\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 134, pp. 1--5.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/134\hfil Bounds and compactness for solutions] {Bounds and compactness for solutions of second-order elliptic equations} \author[C. C. Aranda\hfil EJDE-2012/134\hfilneg] {Carlos C. Aranda} \address{Carlos Cesar Aranda \newline Blue Angel Navire Research laboratory\\ Rue Eddy 113 Gatineau QC, Canada} \email{carloscesar.aranda@gmail.com} \dedicatory{Dedicated to my mother Gregoria Ynes Zalazar} \thanks{Submitted July 25, 2012. Published August 17, 2012.} \subjclass[2000]{35J25, 35J60, 35J75} \keywords{Elliptic equations; compact imbedding; Schauder approach} \begin{abstract} In this article, we establish some connections between Sobolev spaces and nonlinear singular elliptic problems, to obtain bounds and compactness results for solutions of second-order elliptic equations. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction and results} The main purpose of this paper is to develop some connections between Sobolev spaces and nonlinear singular elliptic problems to obtain bounds and compactness results for solutions of second-order elliptic equations, where the structure of the imbedding is nonlinear. The theory of singular nonlinear elliptic problems is fairly well developed. (See for example \cite{ag,dgr,hm,fm,gr,gs,gst} for a survey and bibliography.) In \cite{lu} it is stated that \begin{quote} During the past half century, linear second order elliptic equations on bounded regions have been studied, if not exhaustively, at least with reasonable completeness and the fundamental questions concerning them have received rather simple solutions. In the works of Giraud and Schauder in the thirties, it was shown that the basic boundary value problems are solvable for such equations under the assumption of sufficient smoothness of the coefficients and of the boundary of the region. Then, there were interpreted from the standpoint of functional analysis. This approach was initiated by the article \cite{fie} of Friedrichs in 1934 on semibounded extensions of symmetric elliptic operators. This article and further studies of Friedrichs, Mikhlin, Vishik, and others during the late forties showed that the solution of the classical boundary-value problems for elliptic equations (we are only speaking of second order equations) was equivalent to solving equations of the form $x+Ax=f$, for a completely continuous operator $A$ in certain Hilbert spaces constructed from the quadratic form of the principal symmetric part of a differential operator. \end{quote} For a review of the state of the art on this topic, see \cite{b,br,dl,k,r,wyw}. \begin{theorem}[{\cite[Theorem 7.26]{gt}}] \label{thm1} Let $\Omega$ be a $C^{0,1}$ domain in $\mathbb{R}^N$. Then \begin{itemize} \item[(i)] if $kpN$ are necessary. \end{quote} We introduce now the equation \begin{equation} \label{delilah} -\mathcal{L}u=g(u),\text{ in }\Omega, \quad u=0\text{ on }\Omega, \end{equation} where $\Omega$ is a bounded smooth domain in $\mathbb{R}^N$, $N\geq 