\documentclass[reqno]{amsart}
\usepackage{hyperref}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2012 (2012), No. 148, pp. 1--12.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2012 Texas State University - San Marcos.}
\vspace{8mm}}
\begin{document}
\title[\hfilneg EJDE-2012/148 Periodic solutions]
{Periodic solutions for p-Laplacian neutral functional differential
equations with multiple deviating arguments}
\author[A. Anane, O. Chakrone, L. Moutaouekkil \hfil EJDE-2012/148\hfilneg]
{Aomar Anane, Omar Chakrone, Loubna Moutaouekkil} % in alphabetical order
\address{Aomar Anane \newline
Universit\'e Mohamed I, Facult\'e des Sciences \\
D\'epartement de Math\'ematiques et Informatique \\
Oujda, Maroc}
\email{anane@sciences.univ-oujda.ac.ma}
\address{Omar Chakrone \newline
Universit\'e Mohamed I, Facult\'e des Sciences \\
D\'epartement de Math\'ematiques et Informatique \\
Oujda, Maroc}
\email{chakrone@yahoo.fr}
\address{Loubna Moutaouekkil \newline
Universit\'e Mohamed I, Facult\'e des Sciences \\
D\'epartement de Math\'ematiques et Informatique \\
Oujda, Maroc}
\email{loubna\_anits@yahoo.fr}
\thanks{Submitted May 17, 2012. Published August 29, 2012.}
\subjclass[2000]{34K15, 34C25}
\keywords{Periodic solution; neutral differential equation; \hfill\break\indent
deviating argument; p-Laplacian; Mawhin's continuation}
\begin{abstract}
By means of Mawhin's continuation theorem, we prove the existence of
periodic solutions for a p-Laplacian neutral functional differential
equation with multiple deviating arguments
\begin{align*}
&(\varphi_p(x'(t)-c(t)x'(t-r)))'\\
&= f(x(t))x'(t)+g(t,x(t),x(t-\tau_1(t)),
\dots ,x(t-\tau_{m}(t)))+e(t).
\end{align*}
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\allowdisplaybreaks
\section {Introduction}
In recent years, periodic solutions involving the scalar
$p$-Laplacian have been studied extensively by many researchers.
Lu and Ge \cite{l1} discussed sufficient conditions for the
existence of periodic solutions to second order differential
equation, with a deviating argument,
$$
x''(t)=f(t,x(t),x(t-\tau(t)),x'(t))+e(t).
$$
Recently, Pan \cite{p1} studied the equation
$$
x^{(n)}(t)=\sum_{i=1}^{n-1}b_{i}x^{(i)}(t)+f(t,x(t),x(t-\tau_1(t)),\dots ,x(t-\tau_{m}(t)))+p(t).
$$
Feng, Lixiang and Shiping \cite{f1} investigated the existence of periodic
solutions for a p-Laplacian neutral functional differential equation
$$
(\varphi_p(x'(t)-c(t)x'(t-r)))'=f(x(t))x'(t)+\beta(t)g(x(t-\tau(t)))+e(t),
$$
where $c(t)$ and $\beta(t)$ are allowed to change signs.
The purpose of this article is to study the existence of periodic
solution for p-Laplacian neutral functional differential equation
\begin{equation} \label{e1.1}
\begin{split}
&(\varphi_p(x'(t)-c(t)x'(t-r)))'\\
&=f(x(t))x'(t)+g(t,x(t),x(t-\tau_1(t)),\dots ,x(t-\tau_{m}(t)))+e(t).
\end{split}
\end{equation}
Where $p>1$ is a fixed real number. The conjugate exponent of $p $
is denoted by $q$; i.e., $\frac{1}{p}+\frac{1}{ q}=1$. Let
$\varphi_p:\mathbb{R}\to\mathbb{R}$ be the mapping defined
by $\varphi_p(s)=|s|^{p-2}s$ for $s\neq0$, and $\varphi_p(0)=0$,
$f, e, c\in C(\mathbb{R},\mathbb{R})$ are continuous $T$-periodic
functions defined on $\mathbb{R}$ and $T>0$ , $ r\in\mathbb{R}$ is a
constant with $r>0$, $g\in C(\mathbb{R}^{m+2},\mathbb{R}) $ and
$g(t+T,u_0,u_1,\dots ,u_{m})=g(t,u_0,u_1,\dots ,u_{m})$,
for all $(t,u_0,u_1,\dots ,u_{m})\in \mathbb{R}^{m+2}$,
$\tau_{i}\in C(\mathbb{R},\mathbb{R})(i=1,2,\dots ,m)$ with
$\tau_{i}(t+T)=\tau_{i}(t)$.
