constant. For the relaxation function g, we assume the following: \begin{itemize} \item[(A1)] $g: \mathbb{R}^+\to \mathbb{R}^+$ is a $C^{1}$ function satisfying $$ g(0) > 0, \quad \mu-\int_0^{\infty}g(s)ds=l > 0. $$ \item[(A2)] There exists a positive non-increasing differentiable function $\eta: \mathbb{R}^+\to \mathbb{R}^+$ satisfying $$ g' (t) \leq -\eta (t) g(t), \quad t\ge 0. $$ \end{itemize} \begin{remark} \label{remark 2.1} \rm There are many functions that satisfy (A1) and (A2). Below are three examples of such functions with the assumptions that $a, b > 0$ and $a < \mu b$. \begin{enumerate} \item If $g(t) = ae^{-bt}$, then $g' (t) = -\eta (t) g(t)$, where $\eta (t) = b$. \item If $g(t) = \frac{a}{(1+t)^{b+1}}$, then $g' (t) = -\eta (t) g(t)$, where $\eta (t) = \frac{b+1}{1+t}$. \item If $g(t)=\frac{a}{(e+t) [ln(e+t)]^{b+1}}$, then $g' (t) = -\eta (t) g(t)$, where $$ \eta (t)=\frac{1}{e+t}+\frac{b+1}{(e+t) \ln (e+t)}. $$ \end{enumerate} \end{remark} Now, as in \cite{Zhang}, we introduce the new variable \begin{equation}\label{E:3} v(x, t) = \int_0^{t}\theta (x, s)ds+\chi(x), \end{equation} where $\chi(x)$ is the solution of \begin{equation}\label{E:4} \begin{gathered} -\kappa\Delta \chi = \delta\Delta\theta_0-\theta_1-\beta \operatorname{div} u_1, \quad \text{in } \Omega, \\ \chi = 0, \quad \text{on } \partial\Omega, \end{gathered} \end{equation} Then, integrating the second equation in \eqref{E:First} with respect to $t$ and using \eqref{E:3} and \eqref{E:4}, we have $$ v_{tt}-\kappa\Delta v- \delta\Delta v_{t}+\beta \operatorname{div} u_{t}=0. $$ By introducing as in \cite{Nicaise}, another new dependent variable $$ z(x, \rho, t) = u_{t} (x,t-\tau\rho), \quad x\in \Omega, \; \rho \in (0,1), \; t > 0. $$ problem \eqref{E:First} takes the form \begin{equation}\label{E:5} \begin{gathered} \begin{aligned} &u_{tt}(x,t)-\mu \Delta u(x,t)-(\mu+\lambda)\nabla(\operatorname{div}u( x,t)) +\beta \nabla v_{t}(x, t)\\ &+\int_0^{t}g(t-s)\Delta u( x,s)ds +\mu _1u_{t}( x,t)+\mu _2 z( x, 1, t)=0, \quad x\in\Omega,\; t > 0 \end{aligned}\\ v_{tt}(x,t)-\kappa\Delta v(x,t)-\delta\Delta v_{t}(x,t) + \beta \operatorname{div}u_{t}( x,t)=0, \quad x\in\Omega,\; t > 0 \\ \tau z_{t}(x, \rho, t) + z_{\rho}(x, \rho, t) = 0, \quad x\in \Omega, \rho \in (0,1), \; t > 0 \\ z(x, 0, t) = u_{t}(x, t), \quad x\in\Omega,\; t > 0 \\ u(x,0)=u_0(x),\quad u_{t}(x, 0)=u_1(x),\quad x\in\Omega,\\ v(x, 0)=v_0(x),\quad v_{t}(x, 0) = v_1(x), \quad x\in\Omega, \\ z(x, \rho, 0) = f_0(x, \tau \rho), \quad x\in\Omega,\; \rho\in(0, 1) \\ u(x,t) = v(x,t) = 0,\quad x\in\partial\Omega,\; t \ge 0 \end{gathered} \end{equation} Thus, we will consider problem \eqref{E:5} instead of \eqref{E:First}. In what follows, we consider $(u,v,z)$ to be a solution of system \eqref{E:5} with the regularity needed to justify the calculations in this paper. By repeating the arguments of \cite{Kirane}, one can easily prove the existence and uniqueness of strong and weak solutions. Next, we assume that $| \mu_2| \le \mu_1$ and that $\xi$ is a positive constant satisfying \begin{equation}\label{E:6} \begin{gathered} \tau | \mu_2| < \xi < \tau (2\mu_1-| \mu_2|), \quad \text{if } |\mu_2| < \mu_1, \\ \xi = \tau \mu_1, \quad \text{if } \mu_1 = | \mu_2|, \end{gathered} \end{equation} The energy associated with problem \eqref{E:5} is \begin{equation}\label{E:7} \begin{aligned} E(t) &= \frac{1}{2}\int_{\Omega}{| u_{t}|}^{2}dx + \frac{1}{2}\int_{\Omega} v_{t}^{2}dx + \frac{1}{2} \Big(\mu - \int_0^{t}g(s)ds\Big)\int_{\Omega}{| \nabla u |}^{2}dx +\frac{\kappa}{2}\int_{\Omega}{| \nabla v|}^{2}dx\\ &\quad + \frac{(\mu + \lambda)}{2}\int_{\Omega}{| \operatorname{div} u|}^{2}dx + \frac{1}{2}(g\circ \nabla u)(t)+ \frac{\xi}{2} \int_{\Omega}\int_0^{1}z^{2}(x, \rho, t)\,ds\,dx, \end{aligned} \end{equation} where $$ (g \circ \nabla u)(t) = \int_{\Omega}\int_0^{t}g(t-s){\bigm| \nabla u(x, t) - \nabla u(x, s)\bigm|}^2\,ds\,dx. $$ \section{Technical Lemmas} In this section we establish several lemmas needed for the proof of our main result. \begin{lemma}\label{lemma 1} Let $(u,v,z)$ be the solution of \eqref{E:5}. Then the energy