\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 162, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/162\hfil Nonexistence of asymptotically free solutions] {Nonexistence of asymptotically free solutions to nonlinear Schr\"odinger systems} \author[N. Hayashi, C. Li, P. I. Naumkin \hfil EJDE-2012/162\hfilneg] {Nakao Hayashi, Chunhua Li, Pavel I. Naumkin} % in alphabetical order \address{Nakao Hayashi \newline Department of Mathematics\\ Graduate School of Science, Osaka University, Osaka, Toyonaka, 560-0043, Japan} \email{nhayashi@math.sci.osaka-u.ac.jp} \address{Chunhua Li \newline Department of Mathematics, Graduate School of Science, Yanbian University, Yanji City, Jilin Province, 133002, China} \email{sxlch@ybu.edu.cn} \address{Pavel I. Naumkin \newline Centro de Ciencias Matem\'aticas\\ UNAM Campus Morelia, AP 61-3 (Xangari)\\ Morelia CP 58089, Michoac\'an, Mexico} \email{pavelni@matmor.unam.mx} \thanks{Submitted November 16, 2011. Published September 21, 2012.} \subjclass[2000]{35Q55} \keywords{Dispersive nonlinear waves; asymptotically free solutions} \begin{abstract} We consider the nonlinear Schr\"odinger systems \begin{gather*} -i\partial _tu_1+\frac{1}{2}\Delta u_1=F( u_1,u_2), \\ i\partial _tu_2+\frac{1}{2}\Delta u_2=F( u_1,u_2) \end{gather*} in $n$ space dimensions, where $F$ is a $p$-th order local or nonlocal nonlinearity smooth up to order $p$, with $11+\frac{2}{n-1}, \] with $n\geq 2$, it was shown in \cite{Nakamura10} that \eqref{P1} and \eqref{P2} have a unique global solution for small regular data. The number $1+\frac{2}{n-1}$ is the well-known critical exponent for the nonlinear wave equation. However, taking into account the time decay rates of solutions to the linear problem for \eqref{P1} or \eqref{P2} with $m\neq 1$, the critical exponent $1+\frac{2}{n-1}$ should be replaced by $1+\frac{2}{n}$. Indeed, a closely related problem to \eqref{P2} written as \begin{equation} \begin{gathered} ( \partial _t^2+\frac{1}{m^2}( -\partial _x^2) ^{m}) u=\lambda | \partial _tu| ^{p-1}\partial _tu, \quad ( t,x) \in \mathbb{R}\times\mathbb{R}, \\ u(0,x)=u_{0}( x) ,\partial _tu(0,x)=u_1( x) ,\quad x\in {\mathbb{R}}, \end{gathered} \label{P3} \end{equation} with $03$ for $02+m$ for $10$, independent of $t >0$ such that \begin{equation} \| u( t) \| _{\mathbf{L}^2}\leq C \label{1.4a} \end{equation} if ${Re}(\lambda )\leq 0$. The Strichartz estimate and \eqref{1.4a} imply that there exists a unique global solution of \eqref{1.3} for $10$. \end{lemma} \begin{proof} By the identity $\mathcal{U}( t) =M( t) D(t) \mathcal{F}M( t) $ we find \[ \mathcal{U}( t) \phi =M( t) D( t) \mathcal{F}M( t) \phi =M( t) D( t) \mathcal{F}\phi +M( t) D( t) \mathcal{F}( M( t)-1) \phi . \] The $\mathbf{L}^2$-norm of the last term in the right-hand side of the above identity is estimated by \begin{align*} \| M( t) D( t) \mathcal{F}( M( t) -1) \phi \| _{\mathbf{L}^2} &= \| ( M( t) -1) \phi \| _{\mathbf{L}^2} \\ &\leq Ct^{-\gamma }\| \phi \| _{\mathbf{H}^{0,2\gamma }}=Ct^{-\gamma }\| \widehat{\phi }\| _{\mathbf{H}^{2\gamma }}. \end{align*} This proves the lemma. \end{proof} In the next lemma we find a lower bound of the norm $\| \mathcal{U} ( -t) \phi \pm \mathcal{U}( t) \psi \| _{\mathbf{ L}^{p+1}}$. \begin{lemma} \label{Lemma 2} For $\phi ,\psi \in \mathbf{H}^{0,1}\cap \mathbf{L}^{1}$, \begin{align*} &\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi \| _{\mathbf{L}^r} \\ &\geq \frac{1}{2}( 