\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 162, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/162\hfil Nonexistence of asymptotically free solutions] {Nonexistence of asymptotically free solutions to nonlinear Schr\"odinger systems} \author[N. Hayashi, C. Li, P. I. Naumkin \hfil EJDE-2012/162\hfilneg] {Nakao Hayashi, Chunhua Li, Pavel I. Naumkin} % in alphabetical order \address{Nakao Hayashi \newline Department of Mathematics\\ Graduate School of Science, Osaka University, Osaka, Toyonaka, 560-0043, Japan} \email{nhayashi@math.sci.osaka-u.ac.jp} \address{Chunhua Li \newline Department of Mathematics, Graduate School of Science, Yanbian University, Yanji City, Jilin Province, 133002, China} \email{sxlch@ybu.edu.cn} \address{Pavel I. Naumkin \newline Centro de Ciencias Matem\'aticas\\ UNAM Campus Morelia, AP 61-3 (Xangari)\\ Morelia CP 58089, Michoac\'an, Mexico} \email{pavelni@matmor.unam.mx} \thanks{Submitted November 16, 2011. Published September 21, 2012.} \subjclass[2000]{35Q55} \keywords{Dispersive nonlinear waves; asymptotically free solutions} \begin{abstract} We consider the nonlinear Schr\"odinger systems \begin{gather*} -i\partial _tu_1+\frac{1}{2}\Delta u_1=F( u_1,u_2), \\ i\partial _tu_2+\frac{1}{2}\Delta u_2=F( u_1,u_2) \end{gather*} in $n$ space dimensions, where $F$ is a $p$-th order local or nonlocal nonlinearity smooth up to order $p$, with $1
1+\frac{2}{n-1},
\]
with $n\geq 2$, it was shown in \cite{Nakamura10} that \eqref{P1} and
\eqref{P2} have a unique global solution for small regular data. The
number $1+\frac{2}{n-1}$ is the well-known critical exponent for the nonlinear wave
equation. However, taking into account the time decay rates of solutions to
the linear problem for \eqref{P1} or \eqref{P2} with $m\neq 1$, the critical
exponent $1+\frac{2}{n-1}$ should be replaced by $1+\frac{2}{n}$. Indeed, a
closely related problem to \eqref{P2} written as
\begin{equation}
\begin{gathered}
( \partial _t^2+\frac{1}{m^2}( -\partial _x^2)
^{m}) u=\lambda | \partial _tu| ^{p-1}\partial _tu,
\quad ( t,x) \in \mathbb{R}\times\mathbb{R}, \\
u(0,x)=u_{0}( x) ,\partial _tu(0,x)=u_1( x) ,\quad x\in {\mathbb{R}},
\end{gathered} \label{P3}
\end{equation}
with $0 0$.
\end{lemma}
\begin{proof}
By the identity $\mathcal{U}( t) =M( t) D(t) \mathcal{F}M( t) $ we find
\[
\mathcal{U}( t) \phi =M( t) D( t) \mathcal{F}M( t) \phi
=M( t) D( t) \mathcal{F}\phi +M( t) D( t) \mathcal{F}( M( t)-1) \phi .
\]
The $\mathbf{L}^2$-norm of the last term in the right-hand side of the
above identity is estimated by
\begin{align*}
\| M( t) D( t) \mathcal{F}( M( t)
-1) \phi \| _{\mathbf{L}^2}
&= \| ( M( t) -1) \phi \| _{\mathbf{L}^2} \\
&\leq Ct^{-\gamma }\| \phi \| _{\mathbf{H}^{0,2\gamma
}}=Ct^{-\gamma }\| \widehat{\phi }\| _{\mathbf{H}^{2\gamma }}.
\end{align*}
This proves the lemma.
\end{proof}
In the next lemma we find a lower bound of the norm
$\| \mathcal{U} ( -t) \phi \pm \mathcal{U}( t) \psi \| _{\mathbf{
L}^{p+1}}$.
\begin{lemma} \label{Lemma 2} For
$\phi ,\psi \in \mathbf{H}^{0,1}\cap \mathbf{L}^{1}$,
\begin{align*}
&\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t)
\psi \| _{\mathbf{L}^r} \\
&\geq \frac{1}{2}( 2kt) ^{\frac{n}{2}( \frac{2}{r}-1)
}\Big( \| \widehat{\phi }\| _{\mathbf{L}^2( | \xi
| \leq k) }+\| \widehat{\psi }\| _{\mathbf{L}
^2( | \xi | \leq k) }\Big) \\
&\quad -C( k) ( kt) ^{\frac{n}{2}( \frac{2}{r}
-1) }t^{-\alpha/2}\Big( \| \widehat{\phi }\| _{
\mathbf{H}^{1}}+\| \widehat{\psi }\| _{\mathbf{H}^{1}}+\|
\widehat{\phi }\| _{\mathbf{L}^{\infty }}+\| \widehat{\psi }
\| _{\mathbf{L}^{\infty }}\Big)
\end{align*}
for all $t>0$ and $k>0$, where $2\leq r\leq \infty ,\alpha <\frac{1}{2}$ for
$n=1$ and $\alpha =\frac{1}{2}$ for $n\geq 2$, and $C( k) $ is a
positive constant depending on $k$.
