\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 158, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/158\hfil Positive solutions for boundary-value problems] {Positive solutions for boundary-value problems with integral boundary conditions on infinite intervals} \author[C. Yu, J. Wang, Y. Guo, H. Wei\hfil EJDE-2012/158\hfilneg] {Changlong Yu, Jufang Wang, Yanping Guo, Huixian Wei} \address{Changlong Yu \newline College of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China} \email{changlongyu@126.com} \address{Jufang Wang \newline College of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China} \email{wangjufang1981@126.com} \address{Yanping Guo \newline College of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China} \address{Huixian Wei \newline Department of Baise, Shijiazhuang Institute of Railway Technology, Shijiazhuang, 050041, China} \thanks{Submitted July 5, 2012. Published September 18, 2012.} \subjclass[2000]{34B18, 34B15} \keywords{Cone; Avery-Peterson fixed point theorem; positive solution; \hfill\break\indent integral boundary conditions; infinite interval} \begin{abstract} In this article, we consider the existence of positive solutions for a class of boundary value problems with integral boundary conditions on infinite intervals \begin{gather*} (\varphi_{p}(x'(t)))'+\phi(t)f(t,x(t),x'(t))=0, \quad 01$. By applying the Avery-Peterson fixed point theorem in a cone, we obtain the existence of three positive solutions to the above boundary value problem and give an example at last. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \def\a{\sum _{i=1}^{m-2}k_{i}u(\xi _{i})} \def\s3{\sum _{i=1}^{m-2}k_{i}} \def\w{\sum _{i=1}^{m-2}k_{i}w(\xi _{i})} \def\aa{p(t)\psi _n(\alpha ^{'}(t) )} \def\c{\overline{P(\gamma ,c)}} \section{Introduction} Boundary value problems (BVPs) on infinite intervals often appear in applied mathematics and physics and so on. The existence and multiplicity of positive solutions for such problems have become an important area of investigation in recent years. There are many papers concerning the existence of solutions on the half-line for the boundary value problems, see \cite{a1,a2,b1,b2,g2,j1,l1,l2,m1,y1,z1} and the references therein. At the same time, we notice that a class of BVPs with integral boundary conditions appeared in heat conduction, chemical engineering, underground water flow, thermo-elasticity, and plasma physics. Such problems include two-, three-, multi-point and nonlocal BVPs as special cases and attract more attention see \cite{g1,k1,l4} and the references therein. For more information about the general theory of integral equations and their relation with BVPs, we refer to the book of Corduneanu \cite{c1} and Agarwal and O'Regan \cite{a2}. Recently, Lian et al \cite{l2}, studied the existence of positive solutions for the boundary-value problem with a p-Laplacian operator \begin{gather*} (\varphi_{p}(x'(t)))'+\phi(t)f(t,x(t),x'(t))=0,\quad 01$, $\phi: \mathbb{R}_{+}\to \mathbb{R}_{+}$, $f(t,u,v):\mathbb{R}_{+}^{3}\to \mathbb{R}_{+}$ is a continuous function, $\mathbb{R}_{+}=[0,+\infty)$, $g\in L^{1}[0,+\infty)$ is nonnegative. In this article, we use the following conditions: \begin{itemize} \item[(H1)] $\phi\in C(\mathbb{R}_{+},\mathbb{R}_{+})$, $\phi \not\equiv 0$ on any interval of the form $(t_0,+\infty)$ and \begin{align*} \int_0^{+\infty}\phi(s)ds<+\infty,\quad \int_0^{+\infty} \varphi^{-1}\Big(\int_{\tau}^{+\infty}\phi(s)ds\Big)d\tau<+\infty; \end{align*} \item[(H2)] $f(t,(1+t)u,v)\in C(\mathbb{R}_{+}^{3},\mathbb{R}_{+}),f(t,0,0)\neq 0$ on any subinterval of $(0,+\infty)$ and when $u,v$ are bounded $f(t,(1+t)u,v)$ is bounded on $[0,+\infty)$. \end{itemize} \section{Preliminary results} In this section, we present some definitions, theorems and lemmas, which will be needed in the proof of the main results. We first give the Avery-Peterson fixed point theorem. \begin{definition} \label{def2.1}\rm Let $E$ be a real Banach space. A nonempty closed convex set $P\subset E$ is called a cone if it satisfies the following two conditions: \begin{itemize} \item[(i)] $x\in P$ and $\lambda\geq 0$ imply $\lambda x\in P$; \item[(ii)] $x\in P$ and $-x\in P$ imply $x=0$. \end{itemize} \end{definition} \begin{definition} \label{def2.2}\rm Given a cone $P$ in a real Banach space $E$. A continuous map $\psi$ is called a concave (resp. convex) functional on $P$ if for all $x,y\in P$ and $0\leq \lambda\leq 1$, it holds $\psi(\lambda x+(1-\lambda)y)\geq \lambda\psi(x)+(1-\lambda)\psi(y)$, (resp. $\psi(\lambda x+(1-\lambda)y)\leq \lambda\psi(x)+(1-\lambda)\psi(y)$). \end{definition} Let $\alpha,\gamma,\theta,\psi$ be nonnegative continuous maps on $P$ with $\alpha$ concave, $\gamma,\theta$ convex. Then for positive numbers $a,b,c,d$, we define the following subsets of $P$: \begin{gather*} P(\gamma^{d})=\{x\in P:\gamma(x)b\}\neq\emptyset$ and $\alpha(Tx)>b$ for $x\in P(\alpha_{b},\theta^{c},\gamma^{d})$; \item[(2)] $\alpha(Tx)>b$ for $x\in P(\alpha_{b},\gamma^{d})$ with $\theta(Tx)>c$; \item[(3)] $0\not\in R(\psi_{a},\gamma^{d})$ and $\psi(Tx)a$ with $\alpha(x_{2})b$. \end{theorem} Consider the space \begin{equation} \label{e2.1} X=\big\{x\in C^{1}[0,+\infty),\sup_{0\leq t<+\infty} \frac{|x(t)|}{1+t}<+\infty,\lim_{t\to +\infty}x'(t)=0\big\} \end{equation} with the norm $\|x\|=\max\{\|x\|_1,\|x'\|_{\infty}\}$, where $\|x\|_1=\sup_{0\leq t<+\infty}|x(t)|/(1+t)$, $\|x'\|_{\infty}=\sup_{0\leq t<+\infty} |x'(t)|$. By using the standard arguments, we can obtain that $(X,\|\cdot\|)$ is a Banach space. Define the $P\subset X$ by \begin{equation} \label{e2.2} \begin{split} P=\Big\{& x\in X:x(t)\geq0,t\in[0,+\infty),\\ &x(0)=\int_0^{+\infty}g(s)x'(s)ds, x \text{ is concave on }[0,+\infty)\Big\}. \end{split} \end{equation} \begin{remark} \label{rmk2.1}\rm If $x$ satisfies \eqref{e1.1}, then $(\varphi_{p}(x'(t)))'=-\phi(t)f(t,x(t),x'(t))\leq 0$ on $[0,+\infty)$, which implies that $x$ is concave on $[0,+\infty)$. Moreover, if $\lim_{t\to +\infty}x'(t)=0$, then $x'(t)\geq 0,t\in[0,+\infty)$ and so $x$ is monotone increasing on $[0,+\infty)$. \end{remark} Let $k>1$ be a constant. For $x\in P$, define the nonnegative continuous functionals: \begin{equation} \label{e2.3} \begin{gathered} \alpha(x)=\frac{k}{k+1}\min_{\frac{1}{k}\leq t<+\infty}x(t), \quad \gamma(x)=\sup_{0\leq t<+\infty}x'(t),\\ \psi(x)=\theta(x)=\sup_{0\leq t<+\infty}\frac{x(t)}{1+t},\quad A=\int_0^{+\infty}g(s)ds,\\ C=\varphi_{p}^{-1}\Big(\int_0^{+\infty}\phi(s)ds\Big),\quad C_1(t)=\int_0^t\varphi_{p}^{-1} \Big(\int_{\tau}^{+\infty}\phi(s)ds\Big)d\tau. \end{gathered} \end{equation} Since the Arzela-Ascoli theorem does not apply in the space $X$, we need a modified compactness criterion to prove $T$ is compact. In the following, we present an explicit one. For more general cases, we refer the readers to \cite{a2,z1} and the reference therein. \begin{definition} \label{def2.3} \rm For $l>0$, let $V=\{x\in X:\|x\|0$ there exists $T=T(\varepsilon)>0$ such that for all $x\in V_1$, \[ \big|\frac{x(t_1)}{1+t_1}-\frac{x(t_{2})}{1+t_{2}}\big|<\varepsilon,\quad |x'(t_1)-x'(t_{2})|<\varepsilon, \quad \forall t_1, t_{2}\geq T. \] \end{definition} \begin{lemma}[\cite{l3}] \label{lem2.1} If $\{\frac{x(t)}{1+t},x\in V\}$ and $\{x'(t),x\in V\}$ are both equicontinuous on any compact interval of $[0,+\infty)$ and equiconvergent at infinity . Then $V$ is relatively compact on $X$. \end{lemma} \begin{lemma} \label{lem2.2} Let $g\in L^{1}[0,+\infty)$ and $g$ is nonnegative, if $v(t)$ is nonnegative and continuous on $[0,+\infty)$ and $\lim_{t\to +\infty}v(t)$ exists. Then there exists at least one $\eta$, $0\leq\eta\leq+\infty$ such that \begin{equation} \label{e2.4} \int_0^{+\infty}g(s)v(s)ds=v(\eta)\int_0^{+\infty}g(s)ds. \end{equation} \end{lemma} \begin{proof} It is obvious that the function $v(t)$ exists and has maxima and minima which are nonnegative and noted by $M^{*},m^{*}$ on $[0,+\infty)$, then for all $t\in[0,+\infty)$, we have $m^{*}\leq v(t)\leq M^{*}$, so \[ m^{*}\int_0^{+\infty}g(s)ds\leq \int_0^{+\infty}g(s)v(s)ds \leq M^{*}\int_0^{+\infty}g(s)ds. \] If $\int_0^{+\infty}g(s)ds=0$, the result is clear; If $\int_0^{+\infty}g(s)ds>0$, there is \[ m^{*}\leq\frac{\int_0^{+\infty}g(s)v(s)ds} {\int_0^{+\infty}g(s)ds} \leq M^{*}. \] Therefore, there exists at least one $\eta$, $0\leq\eta\leq+\infty$ such that \begin{equation} \label{e2.5} \int_0^{+\infty}g(s)v(s)ds=v(\eta)\int_0^{+\infty}g(s)ds. \end{equation} \end{proof} \begin{lemma} \label{lem2.3} Let $y\in C[\mathbb{R}_{+},\mathbb{R}_{+}]$, and $\int_0^{+\infty}y(t)dt<\infty$, then the boundary-value problem \begin{equation} \label{e2.6} \begin{gathered} (\varphi_{p}(x'(t)))'+y(t)=0, \quad 00$ such that $\|x\|\leq r$ for all $x\in\Omega$. Obviously, \[ \|(Tx)'\|_{\infty}=\varphi_{p}^{-1}(\int_0^{+\infty}\phi(s)f(s,x(s),x'(s))ds)\leq C\varphi_{p}^{-1}(B_{r}) \] for all $x\in\Omega$. Hence, $\|T\Omega\|\leq MC\varphi_{p}^{-1}(B_{r})$. So $T\Omega$ is bounded. Moreover, for any $L\in(0,+\infty)$ and $t_1,t_{2}\in[0,L]$, \begin{align*} &\Big|\frac{(Tx)(t_1)}{1+t_1}-\frac{(Tx)(t_{2})}{1+t_{2}}\Big|\\ &\leq \int_0^{+\infty}g(s)\varphi_{p}^{-1} \Big(\int_{s}^{+\infty}\phi(\tau)f(\tau,x(\tau),x'(\tau))d\tau\Big)ds \Big|\frac{1}{1+t_1}-\frac{1}{1+t_{2}}\Big|\\ &\quad +\int_0^{t_{2}}\varphi_{p}^{-1} \Big(\int_{s}^{+\infty}\phi(\tau)f(\tau,x(\tau),x'(\tau))d\tau\Big)ds \big|\frac{1}{1+t_1}-\frac{1}{1+t_{2}}\big|\\ &\quad +\frac{1}{1+t_1}|\int_{t_1}^{t_{2}}\varphi_{p}^{-1} \Big(\int_{s}^{+\infty}\phi(\tau)f(\tau,x(\tau),x'(\tau))d\tau\Big)ds| \\ &\leq \varphi_{p}^{-1}(B_{r})(AC+C_1(L))|t_1-t_{2}|+|C_1(t_1)-C_1(t_{2})|)\\ &\to 0,\quad\text{uniformly as }t_1\to t_{2}, \end{align*} and \begin{align*} |\varphi_{p}((Tx)'(t_1))-\varphi_{p}((Tx)'(t_{2}))| &=\big|\int_{t_1}^{t_{2}}\phi(s)(f(s,x,x')ds\big|\\ &\leq B_{r}|\int_{t_1}^{t_{2}}\phi(s)ds| \to 0, \quad \text{uniformly as }t_1\to t_{2}, \end{align*} for all $x\in \Omega$. So $T\Omega$ is equicontinuous on any compact interval of $[0,+\infty)$. Finally, for any $x\in \Omega$, \begin{align*} \lim_{t\to +\infty}|\frac{(Tx)(t)}{1+t}| &=\lim_{t\to +\infty}\frac{1}{1+t}\int_0^t\varphi_{p}^{-1} \Big(\int_{s}^{+\infty}\phi(\tau)f(\tau,x(\tau),x'(\tau))d\tau\Big)ds\\ &\leq M\varphi_{p}^{-1}(B_{r})\lim_{t\to +\infty}\varphi_{p}^{-1} \Big(\int_{t}^{+\infty}\phi(s)ds\Big)=0, \\ \lim_{t\to +\infty}|(Tx)'(t)| &=\lim_{t\to +\infty}\varphi_{p}^{-1}(\int_{t}^{+\infty}\phi(s)f(s,x(s),x'(s))ds)\\ &\leq \varphi_{p}^{-1}(B_{r})\lim_{t\to +\infty}\varphi_{p}^{-1} \Big(\int_{t}^{+\infty}\phi(s)ds\Big)=0. \end{align*} So $T\Omega$ is equiconvergent at infinity. By using Lemma \ref{lem2.1}, we obtain that $T\Omega$ is relatively compact, that is, $T$ is a compact operator. Hence, $T:P\to P$ is completely continuous. The proof is complete. \end{proof} \section{Main results} For the main result of this article we sue the hypothesis \begin{itemize} \item[(H3)] $f(t,(1+t)u,v)\leq \varphi_{p}(d/C)$, for $(t,u,v)\in [0,+\infty)\times[0,Md]\times[0,d]$; \item[(H4)] $f(t,(1+t)u,v)>\varphi_{p}(b/N)$, for $(t,u,v)\in [\frac{1}{k},k]\times[\frac{b}{k},\frac{(k+1)^{2}b}{km}]\times[0,d]$; \item[(H5)] $f(t,(1+t)u,v)<\varphi_{p}(a/MC)$, for $(t,u,v)\in [0,+\infty)\times[0,a]\times[0,d]$; where \[ m=\min\{A,1\},\quad N=\frac{1}{(k+1)^{2}}\int_{\frac{1}{k}}^{k}(g(s)+1)\varphi_{p}^{-1} \Big(\int_{s}^{k}\phi(\tau)d\tau\Big)ds. \] \end{itemize} \begin{theorem} \label{thm3.1} Let $A>0$. Suppose {\rm (H1)--(H5)} hold. Suppose further that there exist numbers $a,b,d$ such that $0\frac{(k+1)}{k}b. \end{gathered} \end{equation} \end{theorem} \begin{proof} Let $X,P,\alpha,\gamma,\theta,\psi$ and $T$ be defined as \eqref{e2.1}-\eqref{e2.3} and \eqref{e2.7} respectively. It is easy to prove that the fixed points of $T$ coincide with the solution of BVP \eqref{e1.1}. So it is enough to show that $T$ has three positive fixed points. In fact, for any $x\in\overline{P(\gamma^{d})}$, $\sup_{0\leq t<+\infty}x'(t)\leq d$ and so $\sup_{0\leq t<+\infty}\frac{x(t)}{1+t}\leq Md$. Condition (H3) implies that $f(t,x(t),x'(t))\leq \varphi_{p}(d/C)$ for all $t\in [0,+\infty)$. Therefore, \begin{align*} \gamma(Tx) &=\sup_{0\leq t<+\infty}(Tx)'(t)=(Tx)'(0)\\ &=\varphi_{p}^{-1}\Big(\int_0^{+\infty}\phi(s)f(s,x(s),x'(s))ds\Big)\\ &\leq\frac{d}{C}\varphi_{p}^{-1}\Big(\int_0^{+\infty}\phi(s)ds\Big)=d. \end{align*} Hence $T:\overline{P(\gamma^{d})}\to\overline{P(\gamma^{d})}$ is completely continuous. Obviously, $\alpha,\gamma,\theta,\psi$ satisfy the assumptions in Theorem \ref{thm2.1}. Next we show that conditions (1)-(3) in Theorem \ref{thm2.1} hold. Firstly, choose the function $x(t)=(1-\frac{1}{k+1}e^{-\frac{k}{A}t})\frac{(k+1)^{2}}{k}b,0\leq t<+\infty$. It can be checked that $x\in P(\alpha_{b},\theta^{c},\gamma^{d})$ with $\alpha(x)>b$, where $c=\frac{(k+1)^{2}}{km}b$. So $\{x\in P(\alpha_{b},\theta^{c},\gamma^{d})|\alpha(x)>b\}\neq\emptyset$. For any $x\in P(\alpha_{b},\theta^{c},\gamma^{d})$, we obtain \[ \frac{b}{k}\leq\frac{1}{1+k}\min_{\frac{1}{k}\leq t\leq k}x(t)\leq\frac{x(t)}{1+k}\leq\frac{x(t)}{1+t}\leq\frac{(k+1)^{2}}{km}b, \quad t\in\Big[\frac{1}{k},k\Big], \] and $0\leq x'(t)\leq d,t\in[0,+\infty)$. In view of assumption (H4) together with Lemma \ref{lem2.5}, we obtain \begin{align*} \alpha(Tx) &\geq\frac{1}{k+1}\theta(Tx) =\frac{1}{k+1}\sup_{0\leq t<+\infty}\frac{(Tx)(t)}{1+t} \\ &=\frac{1}{(k+1)}\sup_{0\leq t<+\infty}\frac{1}{1+t} \Big[\int_0^{+\infty}g(s)\varphi_{p}^{-1} \Big(\int_{s}^{+\infty}\phi(\tau)f(\tau,x(\tau),x'(\tau))d\tau\Big)ds \\ &\quad +\int_0^t\varphi_{p}^{-1}\Big(\int_{s}^{+\infty}\phi(\tau) f(\tau,x(\tau),x'(\tau))d\tau\Big)ds\Big] \\ &\geq\frac{1}{(k+1)^{2}}\Big[\int_{\frac{1}{k}}^{k}g(s)\varphi_{p}^{-1} \Big(\int_{s}^{k}\phi(\tau)f(\tau,x(\tau),x'(\tau))d\tau\Big)ds \\ &\quad +\int_{\frac{1}{k}}^{k}\varphi_{p}^{-1}\Big(\int_{s}^{k}\phi(\tau) f(\tau,x(\tau),x'(\tau))d\tau\Big)ds\Big] \\ &>\frac{b}{N}\frac{1}{(k+1)^{2}}\int_{\frac{1}{k}}^{k}(g(s)+1)\varphi_{p}^{-1} \Big(\int_{s}^{k}\phi(\tau)d\tau\Big)ds=b. \end{align*} Hence, $\alpha(Tx)>b$ for $x\in P(\alpha_{b},\theta^{c},\gamma^{d})$. Next we will verify that the condition (2) of Theorem \ref{thm2.1} is satisfied. Let $x\in P(\alpha_{b},\gamma^{d})$ with $\theta(Tx)>c$, it follows from Lemma \ref{lem2.5} that \[ \alpha(Tx)\geq\frac{1}{k+1}\theta(Tx)>\frac{1}{k+1}c =\frac{1}{k+1}\frac{(k+1)^{2}}{km}b=\frac{(k+1)}{km}b>b, \] Thus $\alpha(Tx)>b$ for all $x\in P(\alpha_{b},\gamma^{d})$ with $\theta(Tx)>c$. Finally, we show that condition (3) of theorem \ref{thm2.1} is satisfied. It is clear that $0\in