2kt) ^{\frac{n}{2}( \frac{2}{r}-1) }\Big( \| \widehat{\phi }\| _{\mathbf{L}^2( | \xi | \leq k) }+\| \widehat{\psi }\| _{\mathbf{L} ^2( | \xi | \leq k) }\Big) \\ &\quad -C( k) ( kt) ^{\frac{n}{2}( \frac{2}{r} -1) }t^{-\alpha/2}\Big( \| \widehat{\phi }\| _{ \mathbf{H}^{1}}+\| \widehat{\psi }\| _{\mathbf{H}^{1}}+\| \widehat{\phi }\| _{\mathbf{L}^{\infty }}+\| \widehat{\psi } \| _{\mathbf{L}^{\infty }}\Big) \end{align*} for all $t>0$ and $k>0$, where $2\leq r\leq \infty ,\alpha <\frac{1}{2}$ for $n=1$ and $\alpha =\frac{1}{2}$ for $n\geq 2$, and $C( k) $ is a positive constant depending on $k$. \end{lemma} \begin{proof} By H\"older's inequality \begin{equation} \begin{split} &\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi \| _{\mathbf{L}^2( | x| \leq kt) } \\ &\leq \| \mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi \| _{\mathbf{L}^r( | x| \leq kt) }\Big( \int_{| x| \leq kt}dx\Big) ^{\frac{r-2}{2r}} \\ &= ( 2kt) ^{\frac{n}{2}( 1-\frac{2}{r}) }\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi \| _{\mathbf{L}^r( | x| \leq kt) } \\ &\leq ( 2kt) ^{\frac{n}{2}( 1-\frac{2}{r}) }\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi \| _{\mathbf{L}^r}. \end{split}\label{2.1} \end{equation} Hence in order to get the desired estimate from below we need to find a lower bound for the norm $\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi \| _{\mathbf{L}^2( | x| \leq kt) }$. By Lemma \ref{Lemma 1} with $\gamma =\frac{1}{2}$ we find \begin{align*} &\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi -( M( -t) D( -t) \widehat{\phi }\pm M( t) D( t) \widehat{\psi }) \| _{\mathbf{L} ^2( | x| \leq kt) } \\ &\leq \| \mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi -( M( -t) D( -t) \widehat{\phi }\pm M( t) D( t) \widehat{\psi }) \| _{\mathbf{L }^2} \\ &\leq 2| t| ^{-1/2}( \| \widehat{\phi } \| _{\mathbf{H}^{1}}+\| \widehat{\psi }\| _{\mathbf{H} ^{1}}) . \end{align*} Therefore changing the variable of integration by $\xi =\frac{x}{t}$, we obtain \begin{equation} \begin{aligned} &\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi \| _{\mathbf{L}^2( | x| \leq kt) } \\ &\geq \| M( -t) D( -t) \widehat{\phi }\pm M( t) D( t) \widehat{\psi }\| _{\mathbf{L} ^2( | x| \leq kt) } -Ct^{-1/2}( \| \widehat{\phi }\| _{\mathbf{H} ^{1}}+\| \widehat{\psi }\| _{\mathbf{H}^{1}}) \\ &\geq \| e^{-\frac{it}{2}| \xi | ^2}( -i) ^n \widehat{\phi }( -\xi ) \pm e^{\frac{it}{2}| \xi | ^2}\widehat{\psi }( \xi ) \| _{\mathbf{L}^2( | \xi | \leq k) } -Ct^{-1/2}( \| \widehat{\phi }\| _{\mathbf{H} ^{1}}+\| \widehat{\psi }\| _{\mathbf{H}^{1}}) . \end{aligned} \label{2.2} \end{equation} By a direct computation we have \begin{equation} \begin{aligned} &\| e^{-\frac{it}{2}| \xi | ^2}( -i) ^n \widehat{\phi }( -\xi ) \pm e^{\frac{it}{2}| \xi | ^2}\widehat{\psi }( \xi ) \| _{\mathbf{L}^2( | \xi | \leq k) }^2 \\ &= \| \widehat{\phi }\| _{\mathbf{L}^2( | \xi | \leq k) }^2+\| \widehat{\psi }\| _{\mathbf{L}^2( | \xi | \leq k) }^2\pm 2\operatorname{Re}\int_{| \xi | \leq k}( -i) ^n\widehat{\phi }( -\xi ) \overline{ \widehat{\psi }( \xi ) }e^{-it| \xi | ^2}d\xi . \end{aligned}\label{2.3} \end{equation} Integration by parts and using the identity \[ e^{-it| \xi | ^2}=\frac{1}{n-2it| \xi | ^2}\nabla \cdot \xi e^{-it| \xi | ^2} \] yields \begin{align*} \int_{| \xi | \leq k}F( \xi ) e^{-it| \xi| ^2}d\xi &=\int_{| \xi | \leq k}F( \xi ) \frac{ 1}{n-2it| \xi | ^2}\nabla \cdot \xi e^{-it| \xi | ^2}d\xi \\ &= \int_{| \xi | \leq