functional, defined by \eqref{E:7}, satisfies \begin{equation}\label{E:8} \begin{aligned} &E' (t) \le -m_0\Big(\int_{\Omega}{| u_{t}|}^{2}dx + \int_{\Omega}z^{2}(x, 1, t)dx \Big) + \frac{1}{2}(g' \circ \nabla u)(t)\\ &\quad -\frac{1}{2}g(t)\int_{\Omega}{| \nabla u |}^{2}dx - \delta \int_{\Omega}{| \nabla v_{t} |}^{2}dx \le 0, \quad \forall t \ge 0, \end{aligned} \end{equation} \end{lemma} for some constant $m_0$, where $m_0>0$ if $| \mu_2| < \mu_1$ and $m_0=0$ if $\mu_1= | \mu_2|$. \begin{proof} A multiplication of the first and the second equation in \eqref{E:5} by $u_t$ and $v_t$ respectively, and integration over $\Omega$, using integration by parts and the boundary conditions, yield \begin{equation} \label{E:9} \begin{aligned} &\frac{1}{2}\frac{d}{dt} \Bigl\{\int_{\Omega}{| u_{t}|}^{2}dx + \int_{\Omega} v_{t}^{2}dx + \Big(\mu - \int_0^{t}g(s)ds\Big) \int_{\Omega}{| \nabla u |}^{2}dx\\ &+\kappa\int_{\Omega}{| \nabla v|}^{2}dx + (\mu + \lambda)\int_{\Omega}{| \operatorname{div} u|}^{2}dx + (g\circ \nabla u)(t) \Bigr\} \\ &= \frac{1}{2}(g' \circ \nabla u)(t) -\delta\int_{\Omega}{| \nabla v_{t}|}^{2}dx -\frac{1}{2}g(t)\int_{\Omega}{| \nabla u |}^{2}dx\\ &\quad-\mu_1\int_{\Omega}{| u_{t}|}^{2}dx -\mu_2 \int_{\Omega}u_{t}\cdot z(x, 1, t)dx. \end{aligned} \end{equation} Now, multiplying the third equation in \eqref{E:5} by $\xi z$ and integrating over $\Omega \times (0,1)$, we obtain \begin{equation} \label{E:10} \frac{\xi}{2}\frac{d}{dt}\int_{\Omega}\int_0^{1}z^{2}(x, \rho, t)d\rho dx = -\frac{\xi}{2\tau}\int_{\Omega}z^{2}(x, 1, t)dx + \frac{\xi}{2\tau}\int_{\Omega}{| u_{t}|}^{2}dx. \end{equation} A combination of \eqref{E:9} and \eqref{E:10}, leads to \begin{align*} E' (t) &= \frac{1}{2}(g' \circ \nabla u)(t) -\frac{1}{2}g(t)\int_{\Omega}{| \nabla u |}^{2}dx -\delta\int_{\Omega}{|\nabla v_{t}|}^{2}dx - \big(\mu_1 -\frac{\xi}{2\tau}\big)\int_{\Omega}{| u_{t} |}^{2}dx\\ &\quad - \mu_2 \int_{\Omega}u_{t}\cdot z(x, 1, t)dx -\frac{\xi}{2\tau}\int_{\Omega}z^{2}(x, 1, t)dx. \end{align*} Then by Young's inequality, we have \begin{align*} E' (t) &\le \frac{1}{2}(g' \circ \nabla u)(t)-\frac{1}{2}g(t) \int_{\Omega}{| \nabla u |}^{2}dx-\delta\int_{\Omega}{|\nabla v_{t}|}^{2}dx \\ &\quad - \big(\mu_1 -\frac{\xi}{2\tau}-\frac{| \mu_2|}{2}\big) \int_{\Omega}{| u_{t} |}^{2}dx-\big(\frac{\xi}{2\tau}-\frac{| \mu_2|}{2}\big) \int_{\Omega} z^{2}(x, 1, t)dx. \end{align*} Consequently, using \eqref{E:6}, estimate \eqref{E:8} follows. \end{proof} \begin{lemma}\label{lemma 2} Suppose that {\rm (A1)} and {\rm (A2)} hold, and let $(u,v,z)$ be the solution of \eqref{E:5}. Then the functional $$ F_1(t):=\int_{\Omega}u_{t}\cdot u dx $$ satisfies the following estimate, for some positive constant $m_1$, \begin{equation}\label{E:11} \begin{aligned} F_1' (t) &\leq c\Big(\int_{\Omega}{| u_{t}|}^{2}dx + \int_{\Omega}v_{t}^{2}dx + \int_{\Omega}z^2 (x, 1, t)dx + (g \circ\nabla u)(t)\Big)\\ &\quad - m_1\Big(\int_{\Omega}{| \nabla u |}^{2}dx \int_{\Omega}{| \operatorname{div} u|}^{2}dx\Big). \end{aligned} \end{equation} \end{lemma} \begin{proof} Direct computations using the first equation in \eqref{E:5}, yield \begin{align*} F_1' (t) &= \int_{\Omega}{| u_{t}|}^{2}dx -\mu \int_{\Omega}{ | \nabla u |}^{2}dx - (\mu +\lambda)\int_{\Omega}{| \operatorname{div} u |}^2dx +\beta \int_{\Omega}v_{t}\cdot \operatorname{div}u dx\\ &\quad +\int_{\Omega}{ \nabla u}\cdot \int_0^{t}g(t-s)\nabla u (s) \,ds\,dx - \mu_1\int_{\Omega}u \cdot u_{t}dx - \mu_2 \int_{\Omega}z(x, 1, t)\cdot u\,dx. \end{align*} Using Young's and Poincar\' e's inequalities,for $\delta_1 > 0$, we have \begin{equation}\label{E:12} \begin{aligned} & F_1' (t) \le -\Big(\frac{ \mu}{2}-\delta_1(\mu_1+| \mu_2|)\Big) \int_{\Omega}{ | \nabla u |}^{2}dx+\frac{1}{2\mu}\int_{\Omega} \Big(\int_0^{t}g(t-s)\nabla u (s)ds\Big)^{2}dx\\ & +\big(1+\frac{c\mu_1}{4\delta_1}\big)\int_{\Omega}{| u_{t}|}^{2}dx - (\mu +\lambda-\delta_1)\int_{\Omega}{| \operatorname{div}u|}^2dx + \frac{1}{4\delta_1}\int_{\Omega}v_{t}^{2}dx\\ & +\frac{c| \mu_2|}{4\delta_1}\int_{\Omega}z ^{2}(x, 1, t)dx. \end{aligned} \end{equation} The second term in the right-hand side of \eqref{E:12} is