3$, $ c\leq 0$ in $\Omega$ and $g:(0,\infty) \to(0,\infty)$ is non-increasing locally H\"{o}lder continuous function singular at the origin. It is well known that problem \ref{delilah} in the case $\mathcal{L}=\Delta$ and $g(u)=u^{-\gamma}$ has a unique classical bounded solution $u$ for all $\gamma >0$. This solution $u$ belongs to the Sobolev space $H^1_0(\Omega)$ if and only if $0<\gamma<3$. Moreover $\gamma>1$ implies $C_0\varphi_1^{-\frac{2\gamma s}{1+\gamma}}\leq u^{-s\gamma} \leq C_1\varphi_1^{-\frac{2\gamma s}{1+\gamma}}$ where $\varphi_1$ is the principal eigenfunction of the laplacian operator ($-\Delta\varphi_1=\lambda_1\varphi$, in $\Omega$, $\varphi_1=0$ on $\partial\Omega$) \cite{ag,gs}. Therefore $u^{-\gamma}$ not belong to any $L^s(\Omega)$, $s\geq 1$ for $\gamma>1$ because $\int_\Omega\varphi_1^{-r}dx<\infty$ for $r\geq 0$ if and only if $0\leq r<1$. Nevertheless, we have an unexpected nonlinear compact imbedding: \begin{theorem}[Aranda-Godoy \cite{ag}]\label{H} Let $P$ be the positive cone in $L^\infty(\Omega)$. Let $S_{\epsilon}:P\to P$ be the solution operator for the problem \begin{equation} \label{singular} -\Delta u = g(u)+w \text{ in }\Omega, \quad u = \epsilon \text{ on }\partial\Omega, \end{equation} gives $S_{\epsilon}(w)=u$ where $\epsilon\geq 0$. Then $S_{\epsilon}:P\to P$ is a continuous, non decreasing and compact map with $S_{\epsilon_0}(w)\leq S_{\epsilon_1}(w)$ for $\epsilon_0<\epsilon_1$. \end{theorem} The derivations of our results are very elementary using a Schauder approach. We set \[\mathcal{C}^{\alpha,g,+}_{\rm loc}(\Omega) =\{f\in C^\alpha_{\rm loc}(\Omega)|0\leq f\leq g(u) \text{ where } u\text{ solves }\ref{delilah}\} \] Our main result follows. \begin{theorem}\label{t1} Let $\Omega$ be a bounded smooth domain in $\mathbb{R}^N$, $N\geq 3$. Then the equation \begin{equation}\label{samson} -\mathcal{L}v=f \text{ in }\Omega, \quad v=0\text{ on }\partial\Omega, \end{equation} where $f\in\mathcal{C}^{\alpha,g,+}_{\rm loc}(\Omega)$ has a unique solution $v\in C^\alpha_{\rm loc}(\Omega)\cap C^0(\overline{\Omega})\cap C^2(\Omega)$ with $0\leq v\leq u$ in $\Omega$ and $u$ solves equation \ref{delilah}. \end{theorem} Our imbedding theorem is as follows. \begin{theorem}\label{t2} Let $\mathcal{P}$ be the cone of positive functions in $C^0(\overline{\Omega})$. Let $\mathcal{S}:\mathcal{C}^{\alpha,g,+}_{\rm loc}(\Omega)\to\mathcal{P}$ the solution operator of problem \ref{samson} gives $\mathcal{S}(f)=v$. Then $\mathcal{S}$ is continuous and compact. Moreover $g_m\leq g_{m+j}$ implies $\mathcal{C}^{\alpha,g_m,+}_{\rm loc}(\Omega)\subset \mathcal{C}^{\alpha,g_{m+j},+}_{\rm loc}(\Omega)$. \end{theorem} Finally our last result is the infinite tower property. \begin{theorem}\label{t3} Let us consider the equation \begin{equation} -\Delta u_{m} = g_m(u_m ) \text{ in }B_R(0),\quad u_{\epsilon,m} = \epsilon \text{ on }\partial B_R(0), \end{equation} where $g_m:(0,\infty)\to(0,\infty)$ is non increasing locally H\"{o}lder continuous function singular at the origin with the properties $g_m(s)=g(s)$ for all $s\geq 1$ and $\lim_{m\to\infty}g_m(s)=\infty$ for all $s\in(0,1)$, $m=1,\dots,\infty$. Then there exists $\delta>0$ and $u_\infty$ such that $\lim_{m\to\infty}u_m=u_\infty$ where $-\Delta u_\infty=\lim_{m\to\infty}g_m(u_m)=\infty$ on the annulus $A(R-\delta,R)$. Therefore the tower \[ \mathcal{C}^{\alpha,g_1,+}_{\rm loc}(\Omega)\subset\cdots \subset\mathcal{C}^{\alpha,g_m,+}_{\rm loc}(\Omega)\subset\cdots \subset\mathcal{C}^{\alpha,g_{m+j},+}_{\rm loc}(\Omega)\subset\cdots \] actually goes to infinite on the annulus $A(R-\delta,R)$. \end{theorem} \section{Auxiliary results} Let us consider the problem \begin{equation}\label{perdido estoy} -\mathcal{L} u_m = g_m(u_m ) \text{ in }\Omega,\quad u_m = 0 \text{ on }\partial\Omega, \end{equation} where $g_{m+j}\geq g_m$, are non-increasing locally H\"{o}lder continuous functions on $(0,\infty)$ and singular at zero. \begin{lemma}\label{fulgor} Let $u_m$ be a solution of \eqref{perdido estoy}. Then $u_{m+j}\geq u_m$. \end{lemma} \begin{proof} Suppose that there exists $x_0\in\Omega$ such that $u_m(x_0)>u_{m+j}(x_0)$. We define $\Omega_{\nu}=\{x\in\Omega |\nu+u_m(x)>u_{m+j}(x)\}$. Then $\Omega_{\nu}\neq\emptyset$ for all $\nu\geq 0$. Moreover $g_m(u_m(x)+\nu)\leq g_{m+j}(u_m(x)+\nu)\tau +u_{m+j}(x)\}, \] we deduce that $\Omega_{\tau}\neq\emptyset$ and $\Omega_{\tau}\subset\Omega_{\nu}$ for $\tau$ small enough. Moreover, $g_{m}(u_m(x))\leq g_{m+j}(u_m(x))\leq g_{m+j}(u_{m+j}(x))$ for all $x\in\Omega_{\tau}$. Therefore \[ -\mathcal{L} u_m \leq -\mathcal{L} (u_{m+j}+\tau) \text{ in }\Omega_\tau, \quad u_m = u_{m+j}+\tau \text{ on }\partial\Omega_\tau. \] and we obtain $u_m\leq u_{m+j}+\tau$ in $\Omega_\tau$ \cite[Theorem 3.3]{gt}, a contradiction. \end{proof} \begin{lemma}\label{m29} Let $u_m$ be a solution of \eqref{perdido estoy}. Then $g_{m+j}(u_{m+j}(x))\geq g_m(u_m(x))$. \end{lemma} \begin{proof} Suppose that there exists $x_0\in\Omega$ such that $g_m(u_m(x_0))>g_{m+j}(u_{m+j}(x_0))$. Then there exists $\hat{\Omega}\subset\Omega$ such that \[ -\mathcal{L} u_m \geq -\mathcal{L} u_{m+j} \text{ in }\hat{\Omega}, \quad u_m = u_{m+j} \text{ on }\partial\hat{\Omega}. \] We infer that $u_m\geq u_{m+j}$ in $\hat{\Omega}$ \cite[Theorem 3.3]{gt}. Therefore, $g_m(u_m(x))\leq g_m(u_{m+j}(x))\leq g_{m+j}(u_{m+j}(x))$ for all $x\in\hat{\Omega}$. A contradiction. \end{proof} \begin{proof}[Proof of Theorem \ref{t1}] For any $f\in\mathcal{C}^{\alpha,g,+}_{\rm loc}(\Omega)$, we have $f_k=\min(k,f)\in C^\alpha(\overline{\Omega})$. Therefore there exist a unique solution $v_k\in C^{2,\alpha}(\overline{\Omega})$ of the problem \begin{equation} -\mathcal{L}v_k=f_k\text{ in }\Omega, \quad v_k=0\text{ on }\partial\Omega \end{equation} Using \cite[Corollary 6.3]{gt}, we obtain \begin{align*} d|Dv_k|_{0;\Omega'}+d^2|D^2v_k|_{0;\Omega'} +d^{2+\alpha}[D^2v_k]_{\alpha ;\Omega'} \leq C(|v_k|_{0;\Omega''}+|f_k|_{0,\alpha;\Omega''}) \end{align*} where $\Omega'\subset\Omega''\subset\Omega$, $d=\text{dist}(\Omega',\partial\Omega'')$ and $C$ is independent of $k$. Moreover $v_k\leq u$, it follows that $v_k\to v$ in $C^2_{\rm