\section{Preliminaries}
For convenience, define
$\mathcal{C}_{T}=\{x\in\mathcal{C}(\mathbb{R},\mathbb{R}):x(t+T)=x(t)\}$
with the norm $|x|_{\infty}=\max|x(t)|_{t\in[0,T]}$. Clearly
$\mathcal{C}_{T}$ is a Banach space. We also define a linear
operator
\begin{equation} \label{e2.1}
A:\mathcal{C}_{T}\to \mathcal{C}_{T},\quad
(Ax)(t)=x(t)-c(t)x(t-r),
\end{equation}
and constant
$C_p=\begin{cases}
1 &\text{if } 1
2.
\end{cases}$
To simplify the studying of the existence of periodic
solution for \eqref{e1.1} we cite the following lemmas.
\begin{lemma}[\cite{f1}] \label{lem1}
Let $p\in ]1,+\infty[$ be a constant, $s\in\mathcal{C}(\mathbb{R},\mathbb{R})$
such that $s(t+T)\equiv s(t)$, for all $t\in[0,T]$. Then for for all
$u\in \mathcal{C}^{1}(\mathbb{R},\mathbb{R})$ with $u(t+T)\equiv u(t)$, we
have
$$
\int_0^T|u(t)-u(t-s(t))|^pdt
\leq 2(\max_{t\in[0,T]} |s(t)|)^p\int_0^T|u'(t)|^pdt.
$$
\end{lemma}
\begin{lemma}[\cite{f1}] \label{lem2}
Let $B:\mathcal{C}_{T}\to\mathcal{C}_{T}$, $(Bx)(t)=c(t)x(t-r)$.
Then $B$ satisfies the following conditions
\begin{itemize}
\item[(1)] $\|B\|\leq|c|_{\infty}$.
\item[(2)] $(\int_0^T|[B^{j}x](t)|^pdt)^{1/p}
\leq|c|_{\infty}^{j}(\int_0^T|x(t)|^pdt)^{1/p},\quad
\forall x\in\mathcal{C}_{T},p>1,\; j\geq1$.
\end{itemize}
\end{lemma}
\begin{lemma}[\cite{f1}]\label{lem3}
If $|c|_{\infty}<1$, then $A$, defined by \eqref{e2.1}, has continuous bounded
inverse $A^{-1}$ with the following properties:
\begin{itemize}
\item[(1)] $\|A^{-1}\|\leq 1/( 1-|c|_{\infty})$,
\item[(2)] $(A^{-1}f)(t)=f(t)+\sum_{j=1}^{\infty}
\prod_{i=1}^{j}c(t-(i-1)r)f(t-jr)$, for all $f\in\mathcal{C}_{T} $,
\item[(3)] $\int_0^T|(A^{-1}f)(t)|^pdt
\leq(\frac{1}{1-|c|_{\infty}})^p\int_0^T|f(t)|^pdt$ for all
$f\in\mathcal{C}_{T}$.
\end{itemize}
\end{lemma}
Now, we recall Mawhin's continuation theorem which will be used in our study.
Let $X$ and $Y$ be real Banach spaces and $L:D(L)\subset
X\to Y$ be a Fredholm operator with index zero. Here $D(L)$
denotes the domain of $L$. This means that $\operatorname{Im}L$ is closed in $Y$
and $\dim \ker L=\dim(Y/\operatorname{Im}L)<+\infty$. Consider the supplementary
subspaces $X_1$ and $Y_1$ and such that $X=\ker L\oplus X_1$
and $Y=\operatorname{Im}L\oplus Y_1$ and let $P:X\to \ker L$ and
$Q:Y\to Y_1$ be natural projections. Clearly,
$\ker L\cap(D(L)\cap X_1)=\{0\}$, thus the restriction
$L_p:=L|_{D(L)\cap X_1}$ is invertible. Denote the inverse of
$L_p$ by $K$.
Now, let $\Omega$ be an open bounded subset of $X$ with
$D(L)\cap\Omega\neq\emptyset$, a map
$N:\overline{\Omega}\to Y$ is said to be $L$-compact on
$\overline{\Omega}$. If $QN(\overline{\Omega})$ is bounded and the
operator $K(I-Q)N:\overline{\Omega}\to Y$ is compact.
\begin{lemma}[\cite{g1}] \label{lem4}.
Suppose that $X$ and $Y$ are two Banach spaces, and
$L:D(L)\subset X\to Y$ is a Fredholm operator with index zero. Furthermore,
$\Omega\subset X$ is an open bounded set, and
$N:\overline{\Omega}\to Y$ is $L$-compact on
$\overline{\Omega}$. If all of the following conditions hold:
\begin{itemize}
\item[(1)] $Lx\neq\lambda Nx,\forall x\in\partial\Omega\cap D(L),\lambda\in]0,1]$;
\item[(2)] $Nx\not\in \operatorname{Im}L$ for all $x\in\partial\Omega\cap
\ker L$; and
\item[(3)] $\deg\{JQN,\Omega\cap \ker L,0\}\neq0$, where
$J:\operatorname{Im}Q\to \ker L$ is an isomorphism.
\end{itemize}
Then the equation $Lx=Nx$ has at least
one solution on $\overline{\Omega}\cap D(L)$.