estimated as follows: \begin{align*} &\int_{\Omega}\Big(\int_0^{t}g(t-s) |\nabla u (s)| ds\Big)^{2}dx\\ &\le \int_{\Omega}\Big(\int_0^{t}g(t-s) (| \nabla u (s)-\nabla u(t)| +|\nabla u(t) | )ds\Big)^{2}dx \\ & = \int_{\Omega}\Big(\int_0^{t} g(t-s) |\nabla u (s)- \nabla u(t)| ds\Big)^{2}dx + \int_{\Omega}\Big(\int_0^{t}g(t-s) | \nabla u (t)| ds\Big)^{2}dx\\ &\quad +2\int_{\Omega} \Big(\int_0^{t}g(t-s)| \nabla u(s)-\nabla u(t)| ds\Big) \Big(\int_0^{t}g(t-s)| \nabla u(t)| ds\Big)dx. \end{align*} A simple calculation, using Cauchy-Schwarz and Young's inequalities, for $\eta>0$, gives \begin{equation}\label{E:13} \begin{aligned} &\int_{\Omega}\Big(\int_0^{t}g(t-s) |\nabla u (s)| ds\Big)^{2}dx\\ &\le (\mu-l)^{2}(1+\eta)\int_{\Omega}{| \nabla u |}^{2}dx +(\mu-l)\big(1+\frac{1}{\eta}\big)(g \circ\nabla u)(t). \end{aligned} \end{equation} By inserting \eqref{E:13} into \eqref{E:12} and choosing $\eta=\frac{l}{\mu-l}$, we arrive at \begin{align*} F_1' (t) &\le \big(1+\frac{c\mu_1}{4\delta_1}\big) \int_{\Omega}{| u_{t}|}^{2}dx -\big(\frac{l}{2}-\delta_1(\mu_1+| \mu_2|)\big) \int_{\Omega}{ | \nabla u |}^{2}dx\\ &\quad - (\mu +\lambda-\delta_1)\int_{\Omega}{| \operatorname{div}u|}^2dx +\frac{1}{4\delta_1}\int_{\Omega}v_{t}^{2}dx+\frac{(\mu-l)}{2l}(g \circ\nabla u)(t)\\ &\quad +\frac{c| \mu_2|}{4\delta_1}\int_{\Omega}z ^{2}(x, 1, t)dx. \end{align*} By taking $\delta_1$ small enough, \eqref{E:11} follows. \end{proof} \begin{lemma}\label{lemma 3} let $(u,v,z)$ be the solution of \eqref{E:5}. Then the functional $$ F_2(t):=\int_{\Omega}v_{t}v dx+\beta\int_{\Omega}v\operatorname{div}u dx +\frac{\delta}{2}\int_{\Omega}{| \nabla u | }^{2}dx $$ satisfies the following estimate, for any positive constant $\delta_2$, \begin{equation}\label{E:14} F_2' (t) \le \big(1+ \frac{\beta}{4\delta_2}\big) \int_{\Omega}v_{t}^{2}dx +\beta\delta_2 \int_{\Omega}{| \operatorname{div} u |}^{2}dx-\kappa\int_{\Omega}{| \nabla v| }^2 dx. \end{equation} \end{lemma} \begin{proof} Taking the derivative of $F_2 (t)$ and using the second equation in \eqref{E:5}, it follows that $$ F_2' (t)=\int_{\Omega}v_{t}^{2}dx+\kappa\int_{\Omega}v \Delta vdx +\delta\int_{\Omega}v \Delta v_{t}dx +\beta\int_{\Omega} v_{t}\operatorname{div}u dx +\delta\int_{\Omega}\nabla v \cdot \nabla v_{t}dx. $$ Use of Green's formula and the boundary conditions lead to $$ F_2' (t)=\int_{\Omega}v_{t}^{2}dx-\kappa\int_{\Omega} {| \nabla v |}^{2}dx +\beta\int_{\Omega} v_{t}\operatorname{div}u dx. $$ By exploiting Young's inequality for $\delta_2>0$, estimate \eqref{E:14} is established. \end{proof} \begin{lemma}\label{lemma 4} let $(u,v,z)$ be the solution of \eqref{E:5}. Then the functional $$ F_3(t):=\tau \int_{\Omega}\int_0^{1}e^{-\tau \rho}z^{2}(x, \rho, t) d \rho dx, $$ satisfies the following estimate, for some positive constant $m_2$, \begin{equation}\label{E:15} F_3'\le - m_2\Big(\int_{\Omega}z^{2}(x, 1, t)dx +\tau \int_{\Omega}\int_0^{1}z^{2}(x, \rho, t) d \rho dx\Big) +\int_{\Omega}{| u_{t}|}^{2}dx. \end{equation} \end{lemma} \begin{proof} By differentiating $F_3 (t)$ and using the third equation in \eqref{E:5}, we obtain \begin{align*} F_3' (t) &= -2\int_{\Omega}\int_0^{1}e^{-\tau \rho}z(x, \rho, t) z_{\rho}(x, \rho, t)d \rho dx \\ &= -\frac{d}{d\rho} \int_{\Omega}\int_0^{1}e^{-\tau \rho}z^{2}(x, \rho, t) d \rho dx -\tau \int_{\Omega}\int_0^{1}e^{-\tau \rho}z^{2}(x, \rho, t) d \rho dx\\ &= -\int_{\Omega}[e^{-\tau}z^{2}(x, 1, t)-z^{2}(x, 0, t)] dx-\tau \int_{\Omega}\int_0^{1}e^{-\tau \rho}z^{2}(x, \rho, t) d \rho dx\\ &\le - m_2\Big(\int_{\Omega}z^{2}(x, 1, t)dx +\tau \int_{\Omega}\int_0^{1}z^{2}(x, \rho, t) d \rho dx\Big) +\int_{\Omega}{| u_{t}|}^{2}dx. \end{align*} which gives \eqref{E:15}. \end{proof} \begin{lemma}\label{lemma 5} Suppose that {\rm (A1)} and {\rm (A2)} hold and let $(u,v,z)$ be the solution of \eqref{E:5}. Then for $\mu_1=| \mu_2|$ and for any $t_0>0,$ the functional $$ F_4(t):=-\int_{\Omega}u_{t}\cdot \int_0^{t}g(t-s)(u(t)-u(s))\,ds\,dx, $$ satisfies the following estimate, for some positive constant $m_3$, and for any positive $\delta_3$, $\delta_4$, $\delta_5$, \begin{equation}\label{E:16} \begin{aligned} F_4' (t) &\le -m_3\int_{\Omega}{| u_{t}|}^{2}dx +\frac{\beta}{2} \int_{\Omega}{| \nabla v_{t}| }^{2}dx +\delta_3c\int_{\Omega}{| \nabla u| }^{2}dx\\ & \quad +\delta_4(\mu + \lambda)\int_{\Omega}{| \operatorname{div} u|}^{2}dx + C_{\delta}(g \circ\nabla u)(t)+\delta_5\mu_1\int_{\Omega}z^2 (x, 1, t)dx\\ &\quad -c(g'\circ \nabla u)(t), \quad \forall t\ge t_0 > 0. \end{aligned} \end{equation} \end{lemma} \begin{proof} Differentiation of $F_4 (t)$, using \eqref{E:5} and integrating by parts together with the boundary conditions, yield \begin{equation}\label{17} \begin{aligned} &F_4' (t) = \mu \int_{\Omega}\nabla u \cdot \Big(\int_0^{t}g(t-s)(\nabla u(s)-\nabla u(t))ds\Big)dx\\ &\quad +(\mu + \lambda)\int_{\Omega}(\operatorname{div} u)\cdot \Big(\int_0^{t}g(t-s)(\operatorname{div}u(s)-\operatorname{div}u(t))ds\Big)dx\\ &\quad -\beta\int_{\Omega}\nabla v_{t} \cdot \Big(\int_0^{t}g(t-s)( u(s)- u(t))ds\Big) dx\\ &\quad -\int_{\Omega}\Big(\int_0^{t}g(t-s)\nabla u(s)ds\Big) \cdot \Big(\int_0^{t}g(t-s)(\nabla u(s)- \nabla u(t))ds\Big)dx\\ &\quad +\mu_1 \int_{\Omega}u_{t} \cdot \int_0^{t}g(t-s)( u(s)- u(t))ds dx\\ &\quad +\mu_2 \int_{\Omega}z(x, 1, t) \cdot \int_0^{t}g(t-s)( u(s)- u(t))ds dx -\Big(\int_0^{t}g(s)ds\Big)\int_{\Omega}{| u_{t}|}^{2}dx\\ &\quad -\int_{\Omega}u_{t} \cdot \int_0^{t}g'(t-s)( u(s)- u(t))\,ds\,dx. \end{aligned} \end{equation} Now, we estimate the terms in the right hand side of \eqref{17} using Young's, Cauchy-Schwarz, and Poincar\' e's inequalities. So, for $\delta_3, \delta_4, \delta_5, \delta_{6} > 0$, we obtain \begin{equation}\label{E:18} \begin{aligned} I_1&=\int_{\Omega}\nabla u \cdot \Big(\int_0^{t}g(t-s)(\nabla u(s)-\nabla u(t))ds\Big)dx\\ &\le \delta_3\int_{\Omega}{| \nabla u |}^{2}dx+\frac{1}{4\delta_3}\int_{\Omega} \Big(\int_0^{t}g(t-s)| \nabla u(s)-\nabla u(t)| ds\Big)^{2}dx\\ &\le \delta_3\int_{\Omega}{| \nabla u |}^{2}dx+\frac{1}{4\delta_3}\int_{\Omega} \Big(\int_0^{t}g(s)ds\Big)\Big(\int_0^{t}g(t-s){| \nabla u(s)-\nabla u(t)|}^{2} ds\Big)dx\\ &\le \delta_3\int_{\Omega}{| \nabla u |}^{2}dx+\frac{\mu-l}{4\delta_3} (g\circ \nabla u)(t). \end{aligned} \end{equation} \begin{equation}\label{E:19} \begin{aligned} I_2&=\int_{\Omega}(\operatorname{div} u)\cdot \Big(\int_0^{t}g(t-s)(\operatorname{div}u(s)-\operatorname{div}u(t))ds\Big)dx\\ &\le \delta_4\int_{\Omega}{| \operatorname{div}u |}^{2}dx +\frac{1}{4\delta_4}\int_{\Omega} \Big(\int_0^{t}g(t-s) \left( \operatorname{div}u(s)-\operatorname{div}u(t)\right) ds\Big)^{2}dx\\ &\le \delta_4\int_{\Omega}{| \operatorname{div}u |}^{2}dx +\frac{\mu -l}{4\delta_4}\int_{\Omega}\int_0^{t}g(t-s){| \operatorname{div}u(s) -\operatorname{div}u(t)|}^{2} \,ds\,dx\\ &\le \delta_4\int_{\Omega}{| \operatorname{div}u |}^{2}dx +\frac{\mu -l}{2\delta_4}(g \circ\nabla u)(t). \end{aligned} \end{equation} \begin{equation}\label{E:20} \begin{aligned} I_3 &= -\int_{\Omega}\nabla v_{t} \cdot \Big(\int_0^{t}g(t-s)( u(s)- u(t))ds\Big) dx\\ &\le\frac{1}{2}\int_{\Omega}{| \nabla v_{t}|}^{2}dx+\frac{c(\mu-l)}{2} (g \circ\nabla u)(t). \end{aligned} \end{equation} \begin{equation}\label{E:21} \begin{aligned} I_4 &=-\int_{\Omega}\Big(\int_0^{t}g(t-s)\nabla u(s)ds\Big) \cdot \Big(\int_0^{t}g(t-s)(\nabla u(s)- \nabla u(t))ds\Big)dx\\ &\le \delta_3\int_{\Omega}\Big(\int_0^{t}g(t-s)| \nabla u(s) | ds\Big)^{2}dx\\ &\quad +\frac{1}{4\delta_3}\int_{\Omega} \Big(\int_0^{t}g(t-s)| \nabla u(s)-\nabla u(t)| ds\Big)^{2}dx\\ &\le 2{(\mu -l)}^{2}\delta_3\int_{\Omega}{| \nabla u|}^{2}dx +(\mu -l)\left(2\delta_3+\frac{1}{4\delta}\right)(g \circ\nabla u)(t). \end{aligned} \end{equation} \begin{equation}\label{E:22} \begin{aligned} I_5&= \int_{\Omega}u_{t} \cdot \int_0^{t}g(t-s)( u(s)- u(t))ds dx\\ &\le \delta_{6}\int_{\Omega}{| u_{t}|}^{2}dx +\frac{c(\mu -l)}{4\delta_{6}}(g \circ\nabla u)(t). \end{aligned} \end{equation} \begin{equation}\label{E:23} \begin{aligned} I_{6}&= \int_{\Omega}z(x, 1, t) \cdot \int_0^{t}g(t-s)( u(s)- u(t))ds dx\\ &\le \delta_5\int_{\Omega}z^{2}(x, 1, t)dx +\frac{c(\mu -l)}{4\delta_5}(g \circ\nabla u)(t). \end{aligned} \end{equation} \begin{equation}\label{E:24} \begin{aligned} I_{7}&=-\int_{\Omega}u_{t} \cdot \int_0^{t}g'(t-s)( u(s)- u(t))\,ds\,dx\\ &\le \delta_{6}\int_{\Omega}{| u_{t}|}^{2}dx+\frac{1}{4\delta_{6}} \int_{\Omega}\Big(\int_0^{t}g' (t-s) (u(s)-u(t))ds\Big)^{2} dx\\ &\le \delta_{6}\int_{\Omega}{| u_{t}|}^{2}dx+\frac{1}{4\delta_{6}} \int_{\Omega}\Big(\int_0^{t}-g' (s)ds\Big) \Big(\int_0^{t}-g' (t-s) {| (u(s)-u(t)|}^{2} ds\Big) dx\\ &\le \delta_{6}\int_{\Omega}{| u_{t}|}^{2}dx-\frac{cg(0)}{4\delta_{6}} (g' \circ \nabla u)(t). \end{aligned} \end{equation} Since the function $g$ is positive, continuous and $g(0) > 0$, then for any $t \ge t_0 > 0$, we have \begin{equation}\label{25} \int_0^{t}g(s)ds \ge \int_0^{t_0}g(s)ds=g_0. \end{equation} A combination of \eqref{17}$-$\eqref{25}, bearing in mind that $\mu_1=| \mu_2|$ leads to \begin{align*} F_4' (t) &\le -[g_0-\delta_{6}(1+\mu_1)]\int_{\Omega}{| u_{t}|}^{2}dx +\delta_5\mu_1\int_{\Omega}z^2 (x, 1, t)dx -\frac{cg(0)}{4\delta_{6}}(g'o\nabla u)(t)\\ &\quad +\frac{\beta}{2} \int_{\Omega}{| \nabla v_{t}| }^{2}dx +\delta_3[\mu +2(\mu -l)^{2}]\int_{\Omega}{| \nabla u| }^{2}dx +\delta_4(\mu + \lambda)\int_{\Omega}{| \operatorname{div} u|}^{2}dx\\ & \quad + (\mu -l)\big[\frac{\mu +1}{4\delta_3}+\frac{\mu +\lambda}{2\delta_4} +2\delta_3+\frac{c\mu_1}{4}\big(\frac{1}{\delta_5} +\frac{1}{\delta_{6}}\big)+\frac{c\beta}{2}\big](g \circ\nabla u)(t), \end{align*} for all $t\ge t_0$. Next, we choose $\delta_6$ small enough to obtain \eqref{E:16}. \end{proof} \section{Asymptotic Stability} This section is divided into two parts. In the first subsection, we discuss the case where $| \mu_2| < \mu_1$ and in the second, we discuss the case where $\mu_1=| \mu_2|$. \subsection{General stability for $| \mu_2| < \mu_1$} For $\varepsilon > 0$, to be chosen appropriately later, we let \begin{equation}\label{E:26} \mathcal {L}(t):=E(t)+\varepsilon F_1(t)+\varepsilon F_2(t)+\varepsilon F_3(t). \end{equation} \begin{lemma}\label{lemma 6} There exist two positive constants $\alpha_1$ and $\alpha_2$ such that \begin{equation}\label{E:27} \alpha_1E(t) \le L(t) \le \alpha_2E(t), \quad \forall t \ge 0, \end{equation} for $\varepsilon$ small enough \end{lemma} \begin{proof} Let $$ \mathcal{G}(t)=\varepsilon F_1(t)+\varepsilon F_2(t)+\varepsilon F_3(t). $$ By using Young's and Poincar\'e's inequalities, we obtain \begin{align*} | \mathcal{G}(t)| &\le \frac{\varepsilon}{2}\int_{\Omega} \left({| u_{t} |}^{2}+v_{t}^{2}+c{| \nabla u|}^{2} +\left(c(1+\beta)+\delta\right){| \nabla v|}^{2} +{| \operatorname{div}u|}^{2}\right)dx \\ &\quad +\varepsilon \tau \int_{\Omega}\int_0^{1}z^{2}(x, \rho, t)d\rho dx\\ &\quad \le \varepsilon cE(t). \end{align*} Consequently, $| \mathcal{L}(t)-E(t)| \le \varepsilon cE(t)$, which yields $$ (1-\varepsilon c)E(t)\le \mathcal{L}(t)\le (1+\varepsilon c)E(t). $$ By choosing $\varepsilon$ small enough, \eqref{E:27} follows. \end{proof} \begin{theorem}\label{thrm 4.2} let $(u,v,z)$ be the solution of \eqref{E:5}. Assume $| \mu_2| < \mu_1$ and {\rm (A1), (A2)} hold. Then, there exist two positive constants $c_0$ and $c_1$ such that the energy functional for the system \eqref{E:5} satisfies \begin{equation}\label{E:28} E(t)\le c_0e^{-c_1\int_0^{t}\eta (s)ds}, \quad \forall t\ge 0. \end{equation} \end{theorem} \begin{proof} By differentiating \eqref{E:26} and using \eqref{E:8}, \eqref{E:11}, \eqref{E:14} and \eqref{E:15}, and Poincar\'e's inequality, we obtain \begin{align*} \mathcal{L}'(t) &\le- [ m_0-\varepsilon c]\int_{\Omega}{| u_{t} |}^{2}dx -\varepsilon m_1\int_{\Omega}{| \nabla u|}^{2}dx -\varepsilon \kappa\int_{\Omega}{| \nabla v|}^{2}dx\\ &\quad -\varepsilon \left[m_1 -\beta\delta_2 \right]\int_{\Omega}{| \operatorname{div}u|}^{2}dx-\varepsilon m_2\tau \int_{\Omega}\int_0^{1}z^{2}(x, \rho, t)d\rho dx\\ &\quad +\varepsilon c(g \circ\nabla u)(t) -\big[\delta-\varepsilon c \big(c+\frac{\beta}{4\delta_2}\big)\big] \int_{\Omega}{| \nabla v_{t}| }^{2}dx\\ &\quad -[(m_0-\varepsilon c)+\varepsilon m_2]\int_{\Omega}z^{2}(x, 1, t)dx. \end{align*} At this point, we choose $\delta_2$ small enough such that $(m_1 -\beta\delta_2) > 0$. Next, by picking $$ \varepsilon <\ min\{\frac{m_0}{c} , \frac{\delta}{c ( c+\frac{\beta}{4\delta_2})}\}, $$ we obtain \begin{align*} \mathcal{L}'(t) &\le k_1(g \circ\nabla u)(t)-k_2\Bigl\{ \int_{\Omega}{| u_{t} |}^{2}dx +\int_{\Omega}{| \nabla u|}^{2}dx+\int_{\Omega}{| \nabla v|}^{2}dx\\ &\quad +\int_{\Omega}{| \operatorname{div}u|}^{2}dx +\int_{\Omega}\int_0^{1}z^{2}(x, \rho, t)d\rho dx +\int_{\Omega}{| \nabla v_{t}| }^{2}dx\Bigl\}, \end{align*} for positive constants $k_1$ and $ k_2$. Then, using Poincar\'e's inequality and \eqref{E:7}, we obtain \begin{equation}\label{E:29} \mathcal{L}'(t)\le -k_0E(t)+k_1(g \circ\nabla u)(t), \quad \forall t \ge 0, \end{equation} for a positive constant $k_0$. By multiplying \eqref{E:29} by $\eta (t)$ and using (A2) and \eqref{E:8}, we arrive at $$ \eta (t)\mathcal{L}'(t)\le- k_0\eta (t) E(t)-2k_1 E'(t), \quad \forall t \ge 0, $$ which can be rewritten as $$ \left(\eta(t)\mathcal{L}(t)+2k_1 E(t)\right)'-\eta'(t)\mathcal{L}(t) \le - k_0\eta(t)E(t), \; \forall t\ge 0. $$ Using the fact that $\eta'(t) \le 0, \forall t \ge 0,$ we have $$ \left(\eta(t)\mathcal{L}(t)+2k_1 E(t)\right)' \le - k_0\eta(t)E(t), \quad \forall t\ge 0. $$ By exploiting \eqref{E:27}, it can easily be shown that \begin{equation}\label{E:30} \mathcal{R}(t) =\eta (t) \mathcal {L}(t)+2k_1E(t)\sim E(t). \end{equation} Consequently, for some positive constant $c_1$, we obtain \begin{equation}\label{E:31} \mathcal{R}'(t)\le -c_1\eta(t)\mathcal{R}(t), \quad \forall t\ge 0. \end{equation} A simple integration of \eqref{E:31} over $(0,t)$ leads to \begin{equation}\label{E:32} \mathcal{R}(t)\le \mathcal{R}(0)e^{-c_1\int_0^{t}\eta(s)ds}, \quad \forall t\ge 0. \end{equation} The conclusion of the theorem follows by combining \eqref{E:30} and \eqref{E:32}. \end{proof} \subsection{General stability for $| \mu_2|=\mu_1$} By recalling \eqref{E:6}, we have $\xi =\tau \mu_1.$ Hence, \eqref{E:8} takes the form \begin{equation}\label{E:33} E' (t) \le \frac{1}{2}(g' \circ \nabla u)(t) -\frac{1}{2}g(t)\int_{\Omega}{| \nabla u |}^{2}dx -\delta \int_{\Omega}{| \nabla v_{t} |}^{2}dx \le 0, \quad \forall t \ge 0. \end{equation} We then use \eqref{E:11}, \eqref{E:14}, and \eqref{E:15} with $\mu_1 = | \mu_2|$ and define another Lyapunov functional \begin{equation}\label{E:34} \tilde{\mathcal {L}}(t) := NE(t)+\varepsilon_1F_1(t) +F_2(t)+\varepsilon_2F_3(t)+F_4(t), \end{equation} where $N, \varepsilon_1$ and $\varepsilon_2$ are positive real numbers which will be chosen properly later. \begin{lemma}\label{lemma 7} For $N$ large enough, $\tilde{\mathcal {L}}(t)$ and $E(t)$ satisfy \begin{equation}\label{E:35} \alpha_3E(t) \le \tilde{\mathcal {L}}(t) \le \alpha_4E(t), \quad \forall t \ge 0, \end{equation} for two positive constants $\alpha_3$ and $\alpha_4$. \end{lemma} The inequality in the above lemma is established with similar steps as in the proof of Lemma \ref{lemma 6}. \begin{theorem}\label{thrm 4.4} let $(u,v,z)$ be the solution of \eqref{E:5}. Assume $| \mu_2| = \mu_1$ and {\rm (A1), (A2)} hold. Then, for any $t_0 > 0$, there exist positive constants $c_2$ and $c_3$ independent of $t$ such that the energy functional of the system \eqref{E:5} satisfies \begin{equation}\label{E:36} E(t)\le c_2e^{-c_3\int_{t_0}^{t}\eta (s)ds}, \quad \forall t\ge t_0. \end{equation} \end{theorem} \begin{proof} Differentiating $\tilde{\mathcal {L}}(t)$ and using \eqref{E:11}, \eqref{E:14}, \eqref{E:15}, \eqref{E:16}, \eqref{E:33} and Poincar\'e's inequality, we obtain \begin{align*} \tilde{\mathcal {L}}'(t) &\le -[ m_3-\varepsilon_1c-\varepsilon_2]\int_{\Omega}{| u_{t} |}^{2}dx -[\varepsilon_1 m_1-\delta_3c]\int_{\Omega}{| \nabla u|}^{2}dx - \kappa\int_{\Omega}{| \nabla v|}^{2}dx\\ &\quad -\varepsilon_2m_2\tau \int_{\Omega}\int_0^{1}z^{2}(x, \rho, t)d\rho dx -\left[\varepsilon_1m_1-\beta\delta_2-\delta_4(\mu +\lambda)\right] \int_{\Omega}{| \operatorname{div}u|}^{2}dx\\ &\quad -\big[N\delta-\frac{\beta c}{2}-c\big(1+\frac{\beta}{4\delta_2} +\varepsilon_1c\big)\big]\int_{\Omega}{| \nabla v_{t}| }^{2}dx +[\frac{N}{2}-c](g'\circ \nabla u)(t) \\ &\quad -\left[\varepsilon_2m_2-\varepsilon_1c-\delta_5\mu_1 \right] \int_{\Omega}z^{2}(x, 1, t)dx+[\varepsilon_1c+C_{\delta}](g \circ\nabla u)(t). \end{align*} Now, we let $$ \varepsilon_2=\frac{m_{}3}{2},\quad \delta_3=\frac{\varepsilon_1m_1}{2c}, \quad \delta_4=\frac{\varepsilon_1m_1}{2(\mu+\lambda)}. $$ Next, we choose $\varepsilon_1$ small enough so that $$ \tilde{k}_1:=[\frac{m_3}{2}-\varepsilon_1c] > 0 ,\quad \tilde{k}_2:=[\frac{m_2m_3}{2}-\varepsilon_1c ] > 0. $$ Once $\varepsilon_1$ is fixed, we then take $\delta_5=\tilde{k}_2/(2\mu_1)$ and choose $\delta_2$ small enough so that $$ \tilde{k}_3:=[\frac{\varepsilon_1m_1}{2}-\beta\delta_2] > 0 .