loc}(\Omega)\cap C^0(\overline{\Omega})$ were $v$ solves equation \ref{samson}. \end{proof} \begin{proof}[Proof of Theorem \ref{t2}] This theorem is a direct consequence of the proof of Theorem \ref{t1} and Lemmas \ref{fulgor} and \ref{m29} . \end{proof} \begin{proof}[Proof of Theorem \ref{t3}] This theorem is a direct consequence of \cite{a}. \end{proof} \begin{thebibliography}{00} \bibitem{a} C. C. Aranda; \emph{On the Poisson's equation $-\Delta u=\infty$''}. Preprint. \bibitem{ag} C. C. Aranda and T. Godoy; \emph{Existence and Multiplicity of positive solutions for a singular problem associated to the p-laplacian operator}. Electron. J. Diff. Eqns., Vol. 2004(2004), No. 132, pp. 1-15. \bibitem{b} L. Beck; \emph{Selected topics in analysis and PDE: Regularity theory for elliptic problems.} Lecture Notes 2012 Bonn University. \bibitem{br} H. Brezis; \emph{Analyse fonctionnelle} Masson Editeur Paris 1983. \bibitem{dl} R. Dautray, J. L. Lions; \emph{Mathematical analysis and numerical methods for science and technology}. Vol. 1 Physical Origins and classical methods. Springer Verlag 1990. \bibitem{dgr} L. Dupaigne, M. Ghergu and V. Radulescu; \emph{ Lane-Emden-Fowler equations with convrection and singular potential}. J. Math. Pures Appl. 87 (2007) 563-581. \bibitem{hm} J. H\'ernandez, F. J. Mancebo; \emph{Singular elliptic and parabolic equations.} In \emph{Handbook of differential equations} (ed. M. Chipot and P. Quittner), vol 3 (Elsevier 2006) \bibitem{fie} K. O. Friedrichs; \emph{Spektraltheorie halbbeschrankter operatoren und anwendung auf die spektraltheorie von differentialoperatoren''} Math. Ann., 109, Hf., 495-487, 685-713 (1934). \bibitem{fm} W. Fulks, J. S. Maybe; \emph{A singular nonlinear equation}. Osaka J. Math. 12 (1960), 1-19. \bibitem{gr} M. Ghergu and V. R\u adulescu; \emph{Singular Elliptic Problems: Bifurcation \& Asymptotic Analysis}. Oxford Lecture Series in Mathematics and Its Applications, 2008. \bibitem{gs} J. Giacomoni, K. Saoudi; \emph{Multiplicity of positive solutions for a singular and critical problem}. Nonlinear Analysis 71 (2009) 4060-4077. \bibitem{gst} J. Giacomoni, I. Schindler, P Tak\'{a}c; \emph{Sobolev versus H\"{o}lder minimizers and existence of multiple solutions for a singular quasilinear equation}. Ann. Sc. Norm. Super Pisa Cl. Sci. (5) VI (2007) 117-158. \bibitem{gt} David Gilbarg, Neil S. Trudinger; \emph{Elliptic partial differential equations of second order}. Classics in mathematics reprint of 1998 edition Springer \bibitem{k} N. V. Krylov; \emph{Lectures on elliptic an parabolic equations in Sobolev spaces}. Graduate Studies in Mathematics Volume 96 AMS 2008. \bibitem{lu} O. A. Ladyzhenskaya N. N. Ural'seva; \emph{Linear and Quasilinear Elliptic Equations}. Academic Press 1968. \bibitem{r} M. A. Ragusa; \emph{Elliptic boundary value problem in vanishing mean oscillation hypothesis}. Comment. Math. Carolin. 40, 4 (1999) 651-663. \bibitem{wyw} Z. Wu, J. Yin, C. Wang; \emph{Elliptic and parabolic equations}. World Scientific Publishing 2006. \end{thebibliography} \end{document}