\end{lemma}
To use Mawhin's continuation theorem to study the existence
of $T$-periodic solution for \eqref{e1.1}, we rewrite \eqref{e1.1} in the
system
\begin{equation} \label{e2.2}
\begin{gathered}
x'_1(t)=[A^{-1}\varphi_{q}(x_2)](t), \\
\begin{aligned}
x'_2(t)&=f(x_1(t))[A^{-1}\varphi_{q}(x_2)](t)\\
&\quad +g(t,x_1(t),x_1(t-\tau_1(t)),\dots ,x_1(t-\tau_{m}(t)))+e(t).
\end{aligned}
\end{gathered}
\end{equation}
Where $q>1$ is constant with
$\frac{1}{p}+\frac{1}{q}=1$. Clearly, if
$x(t)=(x_1(t),x_2(t))^T$ is a $T$-periodic solution to
equation set \eqref{e2.2}, then $x_1(t)$ must be a $T$-periodic solution
to equation \eqref{e1.1}. Thus, to prove that \eqref{e1.1} has a
$T$-periodic solution, it suffices to show that equation
set \eqref{e2.2} has a $T$-periodic solution.
Now, we set $X=Y=\{x=(x_1(t),x_2(t))^T\in
C(\mathbb{R},\mathbb{R}^{2} ): x_1\in C_{T}, x_2\in C_{T}\} $
with the norm $\|x\|=\max\{|x_1|_{\infty},|x_2|_{\infty}\}$.
Obviously, $X$ and $Y$ are two Banach spaces. Meanwhile, let
\begin{equation} \label{e2.3}
L:D(L)\subset X\to Y,\quad Lx=x'=\begin{pmatrix}
x'_1 \\
x'_2
\end{pmatrix}.
\end{equation}
and $N:X\to Y$ be defined by
\begin{equation} \label{e2.4}
\begin{aligned}
&[Nx](t)\\
&=\begin{pmatrix}
[A^{-1}\varphi_{q}(x_2)](t) \\
f(x_1(t))[A^{-1}\varphi_{q}(x_2)](t)+g(t,x_1(t),x_1(t-\tau_1(t)),
\dots ,x_1(t-\tau_{m}(t)))+e(t)
\end{pmatrix}.
\end{aligned}
\end{equation}
It is easy to see that \eqref{e2.2} can be converted to the
abstract equation $Lx=Nx$. Moreover, from the definition of $L$, we
see that $\ker L=\mathbb{R}^{2}$, $\operatorname{Im} L=\{y: y\in Y,
\int_0^Ty(s)ds=0\}$. So $L$ is a Fredholm operator with index
zero.
Let projections $P:X\to \ker L$ and $Q:Y\to \operatorname{Im} Q$ be defined by
$$
Px=\frac{1}{T}\int_0^Tx(s)ds,\quad
Qy=\frac{1}{T}\int_0^Ty(s)ds,
$$
and let $K$ represent the inverse of $L|_{\ker P\cap D(L)}$. Clearly,
$\ker L=\operatorname{Im} Q=\mathbb{R}^{2}$ and
\begin{equation} \label{e2.5}
[Ky](t)=\int_0^TG(t,s)y(s)ds,
\end{equation}
where
$$
G(t,s)=\begin{cases}
\frac{ s}{ T}, & \text{if } 0\leq s0$ such that:
\begin{itemize}
\item[(1)]
$g(t,u_0,u_1,\dots ,u_{m})>|e|_{\infty}$, for all
$(t,u_0,u_1,\dots ,u_{m})\in [0,T]\times \mathbb{R}^{m+1}$ with
$u_{i}>d$ $(i=0,1,\dots ,m)$.
\item[(2)] $g(t,u_0,u_1,\dots ,u_{m})<-|e|_{\infty}$, for all
$(t,u_0,u_1,\dots ,u_{m})\in [0,T]\times \mathbb{R}^{m+1}$ with
$u_{i}<-d$ $(i=0,1,\dots ,m)$.
\end{itemize}
\item[(H2)] The function $g$ has the decomposition
$$
g(t,u_0,u_1,\dots ,u_{m})=h_1(t,u_0)+h_2(t,u_0,\dots ,u_{m}),
$$
such that $u_0h_1(t,u_0)\geq l|u_0|^{n}$,
$|h_2(t,u_0,\dots ,u_{m})|\leq\sum_{i=0}^{m}\alpha_{i}|u_{i}|^{p-1}+\beta$,
where $n, l,\alpha_{i}(i=0,\dots ,m), \beta $ are non-negative
constants with $n\geq p$.
\end{itemize}
\begin{theorem}\label{thm1}
Assume {\rm (H1)--(H2)}.