$$ Finally, we choose $N$ so large that \eqref{E:35} remains valid and, furthermore, $$ \tilde{k}_4:=\big[N\delta-\frac{\beta c}{2} -c\big(1+\frac{\beta}{4\delta_2}+\varepsilon_1c\big)\big]> 0, \quad [\frac{N}{2}-c ] > 0. $$ Hence, we arrive at \begin{align*} \tilde{\mathcal {L}'}(t) &\le -\tilde{k}_1\int_{\Omega}{| u_{t} |}^{2}dx-\frac{\varepsilon_1m_1}{2} \int_{\Omega}{| \nabla u|}^{2}dx- \kappa\int_{\Omega}{| \nabla v|}^{2}dx\\ &\quad -\tilde{k}_4\int_{\Omega}{| \nabla v_{t}| }^{2}dx -\tilde{k}_3\int_{\Omega}{| \operatorname{div}u|}^{2}dx +\tilde{k}_5(g \circ\nabla u)(t)\\ &\quad -\frac{m_2m_3\tau}{2}\int_{\Omega}\int_0^{1}z^{2}(x, \rho, t)d\rho dx. \end{align*} Using Poincar\'e's inequality, we obtain \begin{equation}\label{E:37} \tilde{\mathcal {L}'}(t)\le -\tilde{k}_0E(t)+ \tilde{k}_5(g \circ\nabla u)(t), \quad \forall t\ge t_0, \end{equation} where $\tilde{k}_0$ and $\tilde{k}_5$ are two positive constants. By multiplying \eqref{E:37} by $\eta (t)$ and using $(A_2 )$ and \eqref{E:33}, we obtain \begin{gather*} \eta(t) \tilde{\mathcal {L}'}(t) \le - \tilde{k}_0\eta(t)E(t)-2\tilde{k}_5E'(t), \quad \forall t\ge t_0, \\ \left(\eta(t)\tilde{\mathcal {L}}(t)+2 \tilde{k_5} E(t)\right)'\le - \tilde{k_0}\eta(t)E(t), \quad \forall t\ge t_0. \end{gather*} If we set \begin{equation}\label{38} \tilde{\mathcal {R}}(t) = \eta(t)\tilde{\mathcal {L}}(t)+2 \tilde{k_5} E(t) \sim E(t), \end{equation} and follow the same steps as in Theorem \ref{thrm 4.2}, we arrive at \begin{equation}\label{E:39} \tilde{\mathcal{R}}(t)\le \tilde{\mathcal{R}}(t_0) e^{-\tilde{c}_3\int_0^{t}\eta(s)ds}, \quad \forall t\ge t_0. \end{equation} Consequently,\eqref{E:36} is established by virtue of \eqref{38} and \eqref{E:39}. Note that Estimate \eqref{E:36} also holds for $ t \in [0, t_0]$ by the continuity and boundedness of $E(t)$ and $\eta (t)$. \end{proof} Now, we give some examples to illustrate the energy decay rates obtained by Theorem \ref{thrm 4.2} which is also valid for Theorem \ref{thrm 4.4}. We consider the three examples under Remark \ref{remark 2.1} with the same assumptions on $a$ and $b$ as stated before. \begin{enumerate} \item If $g(t) = ae^{-bt}$, then $$ E(t) \le c_0e^{-bc_1t}, \quad \forall t \ge 0. $$ \item If $g(t) = \frac{a}{(1+t)^{b+1}}$, then $$ E(t) \le \frac{c_0}{(1+t)^{(b+1)c_1}}, \quad \forall t \ge 0. $$ \item If $g(t)=\frac{a}{(e+t) [ln(e+t)]^{b+1}}$, then $$ E(t) \le \frac{c_0e^{c_1}}{\{(e+t) [ ln (e+t)]^{b+1}\}^{c_1}}, \quad \forall t \ge 0. $$ \end{enumerate} \begin{remark}\rm As in Pignotti \cite{Pignotti}, we do not require that $\mu_2$ be positive. Our result extends, in a way, the result of Kirane and Said-Houari \cite{Kirane}, where $\mu_2$ is taken to be positive. \end{remark} \subsection*{Acknowledgements} The authors thank KFUPM for its continuous support and the referee for pointing out a valuable reference which improved this work a lot. This work has been funded by KFUPM under Project \# FT 111002. \begin{thebibliography}{00} \bibitem{Abdallah} Abdallah, C.; Dorato, P.; Benitez-Read, J.; Byrne, R.; \emph {Delayed positive feedback can stabilize oscillatory system}, ACC. San Francisco, 3106-3107 (1993). \bibitem {Ait} Ait Benhassi, E. M.; Ammari, K.; Boulite, S.; Maniar, L.; \emph {Feedback stabilization of a class of evolution equations with delay}, J. Evol. Equ. (9), 103-121 (2009). \bibitem {Datko} Datko, R.; Lagnese, J.; Polis, M. P.; \emph{An example on the effect of time delays in boundary feedback stabilization of wave equations}, SIAM J. Control Optim. (24), 152-156 (1986). \bibitem {Fridman} Fridman, E.; Nicaise, S.; Valein, J.; \emph {Stabilization of second order evolution equations with unbounded feedback with time-dependent delay}, SIAM J. Control Optim. 