R(\psi_{a},\gamma^{d})$. Suppose that $x\in R(\psi_{a},\gamma^{d})$ with $\psi(x)=a$, then by condition (H5) and Lemma \ref{lem2.4}, we obtain \begin{align*} \psi(Tx)&\leq M\gamma(Tx)=M(Tx)'(0)\\ &=M\varphi_{p}^{-1}(\int_0^{+\infty}\phi(s)f(s,x(s),x'(s))ds) \\ &\leq M\cdot\frac{a}{MC}\varphi_{p}^{-1}(\int_0^{+\infty}\phi(s)ds=a. \end{align*} Therefore, $T$ has at least three fixed points $x_1,x_{2},x_{3}\in \overline{P(\gamma^{d})}$ such that \[ \psi(x_1)a \quad\text{with } \alpha(x_{2})b. \] In addition, condition (H2) guarantees that those fixed points are positive. So \eqref{e1.1} has at least three positive solutions $x_1,x_{2},x_{3}$ satisfying \eqref{e3.1} and the proof is complete. \end{proof} \section{Example} Consider the boundary-value problem with integral boundary value conditions \begin{equation} \label{e4.1} \begin{gathered} (|x'|x')'+e^{-t}f(t,x(t),x'(t))=0, \\ x(0)=\int_0^{+\infty}e^{-2s}x'(s)ds,\quad \lim_{t\to +\infty}x'(t)=0, \end{gathered} \end{equation} where \[ f(t,u,v)= \begin{cases} \frac{|\sin t|}{100}+10^{4}\big(\frac{u}{1+t}\big)^{10} +\frac{1}{100}\big(\frac{v}{200}\big),\quad u\leq1,\\ \frac{|\sin t|}{100}+10^{4}\big(\frac{1}{1+t}\big)^{10} +\frac{1}{100}\big(\frac{v}{200}\big),\quad u\geq1. \end{cases} \] Set $\phi(t)=e^{-t}$ and it is easy to verify that (H1) and (H2) hold. Choose $k=4$, $a=\frac{1}{4}$, $b=2$, $d=200$. Then by simple calculations, we can obtain $M=1$, $m=\frac{1}{2}$, \[ C=1,N=\frac{1}{25}\int_{\frac{1}{4}}^{4}(e^{-2s}+1) \sqrt{e^{-s}-e^{-4}}ds\geq\frac{1}{25}\int_{\frac{1}{4}}^{4}\sqrt{e^{-s}-e^{-4}}ds> \frac{1}{48}. \] So the nonlinear term $f$ satisfies \begin{itemize} \item[(1)] $f(t,(1+t)u,v)\leq 0.01+10^{4}+0.01<4\times 10^{4}=\varphi_{3}(d/C)$, for $(t,u,v)\in [0,+\infty)\times[0,200]^{2}$; \item[(2)] $f(t,(1+t)u,v)\geq 10^{4}>96^{2}=\varphi_{3}(b/N)$, for $(t,u,v)\in [\frac{1}{4},4]\times[\frac{1}{2},25]\times[0,200]$; \item[(3)] $f(t,(1+t)u,v)\leq 0.01 +10^{4}\times\big(\frac{1}{4}\big)^{10}+0.01<\frac{1}{16}= \varphi_{3}(a/MC)$, for $(t,u,v)\in [0,+\infty)\times[0,\frac{1}{4}]\times[0,200]$. \end{itemize} Therefore, the conditions in Theorem \ref{thm3.1} are all satisfied. So \eqref{e4.1} has at least three positive solutions $x_1,x_{2},x_{3}$ such that \begin{gather*} \sup_{0\leq t<+\infty}x'_{i}(t)\leq 200,\quad i=1,2,3;\\ \sup_{0\leq t<+\infty}\frac{x_1(t)}{1+t}\leq\frac{1}{4}, \quad \frac{1}{2}<\sup_{0\leq t<+\infty}\frac{x_{2}(t)}{1+t}< 25, \quad \min_{\frac{1}{k}\leq t \leq k}x_{2}(t)\leq \frac{5}{2};\\ \sup_{0\leq t<+\infty}\frac{x_{3}(t)}{1+t}\leq 200\quad \min_{\frac{1}{k}\leq t \leq k}x_{3}(t)>\frac{5}{2}. \end{gather*} \subsection*{Acknowledgements} This research was supported by grants: 10901045 from the Natural Science Foundation of China, A2009000664 and A2011208012 from the Natural Science Foundation of Hebei Province, and XL201047 from the Foundation of Hebei University of Science and Technology. \begin{thebibliography}{99} \bibitem{a1} R. P. Agarwal, D. O'Regan; \emph{Nonlinear boundary value problems on the semi-infinite interval: An upper and lower solution approach}, Mathematika. 