Then, \eqref{e1.1} has at least one $T$-periodic solution, if
$|c|_{\infty}<1/2$ and if
$$
\big(\frac{1}{1-|c|_{\infty}}\big)^p
\big[|c|_{\infty}(1+|c|_{\infty})^{p-1}+2^{p-1}\delta
\big(\frac{T}{\pi_p}\big)^p+C_p2^{1/q}
\frac{T}{\pi_p}\sum_{i=1}^{m}\alpha_{i}|\tau_{i}|_{\infty}^{p-1}\big]<1,
$$
where $\delta=\max(C_p\sum_{i=1}^{m}\alpha_{i}-\alpha_0-l,0)$.
\end{theorem}
\begin{proof}
Let $\Omega_1=\{x\in X : Lx = \lambda Nx, \lambda\in ]0,1] \}$ if
$x(\cdot) = (x_1(\cdot),x_2(\cdot))^T\in \Omega_1$, then
from \eqref{e2.3} and \eqref{e2.4}, we have
\begin{equation} \label{e3.1}
\begin{gathered}
x'_1(t)=\lambda[A^{-1}\varphi_{q}(x_2)](t), \\
\begin{aligned}
x'_2(t)&=\lambda f(x_1(t))[A^{-1}\varphi_{q}(x_2)](t)\\
&\quad +\lambda g(t,x_1(t),x_1(t-\tau_1(t)),\dots ,x_1(t-\tau_{m}(t)))+\lambda e(t).
\end{aligned}
\end{gathered}
\end{equation}
From the first equation in \eqref{e3.1}, we have
$x_2(t)=\varphi_p(\frac{1}{\lambda}(Ax'_1)(t)$, together with
the second formula of \eqref{e3.1}, which yields
\begin{equation} \label{e3.2}
\begin{aligned}{}
[\varphi_p((Ax'_1)(t))]'
&=\lambda^{p-1} f(x_1(t))x'_1(t)\\
&\quad +\lambda^p g(t,x_1(t),x_1(t-\tau_1(t)),\dots ,
x_1(t-\tau_{m}(t)))+\lambda^p e(t).
\end{aligned}
\end{equation}
Integrating both sides of \eqref{e3.2} on the interval $[0,T]$ and
applying integral mean value theorem, then there exists a constant
$t_0 \in [0,T]$ such that
\begin{equation} \label{e3.3}
g(t,x_1(t_0),x_1(t_0-\tau_1(t_0)),\dots ,x_1(t_0-\tau_{m}(t_0)))
=-\frac{1}{T}\int_0^T e(t)dt.
\end{equation}
We can prove that there is $t_1\in[0,T]$ such that
$|x_1(t_1)|\leq d$.
If $|x_1(t_0)|\leq d$, then taking $t_1= t_0 $ such that
$|x_1(t_1)|\leq d$.
If $|x_1(t_0)|>d$. It follows from (H1) that
there is some $i\in\{1,2,\dots ,m\}$ such that
$|x_1(t_0-\tau_{i}(t_0))|\leq d$. Since $x_1(t)$ is
continuous for $t\in\mathbb{R}$ and $x_1(t+T)=x_1(t)$, so there
must be an integer $k$ and a point $t_1\in[0,T]$ such that
$t_0-\tau_{i}(t_0)=kT+t_1$. So
$|x_1(t_1)|=|x_1(t_0-\tau_{i}(t_0))|\leq d$.
Then, we have
$$
|x_1(t)|=|x_1(t_1)+\int_{t_1}^{t}x'_1(s)ds|\leq
d+\int_{t_1}^{t}|x'_1(s)|ds,\quad t\in[t_1,t_1+T],
$$
and
$$
|x_1(t)|=|x_1(t-T)|=|x(t_1)-\int_{t-T}^{t_1}x'_1(s)ds|\leq
d+\int_{t_1-T}^{t_1}|x'_1(s)|ds,\quad t\in[t_1,t_1+T].
$$
Combining the above two inequalities, we obtain
\begin{equation} \label{e3.4}
\begin{aligned}
|x_1|_{\infty}&=\max_{t\in[0,T]}|x_1(t)|
=\max_{t\in[t_1,t_1+T]}|x_1(t)|\\
&\leq\max_{t\in[t_1,t_1+T]}\Big\{d+\frac{1}{2}\Big(\int_{t_1}^{t}|x'_1(s)|ds
+\int_{t-T}^{t_1}|x'_1(s)|ds\Big)\Big\}\\
&\leq d+\frac{1}{2}\int_0^T|x'_1(s)|ds.
\end{aligned}
\end{equation}
On the hand, multiplying both sides of \eqref{e3.2} by $x_1(t)$ and
integrating it from $0$ to $T$, we obtain
\begin{equation} \label{e3.5}
\begin{aligned}
&\int_0^T[\varphi_p((Ax'_1)(t))]'x_1(t)dt\\
&=\lambda^{p-1} \int_0^Tf(x_1(t))x'_1(t)x_1(t)dt\\
&\quad +\lambda^p \int_0^Tg(t,x_1(t),x_1(t-\tau_1(t)),\dots
,x_1(t-\tau_{m}(t)))x_1(t)dt\\
&\quad +\lambda^p \int_0^Te(t)x_1(t)dt.