48 (8), 5028-5052 (2010). \bibitem {Kirane} Kirane, M.; Said-Houari, B.; \emph {Existence and asymptotic stability of a viscoelastic wave equation with a delay}, Z. Angew. Math. Phys. (62), 1065-1082 (2011). \bibitem {Komonik}Komornik, V.; Zuazua, E.; \emph {A direct method for the boundary stabilization of the wave equation}, J. Math. Pures Appl. (69), 35-54 (1990). \bibitem {Lasiecka} Lasiecka, I.; \emph{Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary}, J. Differential Equations (79), 340-381 (1989). \bibitem {Lasiecka 2} Lasiecka, I.; \emph{Global uniform decay rates for the solution to the wave equation with nonlinear boundary conditions}, Appl. Anal. (47), 191-212 (1992). \bibitem {Liu}Liu, W. J.; \emph{The exponential stabilization of higher-dimensional linear system of thermoviscoelasticity}, J. Math. Pures Appl. 77, 355–386 (1998). \bibitem {Messaoudi}Messaoudi, S. A.; Al-Shehri, A.; \emph{General boundary stabilization of memory type in thermoelasticity of type III}, Z. Angew. Math. Phys. 62, 469-481 (2011). \bibitem {Messaoudi 2} Messaoudi, S. A.; Mustafa, M. I.; \emph{On the control of solutions of viscoelastic equations with boundary feedback}, Nonlinear Anal. TMA (10 ), 3132-3140. (2009). \bibitem {Messaoudi 3} Messaoudi, S. A.; Soufyane, A.; \emph{Boundary stabilization of memory type in thermoelasticity of type III} Applicable Analysis 87 (1), 13-28 (2008). \bibitem {Messaoudi 4} Messaoudi, S. A.; Said-Houari, B.; \emph{Energy decay in a Timoshenko-type system of thermoelasticity of type III} J. Math. Anal. Appl. 348 298–307 (2008). \bibitem {Messaoudi 5} Messaoudi, S. A.; Said-Houari, B.; \emph{Energy decay in a Timoshenko-type system with history in thermoelasticity of type III}, Adv. Difference Equ. 4 (3-4), 375-400 (2009). \bibitem {Mustafa} Mustafa, M. I.; \emph{Uniform stability for thermoelastic systems with boundary time-varying delay}, J. Math. Anal. Appl. 383, 490-498 (2011). \bibitem {Nicaise} Nicaise, S.; Pignotti, C.; \emph{Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks}. SIAM J. Control Optim. 45, 1561-1585 (2006). \bibitem {Nicaise 2} Nicaise, S.; Pignotti, C.; \emph{Stabilization of the wave equation with boundary or internal distributed delay}, Diff. Int. Equs. 21 (9-10), 935-958 (2008). \bibitem {Nicaise 3} Nicaise, S.,; Pignotti C.; \emph{Interior feedback stabilization of wave equations with time dependent delay}, Elect. J. Differ. Eqns. 2011 (41), 1-20 (2011). \bibitem {Nicaise 4} Nicaise, S.; Pignotti, C.; Valein, J.; \emph{Exponential stability of the wave equation with boundary time-varying delay}, Discrete Contin. Dyn. Syst. Ser. S 4 (3), 693-722 (2011). \bibitem {Nicaise 5} Nicaise, S.; Valein, J.,; Fridman, E.; \emph{Stability of the heat and of the wave equations with boundary time-varying delays} Discrete Contin. Dyn. Syst. Ser. S 2 (3), 559-581 (2009). \bibitem {Pignotti} Pignotti, C.; \emph{A note on stabilization of locally damped wave equations with time delay}, Systems and control letters 61, 92-97 (2012) \bibitem {Qin} Qin, Y.; Ma, Z.; \emph{Energy decay and global attractors for thermoviscoelastic systems}, Acta Appl. Math. 117, 195-214 (2012). \bibitem {Quintanilla} Quintanilla, R.; Racke, R.; \emph{Stability in thermoelasticity of type III}, Discrete and Continuous Dynamical system, Series B. 3 (3), 383-400 (2003). \bibitem {Suh} Suh, I. H.; Bien, Z.; \emph{Use of time delay action in the controller design}, IEEE Trans. Automat. Control 25, 600-603 (1980). \bibitem {Xu} Xu, G. Q.; Yung, S., P.; Li, L., K.; \emph{Stabilization of wave systems with input delay in the boundary control} ESAIM: COCV 12, 770-785 (2006) \bibitem {Zhang} Zhang, X.; Zuazua, E.; \emph{Decay of solutions of the system of thermoelasticity of type III}, Commun. Contemp. Math. 5, 25-83 (2003). \bibitem {Zuazua} Zuazua, E.; \emph{Uniform Stabilization of the wave equation by nonlinear boundary feedback} SIAM J. Control Optim. 28 (2), 466-477 (1990). \end{thebibliography} \end{document}