49 (2002) 129-140. \bibitem{a2} R. P. Agarwal, D. O'Regan; \emph{Infinite interval problems for differential, Difference and Integral Equations}, Kluwer Academic Publisher, Netherlands, 2001. \bibitem{a3} R. I. Avery, A. C. Peterson; \emph{Three postive fixed points of nonlinear operators on ordered Banach spaces}, Comput. Math. Appl. 42 (2002) 312-322. \bibitem{b1} C. Bai, J. Fang; \emph{On positive solutions of boundary value problems for second-order functional differential equations on infinite intervals}, J. Math. Anal. Appl. 282(2003) 711-731. \bibitem{b2} J. V. Baxley; \emph{Existence and uniqueness for nonlinear boundary value problems on infinite interval}, J. Math. Anal. Appl. 147 (1990) 127-133. \bibitem{c1} C. Corduneanu; \emph{Integral Equations and Applications}, Cambridge University Press, Cambridge, 1991. \bibitem{g1} J. M. Gallardo; \emph{Second order differential operators with integral boundary conditions and generation of semigroups}, Rocky Mt. J. Math. 30 (2000) 1265-1292. \bibitem{g2} Y. Guo, C. Yu, J. Wang; \emph{Existence of three positive solutions for m-point boundary value problems on infinite intervals}, Nonlinear Analysis. 71 (2009) 717-722. \bibitem{j1} D. Jiang, R. P. Agarwal; \emph{A uniqueness and existence theorem for a singular third-order boundary value problem on $[0,+\infty)$}, Appl. Math. Lett. 15 (2002) 445-451. \bibitem{k1} G. L. Karakostas, P. Ch. Tsamatos; \emph{Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems}, Electron. J. Differential Equations. 30(2000) 1-17. \bibitem{l1} H. Lian, W. Ge; \emph{Solvability for second-order three-point boundary value problems on a half-line}, Appl. Math. Lett. 19 (10) (2006) 1000-1006. \bibitem{l2} H. Lian, H. Pang, W. Ge; \emph{Triple positive solutions for boundary value problems on infinite intervals}, Nonlinear Analysis. 67 (2007) 2199-2207. \bibitem{l3} Y. Sh. Liu; \emph{Boundary value problem for second order differential equations on unbounded domain} (in Chinese), Acta Anal. Funct. Appl. 4(3) (2002) 211-216 . \bibitem{l4} A. Lomtatidze, L. Malaguti; \emph{On a nonlocal boundary-value problems for second order nonlinear singular differential equations}, Georg. Math. J. 7 (2000) 133-154. \bibitem{m1} R. Ma; \emph{Existence of positive solution for second-order boundary value problems on infinite intervals}, Appl. Math. Lett. 16 (2003) 33-39. \bibitem{y1} B. Yan, Y. Liu; \emph{Unboundary solutions of the singular boundary value problems for second order differential equations on the half-line}, Appl. Math. Comput. 147 (2004) 629-644. \bibitem{z1} M. Zima; \emph{On positive solution of boundary value problems on the half-line}, J. Math. Anal. Appl. 259 (2001) 127-136. \end{thebibliography} \end{document}