\end{aligned}
\end{equation}
On the other hand we have
\begin{equation} \label{e3.6}
\begin{aligned}
&\int_0^T[\varphi_p((Ax'_1)(t))]'x_1(t)dt\\
&=-\int_0^T\varphi_p((Ax'_1)(t))x'_1(t)dt\\
&=-\int_0^T\varphi_p((Ax'_1)(t))[x'_1(t)-c(t)x'_1(t-r)+c(t)x'_1(t-r)]dt\\
&=-\int_0^T|(Ax'_1)(t)|^pdt-\int_0^Tc(t)x'_1(t-r)\varphi_p((Ax'_1)(t))dt.
\end{aligned}
\end{equation}
Meanwhile,
\begin{equation} \label{e3.7}
\int_0^Tf(x_1(t))x'_1(t)x_1(t)dt=0.
\end{equation}
Substituting \eqref{e3.6}-\eqref{e3.7} into \eqref{e3.5} we obtain
\begin{equation} \label{e3.8}
\begin{aligned}
&\int_0^T|(Ax'_1)(t)|^pdt\\
&=-\int_0^Tc(t)x'_1(t-r)\varphi_p((Ax'_1)(t))dt\\
&\quad -\lambda^p
\int_0^Tg(t,x_1(t),x_1(t-\tau_1(t)),\dots ,x_1(t-\tau_{m}(t)))x_1(t)dt\\
&\quad -\lambda^p \int_0^Te(t)x_1(t)dt.
\end{aligned}
\end{equation}
In view of (H2), we obtain
\begin{equation} \label{e3.9}
\begin{aligned}
&\int_0^T|(Ax'_1)(t)|^pdt\\
&=-\int_0^Tc(t)x'_1(t-r)\varphi_p((Ax'_1)(t))dt
\\
&\quad -\lambda^p
\int_0^Tg(t,x_1(t),x_1(t-\tau_1(t)),\dots ,x_1(t-\tau_{m}(t)))x_1(t)dt-\lambda^p
\int_0^Te(t)x_1(t)dt\\
&=-\lambda^p \int_0^Th_1(t,x_1)x_1(t)dt\\
&\quad -\lambda^p \int_0^Th_2(t,x_1(t),x_1(t-\tau_1(t)),\dots ,
x_1(t-\tau_{m}(t)))x_1(t)dt\\
&\quad -\lambda^p\int_0^Te(t)x_1(t)dt.
\end{aligned}
\end{equation}
Define $\Delta_1=\{t\in[0,T]:|x_1(t)|\leq 1\}$,
$\Delta_2=\{t\in[0,T]:|x_1(t)|> 1\}$, in view of (H2) again
we have
\begin{equation} \label{e3.10}
\begin{aligned}
-\lambda^p \int_0^Th_1(t,x_1)x_1(t)dt
&\leq -\lambda^pl \int_0^T|x_1(t)|^{n}dt\\
&= -\lambda^pl
\Big(\int_{\Delta_1}+\int_{\Delta_2}\Big)|x_1(t)|^{n}dt\\
&\leq-\lambda^pl \int_{\Delta_2}|x_1(t)|^{n}dt\\
&\leq -\lambda^pl \int_{\Delta_2}|x_1(t)|^pdt\\
&=-\lambda^pl \int_0^T|x_1(t)|^pdt +\lambda^pl
\int_{\Delta_1}|x_1(t)|^pdt\\
&\leq-\lambda^pl \int_0^T |x_1(t)|^pdt +lT.
\end{aligned}
\end{equation}
Substituting \eqref{e3.10} into \eqref{e3.9},
\begin{equation} \label{e3.11}
\begin{aligned}
&\int_0^T|(Ax'_1)(t)|^pdt\\
&\leq|c|_{\infty}\int_0^T|\varphi_p((Ax'_1)(t))||x'_1(t-r)|dt
-\lambda^pl \int_0^T|x_1(t)|^pdt\\
&\quad +\lambda^p\int_0^T|h_2(t,x_1(t),x_1(t-\tau_1(t)),\dots ,
x_1(t-\tau_{m}(t)))||x_1(t)|dt\\
&\quad +\lambda^p|e|_{\infty} \int_0^T|x_1(t)|dt+lT.
\end{aligned}
\end{equation}
Moreover, by using H\"older's inequality and Minkowski inequality,
we obtain
\begin{equation} \label{e3.12}
\begin{aligned}
&\int_0^T|\varphi_p((Ax'_1)(t))||x'_1(t-r)|dt\\
&\leq\Big(\int_0^T|\varphi_p((Ax'_1)(t))|^{q}dt\Big)^{1/q}
\Big(\int_0^T|x'_1(t-r)|^pdt\Big)^{1/p}\\
&=\Big(\int_0^T|(Ax'_1)(t)|^pdt\Big)^{1/q}
\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}\\
&=\Big[\Big(\int_0^T|x'_1(t)-c(t)x'_1(t-r)|^pdt\Big)^{1/p}\Big]^{p/q}
\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}\\
&\leq\Big[\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}
+\Big(\int_0^T|c(t)x'_1(t-r)|^pdt\Big)^{1/p}\Big]^{p/q}
\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}\\
&\leq\Big[\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}+|c|_{\infty}
\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}\Big]^{p/q}
\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}\\
&=(1+|c|_{\infty})^{p-1} \int_0^T|x'_1(t)|^p dt.