k}\nabla \cdot \Big( \frac{\xi F( \xi ) }{n-2it| \xi | ^2}e^{-it| \xi | ^2}\Big) d\xi\\ &\quad -\int_{| \xi | \leq k}e^{-it| \xi | ^2}\xi \cdot \nabla \frac{F( \xi ) }{n-2it| \xi | ^2}d\xi , \end{align*} for any $F\in \mathbf{L}^{\infty }$ with $\nabla F\in \mathbf{L}^{1}$. Therefore, \[ \big| \int_{| \xi | \leq k}\nabla \cdot \Big( \frac{\xi F( \xi ) }{n-2it| \xi | ^2}e^{-it| \xi | ^2}\Big) d\xi \big| \leq C( k) t^{-1/2}\| F\| _{\mathbf{L}^{\infty }} \] and by a direct calculation \[ \xi \cdot \nabla \frac{F( \xi ) }{n-2it| \xi | ^2}= \frac{4it| \xi | ^2F( \xi ) }{( n-2it| \xi | ^2) ^2}+\frac{\xi \cdot \nabla F( \xi ) }{ n-2it| \xi | ^2}. \] Hence \begin{align*} &| \int_{| \xi | \leq k}F( \xi ) e^{-it| \xi | ^2}d\xi | \\ &\leq \int_{| \xi | \leq k}\frac{ 2| F( \xi ) | +| \xi \cdot \nabla F( \xi ) | }{n+2t| \xi | ^2}d\xi +C( k) t^{- \frac{1}{2}}\| F\| _{\mathbf{L}^{\infty }} \\ &\leq Ct^{-\alpha }\int_{| \xi | \leq k}( \frac{| F( \xi ) | }{| \xi | ^{2\alpha }}+| \nabla F( \xi ) | ) d\xi +C( k) t^{-\frac{1}{2} }\| F\| _{\mathbf{L}^{\infty }} \\ &\leq Ct^{-\alpha }\| F\| _{\mathbf{L}^{\infty }}\int_{| \xi | \leq k}| \xi | ^{-2\alpha }d\xi +Ct^{-\alpha }\| \nabla F\| _{\mathbf{L}^{1}}+C( k) t^{-1/2}\| F\| _{\mathbf{L}^{\infty }} \\ &\leq Ct^{-\alpha }( C( k) \| F\| _{\mathbf{L} ^{\infty }}+\| \nabla F\| _{\mathbf{L}^{1}}) , \end{align*} where $\alpha <1/2$ for $n=1$ and $\alpha =1/2$ for $n\geq 2$. Therefore taking $F( \xi ) =\widehat{\phi }( -\xi ) \overline{\widehat{\psi }( \xi ) }$ in the above estimate, we obtain \begin{equation} \begin{aligned} &\big| \int_{| \xi | \leq k}\widehat{\phi }( -\xi ) \overline{\widehat{\psi }( \xi ) }e^{-it| \xi | ^2}d\xi \big| \\ &\leq Ct^{-\alpha }\Big( ( k^{n-2\alpha }+1) \| \widehat{ \phi }( -\xi ) \overline{\widehat{\psi }( \xi ) } \| _{\mathbf{L}^{\infty }}+\| \nabla ( \widehat{\phi }( -\xi ) \overline{\widehat{\psi }( \xi ) }) \| _{ \mathbf{L}^{1}}\Big) \\ &\leq C( k) t^{-\alpha }\Big( \| \widehat{\phi }\| _{ \mathbf{H}^{1}}+\| \widehat{\phi }\| _{\mathbf{L}^{\infty }}\Big) \Big( \| \widehat{\psi }\| _{\mathbf{H}^{1}}+\| \widehat{\psi }\| _{\mathbf{L}^{\infty }}\Big) . \end{aligned} \label{2.4} \end{equation} We apply \eqref{2.4} to \eqref{2.3} and use \eqref{2.2} to obtain \begin{align*} &\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi \| _{\mathbf{L}^2( | x| \leq kt) } \\ &\geq \Big( \| \widehat{\phi }\| _{\mathbf{L}^2( | \xi | \leq k) }^2+\| \widehat{\psi }\| _{\mathbf{L} ^2( | \xi | \leq k) }^2\Big) ^{1/2} -\Big( 2| \int_{| \xi | \leq k}\widehat{\phi }( -\xi ) \overline{\widehat{\psi }( \xi ) }e^{-it| \xi | ^2}d\xi | \Big) ^{1/2}\\ &\quad -2| t| ^{-\frac{1}{2}}( \| \widehat{\phi }\| _{\mathbf{H}^{1}} +\| \widehat{\psi }\| _{\mathbf{H}^{1}}) \\ &\geq \frac{1}{2}\| \widehat{\phi }\| _{\mathbf{L}^2( | \xi | \leq k) }+\frac{1}{2}\| \widehat{\psi } \| _{\mathbf{L}^2( | \xi | \leq k) } \\ &\quad -C( k) t^{-\alpha/2}\Big( \| \widehat{\phi } \| _{\mathbf{H}^{1}}+\| \widehat{\psi }\| _{\mathbf{H} ^{1}}+\| \widehat{\phi }\| _{\mathbf{L}^{\infty }}+\| \widehat{\psi }\| _{\mathbf{L}^{\infty }}\Big) . \end{align*} Finally by \eqref{2.1} we obtain \begin{align*} &\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi \| _{\mathbf{L}^r}\geq ( 2kt) ^{\frac{n}{2}( \frac{2}{r}-1) }\| \mathcal{U}( -t) \phi \pm \mathcal{U }( t) \psi \| _{\mathbf{L}^2( | x| \leq kt) } \\ &\geq \frac{1}{2}( 2kt) ^{\frac{n}{2}( \frac{2}{r}-1) }( \| \widehat{\phi }\| _{\mathbf{L}^2( | \xi | \leq k) }+\| \widehat{\psi }\| _{\mathbf{L} ^2( | \xi | \leq k) }) \\ &\quad -C( k) ( kt) ^{\frac{n}{2}( \frac{2}{r} -1) }t^{-\alpha/2}( \| \widehat{\phi }\| _{ \mathbf{H}^{1}}+\| \widehat{\psi }\| _{\mathbf{H}^{1}}+\| \widehat{\phi }\| _{\mathbf{L}^{\infty }}+\| \widehat{\psi } \| _{\mathbf{L}^{\infty }}), \end{align*} which proves Lemma \ref{Lemma 2}. \end{proof} \section{Proof of Theorem \ref{Theorem 1}} \label{S3} By the contradiction, suppose that there exists a free solution $\mathbf{w}$ of \eqref{1.9} defined by the initial data such that $\mathbf{w}_{0}\neq 0$: $\mathbf{w}_{0}\in ( \mathbf{H} ^{0,1}\cap \mathbf{L}^{1}) ^2$ satisfying \begin{equation} \lim_{t\to \infty }\| \mathbf{u}( t) -\mathbf{w} ( t) \| _{\mathbf{L}^2}=0. \label{3.0} \end{equation} Define the functional \[ \mathbf{H}_{u}( t) =\operatorname{Re}\int_{\mathbb{R}^n}i\mathbf{w} \cdot \overline{\mathbf{u}}dx=\operatorname{Re}\sum_{j=1}^2\int_{\mathbb{R} ^n}iw_j\overline{u}_jdx \] as in \cite{BA84}. By \eqref{1.9} and \eqref{1.2} we have \begin{align*} \frac{d}{dt}\mathbf{H}_{u}( t) & =\operatorname{Re}\int_{\mathbb{R}^n}\Big( \begin{pmatrix} i\partial _t & 0 \\ 0 & i\partial _t \end{pmatrix} \mathbf{w}\cdot \overline{\mathbf{u}}+\mathbf{w\cdot }\overline{ \begin{pmatrix} -i\partial _t & 0 \\ 0 & -i\partial _t \end{pmatrix} \mathbf{u}}\Big) dx \\ &= \operatorname{Re}\int_{\mathbb{R}^n}\Big( \begin{pmatrix} \frac{1}{2}\Delta & 0 \\ 0 & -\frac{1}{2}\Delta \end{pmatrix} \mathbf{w}\cdot \overline{\mathbf{u}}+\mathbf{w\cdot }\overline{ \begin{pmatrix} -i\partial _t & 0 \\ 0 & -i\partial _t \end{pmatrix} \mathbf{u}}\Big) dx \\ &= \operatorname{Re}\int_{\mathbb{R}^n}\mathbf{w\cdot }\overline{ \begin{pmatrix} -i\partial _t+\frac{1}{2}\Delta & 0 \\ 0 & -( i\partial _t+\frac{1}{2}\Delta ) \end{pmatrix} \mathbf{u}}dx \\ &= \operatorname{Re}\int_{\mathbb{R}^n}\mathbf{w\cdot }\overline{ \begin{pmatrix} -2^{-p}i\lambda | u_1-u_2| ^{p-1}( u_1-u_2) \\ 2^{-p}i\lambda | u_1-u_2| ^{p-1}( u_1-u_2) \end{pmatrix}}dx. \end{align*} Letting \[ W=w_1-w_2, \quad U=u_1-u_2, \] from the above identity we have \begin{equation} \begin{split} &\frac{d}{dt}\mathbf{H}_{u}( t)\\ &=2^{-p}\operatorname{Re}\Big( i \overline{\lambda }\int_{\mathbb{R}^n}| U| ^{p-1}\overline{U} W\, dx\Big) \\ &= 2^{-p}\operatorname{Re}\Big( i\overline{\lambda }\int_{\mathbb{R}^n}( | U| ^{p-1}\overline{U}W-| W| ^{p+1}) dx\Big) +2^{-p}( \operatorname{Im}\lambda ) \int_{\mathbb{R}^n}| W| ^{p+1}dx. \end{split} \label{3.1} \end{equation} Due to the inequality \begin{align*} \big| | a| ^{p-1}a-| b| ^{p-1}b\big| &\leq C( | a| ^{p-1}+| b| ^{p-1}) |a-b| \\ &\leq C( | a-b| ^{p-1}+| b| ^{p-1}) |a-b| , \end{align*} where $a,b\in\mathbb{C}$ and the H\"older inequality we obtain \begin{equation} \begin{aligned} &\Big| 2^{-p}\operatorname{Re}\Big( i\overline{\lambda }\int_{\mathbb{R} ^n}( | U| ^{p-1}\overline{U}W-| W| ^{p+1}) dx\Big) \Big| \\ &= \Big| 2^{-p}\operatorname{Re}\Big( i\overline{\lambda }\int_{\mathbb{R} ^n}( | U| ^{p-1}\overline{U}-| W| ^{p-1} \overline{W}) W\,dx\Big) \Big| \\ &\leq C\int_{\mathbb{R}^n}( | U-W| ^{p}| W| +| U-W| | W| ^{p}) dx \\ &\leq C\| U-W\| _{\mathbf{L}^2}^{p}\| W\| _{\mathbf{ L}^{\frac{2}{2-p}}}+C\| U-W\| _{\mathbf{L}^2}\| W\| _{\mathbf{L}^{2p}}^{p} \\ &\leq C( \delta ) | t| ^{\frac{n}{2}( 1-p) }\| U-W\| _{\mathbf{L}^2}( 1+\| U-W\| _{\mathbf{ L}^2}^{p-1}) , \end{aligned}\label{3.2} \end{equation} since $10$ such that $\| \widehat{w_{1,0}}\| _{\mathbf{L}^2( | \xi | \leq k) }+\| \widehat{w_{2,0}}\| _{\mathbf{L}^2( | \xi | \leq k) }>0$. We apply Lemma \ref{Lemma 2} with $r=p+1$ to the difference $w_1( t) -w_2( t) =\mathcal{U} ( -t) w_{1,0}-\mathcal{U}( t) w_{2,0}$ to find \begin{equation} \begin{aligned} &\| w_1( t) -w_2( t) \| _{\mathbf{L}^{p+1}}^{p+1} \\ &\geq ( \frac{1}{2}) ^{p+1}( 2kt) ^{\frac{n}{2}( 1-p) }\Big( \| \widehat{w_{1,0}}\| _{\mathbf{L}^2( | \xi | \leq k) }+\| \widehat{w_{2,0}}\| _{ \mathbf{L}^2( | \xi | \leq k) }\Big) ^{p+1} \\ &\quad-C( k) ( kt) ^{\frac{n}{2}( 1-p) }t^{-\alpha \frac{p+1}{2}}\Big( \| \mathbf{w}_{0}\| _{\mathbf{H} ^{0,1}}^{p+1}+\| \mathbf{w}_{0}\| _{\mathbf{L}^{1}}^{p+1}\Big) \\ &\geq C( k,\gamma ) t^{\frac{n}{2}( 1-p) }-C( k,\delta ) t^{\frac{n}{2}( 1-p) -\alpha \frac{p+1}{2}} \end{aligned} \label{3.3a} \end{equation} for all $t>0$, where $C( k,\gamma ) $ is a constant depending on $k$ and $\mathbf{\gamma =}\| \widehat{w_{1,0}}\| _{\mathbf{L} ^2( | \xi | \leq k) }+\| \widehat{w_{2,0}} \| _{\mathbf{L}^2( | \xi | \leq k) }$ and $C( k,\delta ) $ is a constant depending on $k$ and $\delta $. Integrating \eqref{3.1} in time, and using \eqref{3.2} and \eqref{3.3a}, we obtain \begin{align*} | \mathbf{H}_{u}( 2T) -\mathbf{H}_{u}( T)| &\geq 2^{-p}| \operatorname{Im}\lambda | | \int_{T}^{2T}\int_{ \mathbb{R}^n}| W( t,x) | ^{p+1}dxdt| \\ &\quad -C\int_{T}^{2T}| t| ^{\frac{n}{2}( 1-p) }\| U-W\| _{\mathbf{L}^2}^{p-1}( 1+\| U-W\| _{\mathbf{L} ^2}) dt \\ &\geq 2^{-p}| \operatorname{Im}\lambda | \int_{T}^{2T}\| w_1( t) -w_2( t) \| _{\mathbf{L} ^{p+1}}^{p+1}dt \\ &\quad -C( \delta ) \int_{T}^{2T}| t| ^{\frac{n}{2}( 1-p) }\| \mathbf{u}( t) \mathbf{-w}( t) \| _{\mathbf{L}^2}^{p-1}dt \\ &\geq 2^{-p}| \operatorname{Im}\lambda | \int_{T}^{2T}( C( k,\gamma ) t^{\frac{n}{2}( 1-p) }-C( k,\delta ) t^{\frac{n}{2}( 1-p) -\alpha \frac{p+1}{2}}) dt \\ &\quad -C( \delta ) \int_{T}^{2T}t^{n( 1-p)/2}\| \mathbf{u}( t) \mathbf{-w}( t) \| _{ \mathbf{L}^2}^{p-1}dt. \end{align*} By \eqref{3.0}, it follows that for any $\varepsilon $ satisfying $0<\varepsilon \leq 2^{-p-2}| \operatorname{Im}\lambda | C( k,\gamma ) /C( \delta ) $, there exists a $T_1>0$ such that \[ \| \mathbf{u}( t) \mathbf{-w}( t) \| _{ \mathbf{L}^2}<\varepsilon ^{\frac{1}{p-1}} \] for $t\geq T_1$. Let $T_2>0$ be such that \[ C( k,\gamma ) t^{\frac{n}{2}( 1-p) }-C( k,\delta ) t^{\frac{n}{2}( 1-p) -\alpha \frac{p+1}{2}}\geq \frac{1}{2 }C( k,\gamma ) t^{\frac{n}{2}( 1-p) } \] for $t\geq T_2$. Hence \begin{equation} \begin{aligned} | \mathbf{H}_{u}( 2T) -\mathbf{H}_{u}( T)| &\geq ( 2^{-p-1}| \operatorname{Im}\lambda | C( k,\gamma ) -C( \delta ) \varepsilon ) \int_{T}^{2T}t^{\frac{n}{ 2}( 1-p) }dt \\ &\geq ( 2^{-p-1}| \operatorname{Im}\lambda | C( k,\gamma ) -C( \delta ) \varepsilon ) \int_{T}^{2T}t^{-1}dt \\ &\geq 2^{-p-2}| \operatorname{Im}\lambda | C( k,\gamma ) \log 2>0 \end{aligned} \label{3.4} \end{equation} for $T\geq \max \{ T_1,T_2\} >0$. On the other hand, by the definition of $\mathbf{H}_{u}( t) $ and \eqref{3.0} we find \begin{equation} \begin{aligned} | \mathbf{H}_{u}( t) | &= | \operatorname{Re}\int_{ \mathbb{R}^n}( i\mathbf{w}\cdot ( \overline{\mathbf{u}}- \overline{\mathbf{w}}) ) dx| \leq C\| \mathbf{w} {}( t) \| _{\mathbf{L}^2}\| \mathbf{u}( t) \mathbf{-w}( t) \| _{\mathbf{L}^2} \\ &\leq C\| \mathbf{w}_{0}\| _{\mathbf{L}^2}\| \mathbf{u} ( t) \mathbf{-w}( t) \| _{\mathbf{L} ^2}\to 0 \end{aligned} \label{3.3} \end{equation} for $t\to \infty $. From \eqref{3.3} and \eqref{3.4} we have the desired contradiction. This completes the proof. \section{Proof of Theorem \ref{Theorem 2}} As in the proof of Theorem \ref{Theorem 1}, suppose that there exists a free solution $\mathbf{w}$ of \eqref{1.9} defined by the initial data such that $\mathbf{w}_{0}\neq 0$, $\mathbf{w}_{0}\in ( \mathbf{H}^{0,1}\cap \mathbf{L}^{1}) ^2$ satisfying \begin{equation} \lim_{t\to \infty }\| \mathbf{v}( t) -\mathbf{w} ( t) \| _{\mathbf{L}^2}=0. \label{4.1} \end{equation} Define the functional \[ \mathbf{G}_{v}( t) =\operatorname{Re}\int_{\mathbb{R}^n}( iw_1 \overline{v}_1-iw_2\overline{v}_2) dx \] and denote \[ \Omega =\frac{\nabla }{| \nabla | }( w_1+w_2) ,\quad V=\frac{\nabla }{| \nabla | }( v_1+v_2) . \] Then by \eqref{1.9} and \eqref{1.5} we obtain \begin{equation} \begin{split} \frac{d}{dt}\mathbf{G}_{v}( t) &=\operatorname{Re}\int_{\mathbb{R}^n} \mathbf{w\cdot }\overline{\mathbf{Lv}}dx \\ &= -\operatorname{Re}\Big( \overline{\mu }\int_{\mathbb{R}^n}( \mathbf{ a\cdot w}) \frac{\nabla }{| \nabla | }| V| ^{p-1} \overline{V}dx\Big) =\operatorname{Re}\Big( \overline{\mu }\int_{\mathbb{R} ^n}\Omega | V| ^{p-1}\overline{V}dx\Big) \\ &= \operatorname{Re}\Big( \overline{\mu }\int_{\mathbb{R}^n}\Omega ( | V| ^{p-1}\overline{V}-| \Omega | ^{p-1}\overline{\Omega } ) dx\Big) +( \operatorname{Re}\overline{\mu }) \int_{\mathbb{R} ^n}| \Omega | ^{p+1}dx. \end{split} \label{3.5} \end{equation} As in \eqref{3.2} we find \begin{equation} \begin{split} &\big| \operatorname{Re}\Big( \overline{\mu }\int_{\mathbb{R}^n}\Omega ( | V| ^{p-1}\overline{V}-| \Omega | ^{p-1}\overline{ \Omega }) dx\Big) \big| \\ &\leq C\| V-\Omega \| _{\mathbf{L}^2}^{p}\| \Omega \| _{\mathbf{L}^{\frac{2}{2-p}}}+C\| V-\Omega \| _{\mathbf{L }^2}^{p-1}\| \Omega \| _{\mathbf{L}^{\frac{4}{3-p}}}^2 \\ &\leq C( \delta ) | t| ^{\frac{n}{2}( 1-p) }\| V-\Omega \| _{\mathbf{L}^2}^{p-1}( 1+\| V-\Omega \| _{\mathbf{L}^2}) . \end{split} \label{3.6} \end{equation} Applying Lemma \ref{Lemma 2} to $\Omega =\frac{\nabla }{| \nabla | }( w_1+w_2) $, we obtain \begin{equation} \| \Omega ( t) \| _{\mathbf{L}^{p+1}}^{p+1}\geq C( k,\gamma ) t^{\frac{n}{2}( 1-p) }-C( k,\delta ) t^{\frac{n}{2}( 1-p) -\alpha \frac{p+1}{2}} \label{3.6a} \end{equation} for all $t>0$, since the norm $\| \frac{\nabla }{| \nabla | } \cdot \| _{\mathbf{L}^{p+1}}$ is equivalent to $\| \cdot \| _{\mathbf{L}^{p+1}}$ (see \cite{Stein}). Integrating \eqref{3.5} in time, and using \eqref{3.6} and \eqref{3.6a}, we obtain \begin{align*} &| \mathbf{G}_{v}( 2T) -\mathbf{G}_{v}( T)|\\ &\geq | \operatorname{Re}\mu | \int_{T}^{2T}\| \Omega ( t) \| _{\mathbf{L}^{p+1}}^{p+1}dt -C( \mathbf{\delta }) \int_{T}^{2T}| t| ^{\frac{n}{2} ( 1-p) }\| \mathbf{v}( t) \mathbf{-w}( t) \| _{\mathbf{L}^2}^{p-1}dt \\ &\geq | \operatorname{Re}\mu | \int_{T}^{2T}\Big( C( k,\gamma ) t^{\frac{n}{2}( 1-p) }-C( k,\delta ) t^{\frac{n }{2}( 1-p) -\alpha \frac{p+1}{2}}\Big) dt \\ &\quad -C( \delta ) \int_{T}^{2T}t^{\frac{n}{2}( 1-p) }\| \mathbf{v}( t) \mathbf{-w}( t) \| _{ \mathbf{L}^2}^{p-1}dt. \end{align*} By \eqref{4.1}, it follows that for any $\varepsilon $ satisfying $0<\varepsilon \leq 2^{-2}| \operatorname{Re}\mu | C( k,\gamma ) /C( \delta ) $, there exists a $T_1>0$ such that \[ \| \mathbf{u}( t) \mathbf{-w}( t) \| _{\mathbf{L}^2}<\varepsilon ^{\frac{1}{p-1}} \] for $t\geq T_1$. Again, let $T_2>0$ such that \[ C( k,\gamma ) t^{\frac{n}{2}( 1-p) }-C( k,\delta ) t^{\frac{n}{2}( 1-p) -\alpha \frac{p+1}{2}}\geq \frac{1}{2 }C( k,\gamma ) t^{\frac{n}{2}( 1-p) } \] for $t\geq T_2$. Therefore, \begin{equation} \begin{split} | \mathbf{G}_{v}( 2T) -\mathbf{G}_{v}( T)| &\geq ( 2^{-1}| \operatorname{Re}\mu | C( k,\gamma ) -C( \delta ) \varepsilon ) \int_{T}^{2T}t^{\frac{n}{2} ( 1-p) }dt \\ &\geq ( 2^{-1}| \operatorname{Re}\mu | C( k,\gamma ) -C( \delta ) \varepsilon ) \int_{T}^{2T}t^{-1}dt \\ &\geq 2^{-2}| \operatorname{Re}\mu | C( k,\gamma ) \log 2>0 \end{split} \label{3.7a} \end{equation} for $T\geq \max \left\{ T_1,T_2\right\} >0$. On the other hand, by the definition of $\mathbf{G}_{v}( t) $ and \eqref{4.1} we find \begin{equation} \begin{split} | \mathbf{G}_{v}( t) | & =\big| \operatorname{Re}\int_{ \mathbb{R}^n}( iw_1( \overline{v}_1-\overline{w}_1) -iw_2( \overline{v}_2-\overline{w}_2) ) dx\big|\\ &\leq C\| \mathbf{w}{}( t) \| _{\mathbf{L} ^2}\| \mathbf{v}( t) -\mathbf{w}( t) \| _{\mathbf{L}^2}\\ &\leq C\| \mathbf{v}( t) \mathbf{-w}(t) \| _{\mathbf{L}^2}\to 0 \end{split} \label{3.7} \end{equation} as $t\to \infty $. Therefore we have the desired contradiction by \eqref{3.7a} and \eqref{3.7}. This completes the proof. \section{Appendix} \label{S4} In this section we prove the existence of global solutions to the systems \eqref{1.3}) and \eqref{1.6}. We introduce the following space-time norm \[ \| \phi \| _{\mathbf{L}^{q}( \mathbf{I};\mathbf{L} ^r) }=\| \| \phi ( t,x) \| _{\mathbf{L} _x^r}\| _{\mathbf{L}_t^{q}( \mathbf{I}) }, \] where $\mathbf{I}$ is a bounded or unbounded time interval. To prove the local existence of $\mathbf{L}^2$-solutions, we write \eqref{1.3} as a system of integral equations \begin{equation} \begin{gathered} u_1( t) =\overline{\mathcal{U}( t) }\phi _1+i\int_{0}^{t}\overline{\mathcal{U}( t-\tau ) }F(u_1(\tau ),u_2(\tau ))d\tau , \\ u_2( t) =\mathcal{U}( t) \phi _2-i\int_{0}^{t} \mathcal{U}( t-\tau ) F(u_1(\tau ),u_2(\tau ))d\tau , \end{gathered} \label{NLSI} \end{equation} where $\mathcal{U}( t) $ is the free Schr\"odinger evolution group. As in \cite{TS87}, we treat the problem in $\mathbf{L}^2$ space by applying the results for a single nonlinear Schr\"odinger equation with power nonlinearities. Define the space \[ \mathbf{X}( \mathbf{I}) =(\mathbf{C}\cap \mathbf{L}^{\infty }) ( \mathbf{I;L}^2) \cap \mathbf{L}^{\beta }( \mathbf{I};\mathbf{L}^{p+1}) \] with the norm \[ \| u\| _{\mathbf{X}( \mathbf{I})} =\sum_{j=1}^2\Big( \| u_j\| _{\mathbf{L}^{\infty }( \mathbf{I};\mathbf{L}^2) }+\| u_j\| _{ \mathbf{L}^{\beta }( \mathbf{I};\mathbf{L}^{p+1}) }\Big) , \] on a time-interval $\mathbf{I}=[ -T,T] $, where $\beta =\frac{4}{n }\frac{p+1}{p-1}$, $10$ there exists a $T( \rho ) >0$ such that for any initial data $\phi =( \phi _1,\phi _2) \in \mathbf{L}^2$ with the norm $\| \phi \| _{\mathbf{L}^2}\leq \rho $, the Cauchy problem for \eqref{1.3} has a unique solution $\mathbf{u}=( u_1,u_2) \in \mathbf{X}( \mathbf{I}) $ with $\mathbf{I}=[ -T( \rho ) ,T( \rho )] $. \end{theorem} \begin{proof} We denote the right-hand sides of \eqref{NLSI} by $\Phi _j( \mathbf{u}) $ for $j=1,2$. Applying the Strichartz inequality \[ \| \int_{0}^{t}\mathcal{U}( t-\tau ) g( \tau ) d\tau \| _{\mathbf{L}_t^r( \mathbf{I};\mathbf{L}_x^{q}) } \leq C\| g\| _{\mathbf{L}_t^{s}( \mathbf{I};\mathbf{L}_x^{l}) } \] for $2\leq r\leq \infty $, $1\leq s\leq 2$, $\frac{1}{q}=\frac{1}{2}-\frac{2}{nr}$, $\frac{1}{l}=\frac{1}{2}+\frac{2}{n}( 1-\frac{1}{s}) $ (see \cite{TH}), we estimate $\Phi _j( \mathbf{u}) $ via the