\end{aligned}
\end{equation}
By \eqref{e3.11} and \eqref{e3.12} and combining with (H2) and
Lemma \ref{lem1}, we obtain
\begin{align}
&\int_0^T|(Ax'_1)(t)|^pdt \nonumber\\
&\leq|c|_{\infty}(1+|c|_{\infty})^{p-1}\int_0^T|x'_1(t)|^pdt-\lambda^pl
\int_0^T|x_1(t)|^pdt \nonumber \\
&\quad +\lambda^p\int_0^T|h_2(t,x_1(t),x_1(t-\tau_1(t)),\dots ,
x_1(t-\tau_{m}(t)))||x_1(t)|dt \nonumber\\
&\quad +\lambda^p|e|_{\infty}\int_0^T|x_1(t)|dt+lT
\nonumber \\
&\leq|c|_{\infty}(1+|c|_{\infty})^{p-1}\int_0^T|x'_1(t)|^pdt
+\lambda^p(\alpha_0-l)\int_0^T|x_1(t)|^pdt
\nonumber \\
&\quad +\lambda^p\int_0^T\sum_{i=1}^{m}\alpha_{i}|x_1
(t-\tau_{i}(t))|^{p-1}|x_1(t)|dt+\lambda^p(\beta+|e|_{\infty})
\int_0^T|x_1(t)|dt+lT
\nonumber \\
&\leq|c|_{\infty}(1+|c|_{\infty})^{p-1}\int_0^T|x'_1(t)|^pdt
+\lambda^p(\alpha_0-l)\int_0^T|x_1(t)|^pdt
\nonumber \\
&\quad +\lambda^pC_p\sum_{i=1}^{m}\alpha_{i}\int_0^T|x_1(t-\tau_{i}(t))
-x_1(t)|^{p-1}|x_1(t)|dt
\nonumber \\
&\quad +\lambda^pC_p\sum_{i=1}^{m}\alpha_{i}\int_0^T|x_1(t)|^pdt
+\lambda^p(\beta+|e|_{\infty})\int_0^T|x_1(t)|dt+lT
\nonumber \\
&\leq|c|_{\infty}(1+|c|_{\infty})^{p-1}\int_0^T|x'_1(t)|^pdt
+\lambda^p(C_p\sum_{i=1}^{m}\alpha_{i}+\alpha_0-l)\int_0^T|x_1(t)|^pdt
\nonumber \\
&\quad +\lambda^pC_p\sum_{i=1}^{m}\alpha_{i}
\Big(\int_0^T|x_1(t-\tau_{i}(t))-x_1(t)|^pdt\Big)^{1/q}
\Big(\int_0^T|x_1(t)|^pdt\Big)^{1/p}
\nonumber\\
&\quad +\lambda^p(\beta+|e|_{\infty})T^{1/q}
\Big(\int_0^T|x_1(t)|^pdt\Big)^{1/p}+lT
\nonumber \\
&\leq|c|_{\infty}(1+|c|_{\infty})^{p-1}\int_0^T|x'_1(t)|^pdt
+\delta\int_0^T|x_1(t)|^pdt
\nonumber\\
&+C_p\sum_{i=1}^{m}\alpha_{i}2^{1/q}|\tau_{i}|_{\infty}^{p-1}
\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/q}
\Big(\int_0^T|x_1(t)|^pdt\Big)^{1/p}
\nonumber\\
&\quad +(\beta+|e|_{\infty})T^{1/q}\Big(\int_0^T|x_1(t)|^pdt\Big)^{1/p}+lT.
\label{e3.13}
\end{align}
Let $\omega(t)=x_1(t+t_1)-x_1(t_1)$, then
$\omega(T)=\omega(0)=0$ and from Lemma \ref{lem1} we see that
\begin{equation} \label{e3.14}
\int_0^T|\omega(t)|^pdt\leq
\Big(\frac{T}{\pi_p}\Big)^p\int_0^T|\omega'(t)|^pdt
=\Big(\frac{T}{\pi_p}\Big)^p\int_0^T|x'_1(t)|^pdt.
\end{equation}
By \eqref{e3.14} and the Minkowski inequality, we obtain
\begin{equation} \label{e3.15}
\begin{aligned}
\Big(\int_0^T|x_1(t)|^pdt\Big)^{1/p}
&=\Big(\int_0^T|\omega(t)+x_1(t_1)|^pdt\Big)^{1/p}\\
&\leq\Big(\int_0^T|\omega(t)|^pdt\Big)^{1/p}
+\Big(\int_0^T|x_1(t_1)|^pdt\Big)^{1/p}\\
&\leq\frac{T}{\pi_p}\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}+dT^{1/p}.
\end{aligned}
\end{equation}
Substituting \eqref{e3.15} into \eqref{e3.13} yields
\begin{align}
& \int_0^T|(Ax'_1)(t)|^pdt \nonumber \\
&\leq |c|_{\infty}(1+|c|_{\infty})^{p-1}\int_0^T|x'_1(t)|^pdt+\delta
\Big[\frac{T}{\pi_p}\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}+dT^{1/p}\Big]^p
\nonumber \\
&\quad +C_p2^{1/q}\sum_{i=1}^{m}\alpha_{i}|\tau_{i}|_{\infty}^{p-1}
\Big[\frac{T}{\pi_p}\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}
+dT^{1/p}\Big]\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/q}
\nonumber \\
&\quad +(\beta+|e|_{\infty})T^{1/q}\Big[\frac{T}{\pi_p}
\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}+dT^{1/p}\Big]+lT
\nonumber \\
&\leq \Big[|c|_{\infty}(1+|c|_{\infty})^{p-1}+2^{p-1}\delta
\big(\frac{T}{\pi_p}\big)^p
+C_p2^{1/q}\frac{T}{\pi_p}\sum_{i=1}^{m}\alpha_{i}|\tau_{i}|_{\infty}^{p-1}\Big]
\int_0^T|x'_1(t)|^pdt
\nonumber \\
&\quad +C_p2^{1/q}\sum_{i=1}^{m}\alpha_{i}|\tau_{i}|_{\infty}^{p-1}dT^{1/p}
\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/q} \nonumber \\
&\quad +(\beta+|e|_{\infty})T^{1/q}\frac{T}{\pi_p}
\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/p}\nonumber\\
&\quad +2^{p-1}\delta d^pT+(\beta+|e|_{\infty})dT+lT. \label{e3.16}
\end{align}
By applying the third part of Lemma \ref{lem2}, we obtain
\begin{equation} \label{e3.17}
\int_0^T|x'_1(t)|^pdt=\int_0^T|(A^{-1}Ax'_1)(t)|^pdt\leq\left(\frac{1}{1-|c|_{\infty}}\right)^p\int_0^T|(Ax'_1)(t)|^pdt.
\end{equation}
Then, substituting \eqref{e3.17} into \eqref{e3.16}, we have
\begin{equation} \label{e3.18}
\begin{aligned}
\int_0^T|x'_1(t)|^pdt
&\leq\Big(\frac{1}{1-|c|_{\infty}}\Big)^p
\Big[|c|_{\infty}(1+|c|_{\infty})^{p-1}+2^{p-1}\delta
\big(\frac{T}{\pi_p}\big)^p\\
&\quad +C_p2^{1/q}\frac{T}{\pi_p}
\sum_{i=1}^{m}\alpha_{i}|\tau_{i}|_{\infty}^{p-1}\Big]
\int_0^T|x'_1(t)|^p dt
\\
&\quad +\frac{C_p2^{1/q}\sum_{i=1}^{m}\alpha_{i}|\tau_{i}|_{\infty}^{p-1}dT^{1/p}}
{(1-|c|_{\infty})^p}\Big(\int_0^T|x'_1(t)|^pdt\Big)^{1/q}
\\
&\quad +\frac{(\beta+|e|_{\infty})T^{1/q}\frac{T}{\pi_p}}{(1-|c|_{\infty})^p}
\Big(\int_0^T|x'_1(t)|^p dt\Big)^{1/p}
+\frac{2^{p-1}\delta d^pT}{(1-|c|_{\infty})^p}\\
&\quad +\frac{(\beta+|e|_{\infty})dT}{(1-|c|_{\infty})^p}
+\frac{lT}{(1-|c|_{\infty})^p}.
\end{aligned}
\end{equation}
As
$$
\big(\frac{1}{1-|c|_{\infty}}\big)^p
\Big[|c|_{\infty}(1+|c|_{\infty})^{p-1}+2^{p-1}\delta\big(\frac{T}{\pi_p}\big)^p
+C_p2^{1/q}\frac{T}{\pi_p}\sum_{i=1}^{m}\alpha_{i}|\tau_{i}|_{\infty}^{p-1}\Big]<1,
$$
$1/p<1$, $1/q<1$,
then from \eqref{e3.18}, there exists a constant $M>0$ such that
\begin{equation} \label{e3.19}
\int_0^T|x'_1(t)|^pdt\leq M.
\end{equation}
Which together with \eqref{e3.4} gives
\begin{equation} \label{e3.20}
|x_1|_{\infty}\leq d+\frac{1}{2}T^{1/q}M^{1/p}=: M_1.