H\"older inequality in space and in time. We choose $r=\beta $, $q=p+1$, $s=\frac{\beta }{\beta -1}$, $l=\frac{p+1}{p}$ and $\beta =\frac{4}{n}\frac{ p+1}{p-1}$, then \begin{align*} \| \Phi _j( \mathbf{u}) \| _{\mathbf{X}(\mathbf{I}) } &\leq C\| \phi \| _{\mathbf{L}^2}+C\| \mathbf{F}( \mathbf{u}) \| _{\mathbf{L}^{s}( \mathbf{I} ;\mathbf{L}^{\frac{p+1}{p}}) } \\ &\leq C\| \phi \| _{\mathbf{L}^2}+C\Big( \int_{I}\| \mathbf{u}\| _{\mathbf{L}^{p+1}}^{ps}dt\Big) ^{1/s} \\ &\leq C\| \phi \| _{\mathbf{L}^2}+CT^{\frac{1}{s}-\frac{p}{ \beta }}\| \mathbf{u}\| _{\mathbf{X}( \mathbf{I}) }^{p}. \end{align*} Note that $\beta -ps>0$ since $p<1+\frac{4}{n}$. Similarly, we find the estimate for the difference \[ \| \Phi _j( \mathbf{u}) -\Phi _j( \mathbf{u}') \| _{\mathbf{X}( \mathbf{I}) }\leq CT^{ \frac{1}{s}-\frac{p}{\beta }}( \| \mathbf{u}\| _{\mathbf{X} ( \mathbf{I}) }^{p-1}+\| \mathbf{u}^{\prime }\| _{ \mathbf{X}( \mathbf{I}) }^{p-1}) \| \mathbf{u}-\mathbf{ u}^{\prime }\| _{\mathbf{X}( \mathbf{I}) }. \] Therefore the conclusion of the theorem follows from the contraction mapping principle if we take $T>0$ sufficiently small which depends only on the size $\rho $ of the initial data. \end{proof} The existence of global solutions for \eqref{1.3} follows from Theorem \ref{Theorem 4} and a-priori estimates \eqref{1.4a}. Similarly, a-priori estimates \eqref{1.4-2} and Theorem \ref{Theorem 4} ensure the existence of global solutions to \eqref{1.6}. \subsection*{Acknowledgements} The work of P.I.N. is partially supported by CONACYT and PAPIIT. The authors would like to thank an anonymous referee for the useful suggestions and comments. \begin{thebibliography}{99} \bibitem{BA84} J. E. Barab; \emph{Nonexistence of asymptotically free solutions for a nonlinear Schr\"odinger equation,} J. Math. Phys., \textbf{25} (1984), pp. 3270-3273. \bibitem{TH} T. Cazenave; \emph{Semilinear Schr\"odinger equations}, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323. \bibitem{GL73} R. T. Glassey; \emph{On the asymptotic behavior of nonlinear wave equations,} Trans. Amer. Math. Soc., \textbf{182} (1973), pp. 187-200. \bibitem{NH08} N. Hayashi, P. I. Naumkin; \emph{Asymptotic properties of solutions to dispersive equation of Schr\"odinger type, }J. Math. Soc. Japan, \textbf{60} (2008), pp. 631-652. \bibitem{HNKobayashi11} N. Hayashi, S. Kobayashi, P. I. Naumkin; \emph{Global existence of solutions to nonlinear dispersive wave equations, } Differential and Integral Equations, \textbf{25 }(2012), pp. 685-698. \bibitem{MA76} A. Matsumura; \emph{On the asymptotic behavior of solutions of semi-linear wave equations,} Publ. Res. Inst. Math. Sci., \textbf{12} (1976/77), pp. 169-189. \bibitem{Nakamura10} M. Nakamura; \emph{Remarks on Keel-Smith-Sogge estimates and some applications to nonlinear higher order wave equations}, Differential and Integral Equations, \textbf{24 }(2011), pp. 519-540. \bibitem{Stein} E.M. Stein; \emph{Singular Integrals and Differentiability Properties of Functions}, \textbf{30}, Princeton Univ. Press, Princeton, NJ, 1970. \bibitem{TS87} Y. Tsutsumi; \emph{$\mathbf{L}^2$-solutions for nonlinear Schr\"odinger equations and nonlinear groups}, Funkcialaj Ekvacioj, \textbf{30} (1987), pp. 115-125. \bibitem{Yoshikawa05} S. Yoshikawa; \emph{Weak solutions for the Falk model system of shape memory alloys in energy class, } Math. Meth. Appl. Sci., \textbf{28 }(2005), pp. 1423-1443. \end{thebibliography} \end{document}