\end{equation}
Again, from the first equation in \eqref{e3.1}, we have
$$
\int_0^T(A^{-1}\varphi_{q}(x_2))(t)dt=0.
$$
Then there is a constant $\eta\in[0,T]$, such that
$(A^{-1}\varphi_{q}(x_2))(\eta)=0$, which together with the second
part of lemma \ref{lem3} gives
\begin{gather*}
(A^{-1}\varphi_{q}(x_2))(\eta)=\varphi_{q}(x_2(\eta))
+\sum_{j=1}^{\infty}\prod_{i=1}^{j}c(\eta-(i-1)r)\varphi_{q}(x_2(\eta-jr))=0,
\\
\begin{aligned}
|x_2(\eta)|^{q-1}
&=|\varphi_{q}(x_2(\eta))| \\
&=\Big|\sum_{j=1}^{\infty}\prod_{i=1}^{j}c(\eta-(i-1)r)\varphi_{q}(x_2(\eta-jr))\Big|
\\
&\leq\sum_{j=1}^{\infty}|c|_{\infty}^{j}|x_2|_{\infty}^{q-1}
=\frac{|c|_{\infty}}{1-|c|_{\infty}}|x_2|_{\infty}^{q-1}\,.
\end{aligned}
\end{gather*}
It follows that
\begin{equation} \label{e3.21}
|x_2(\eta)|\leq\Big(\frac{|c|_{\infty}}{1-|c|_{\infty}}\Big)^{1/(q-1)}
|x_2|_{\infty}.
\end{equation}
Let $M_f=\max_{|u|\leq M_1}|f(u)|$,
$M_g=\max_{t\in[0,T],|u_0|\leq M_1,\dots ,|u_{m}|\leq M_1}|g(t,u_0,\dots ,u_{m})|$
and from \eqref{e3.1}, we have
$$
x'_2(t)=\lambda f(x_1(t))x'_1(t)+\lambda g(t,x_1(t),x_1(t-\tau_1(t)),\dots ,
x_1(t-\tau_{m}(t)))+\lambda e(t),
$$
and
\begin{equation} \label{e3.22}
\begin{aligned}
&\int_0^T|x'_2(t)|dt\\
&\leq\int_0^T|f(x_1(t))x'_1(t)|dt+\int_0^T|g(t,x_1(t),x_1(t-\tau_1(t)),\dots ,
x_1(t-\tau_{m}(t)))|dt\\
&\quad +\int_0^T|e(t)|\\
&\leq M_f\int_0^T|x'_1(t)|dt+T(M_g+|e|_{\infty})\\
&\leq M_fT^{1/q}M^{1/p}+T(M_g+|e|_{\infty})=: M_2.
\end{aligned}
\end{equation}
By \eqref{e3.21} and \eqref{e3.22}
\begin{equation} \label{e3.23}
\begin{aligned}
|x_2(t)|
&=|x_2(\eta)+\int_{\eta}^{t}x'_2(s)ds|
\leq\Big(\frac{|c|_{\infty}}{1-|c|_{\infty}}\Big)^{1/(q-1)}
|x_2|_{\infty}+\int_0^T|x'_2(s)|ds\\
&\leq\Big(\frac{|c|_{\infty}}{1-|c|_{\infty}}\Big)^{1/(q-1)}|x_2|_{\infty}+M_2,
\quad t\in[0,T]\,.
\end{aligned}
\end{equation}
Since
$|c|_{\infty}<\frac{1}{2}$, $(\frac{|c|_{\infty}}{1-|c|_{\infty}})^{1/(q-1)}<1$,
and \eqref{e3.23}, it follows that there exists a positive constant
$M_3$ such that
\begin{equation} \label{e3.24}
|x_2|_{\infty}\leq M_3.
\end{equation}
Let $\Omega_2=\{x\in \ker L,QNx=0\}$. If $x\in\Omega_2$ then
$x\in\mathbb{R}^{2}$ is a constant vector, and
\begin{equation} \label{e3.25}
\begin{gathered}
\frac{1}{T}\int_0^T[A^{-1}\varphi_{q}(x_2)](t)dt=0, \\
\begin{aligned}
&\frac{1}{T}\int_0^T[f(x_1(t))[A^{-1}\varphi_{q}(x_2)](t)\\
&+g(t,x_1(t),
x_1(t-\tau_1(t)),\dots ,x_1(t-\tau_{m}(t)))+e(t)]dt=0.
\end{aligned}
\end{gathered}
\end{equation}
By the first formula in \eqref{e3.25} and the second part of Lemma \ref{lem7}, we
have $x_2=0$. Which together with the second equation in \eqref{e3.25}
yields
$$
\frac{1}{T}\int_0^T[g(t,x_1,x_1,\dots ,x_1)+e(t)]dt=0.
$$
In view of (H1), we see that $|x_1|\leq d$.
Now, we let
$\Omega=\{x|x=(x_1,x_2)^T\in X, |x_1|