\end{lemma}
\begin{proof}
By H\"older's inequality
\begin{equation}
\begin{split}
&\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t)
\psi \| _{\mathbf{L}^2( | x| \leq kt) }
\\
&\leq \| \mathcal{U}( -t) \phi \pm \mathcal{U}(
t) \psi \| _{\mathbf{L}^r( | x| \leq kt)
}\Big( \int_{| x| \leq kt}dx\Big) ^{\frac{r-2}{2r}} \\
&= ( 2kt) ^{\frac{n}{2}( 1-\frac{2}{r}) }\|
\mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi
\| _{\mathbf{L}^r( | x| \leq kt) } \\
&\leq ( 2kt) ^{\frac{n}{2}( 1-\frac{2}{r}) }\|
\mathcal{U}( -t) \phi \pm \mathcal{U}( t) \psi
\| _{\mathbf{L}^r}.
\end{split}\label{2.1}
\end{equation}
Hence in order to get the desired estimate from below we need to find a
lower bound for the norm $\| \mathcal{U}( -t) \phi \pm
\mathcal{U}( t) \psi \| _{\mathbf{L}^2( |
x| \leq kt) }$. By Lemma \ref{Lemma 1} with $\gamma =\frac{1}{2}$
we find
\begin{align*}
&\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t)
\psi -( M( -t) D( -t) \widehat{\phi }\pm M(
t) D( t) \widehat{\psi }) \| _{\mathbf{L}
^2( | x| \leq kt) } \\
&\leq \| \mathcal{U}( -t) \phi \pm \mathcal{U}(
t) \psi -( M( -t) D( -t) \widehat{\phi }\pm
M( t) D( t) \widehat{\psi }) \| _{\mathbf{L
}^2} \\
&\leq 2| t| ^{-1/2}( \| \widehat{\phi }
\| _{\mathbf{H}^{1}}+\| \widehat{\psi }\| _{\mathbf{H}
^{1}}) .
\end{align*}
Therefore changing the variable of integration by $\xi =\frac{x}{t}$, we obtain
\begin{equation}
\begin{aligned}
&\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t)
\psi \| _{\mathbf{L}^2( | x| \leq kt) }
\\
&\geq \| M( -t) D( -t) \widehat{\phi }\pm
M( t) D( t) \widehat{\psi }\| _{\mathbf{L}
^2( | x| \leq kt) }
-Ct^{-1/2}( \| \widehat{\phi }\| _{\mathbf{H}
^{1}}+\| \widehat{\psi }\| _{\mathbf{H}^{1}}) \\
&\geq \| e^{-\frac{it}{2}| \xi | ^2}( -i) ^n
\widehat{\phi }( -\xi ) \pm e^{\frac{it}{2}| \xi |
^2}\widehat{\psi }( \xi ) \| _{\mathbf{L}^2(
| \xi | \leq k) }
-Ct^{-1/2}( \| \widehat{\phi }\| _{\mathbf{H}
^{1}}+\| \widehat{\psi }\| _{\mathbf{H}^{1}}) .
\end{aligned} \label{2.2}
\end{equation}
By a direct computation we have
\begin{equation}
\begin{aligned}
&\| e^{-\frac{it}{2}| \xi | ^2}( -i) ^n
\widehat{\phi }( -\xi ) \pm e^{\frac{it}{2}| \xi |
^2}\widehat{\psi }( \xi ) \| _{\mathbf{L}^2(
| \xi | \leq k) }^2 \\
&= \| \widehat{\phi }\| _{\mathbf{L}^2( | \xi |
\leq k) }^2+\| \widehat{\psi }\| _{\mathbf{L}^2(
| \xi | \leq k) }^2\pm 2\operatorname{Re}\int_{| \xi |
\leq k}( -i) ^n\widehat{\phi }( -\xi ) \overline{
\widehat{\psi }( \xi ) }e^{-it| \xi | ^2}d\xi .
\end{aligned}\label{2.3}
\end{equation}
Integration by parts and using the identity
\[
e^{-it| \xi | ^2}=\frac{1}{n-2it| \xi | ^2}\nabla
\cdot \xi e^{-it| \xi | ^2}
\]
yields
\begin{align*}
\int_{| \xi | \leq k}F( \xi ) e^{-it| \xi| ^2}d\xi
&=\int_{| \xi | \leq k}F( \xi ) \frac{
1}{n-2it| \xi | ^2}\nabla \cdot \xi e^{-it| \xi |
^2}d\xi \\
&= \int_{| \xi | \leq k}\nabla \cdot \Big( \frac{\xi F( \xi
) }{n-2it| \xi | ^2}e^{-it| \xi | ^2}\Big) d\xi\\
&\quad -\int_{| \xi | \leq k}e^{-it| \xi | ^2}\xi \cdot
\nabla \frac{F( \xi ) }{n-2it| \xi | ^2}d\xi ,
\end{align*}
for any $F\in \mathbf{L}^{\infty }$ with $\nabla F\in \mathbf{L}^{1}$.
Therefore,
\[
\big| \int_{| \xi | \leq k}\nabla \cdot \Big( \frac{\xi F(
\xi ) }{n-2it| \xi | ^2}e^{-it| \xi |
^2}\Big) d\xi \big| \leq C( k) t^{-1/2}\|
F\| _{\mathbf{L}^{\infty }}
\]
and by a direct calculation
\[
\xi \cdot \nabla \frac{F( \xi ) }{n-2it| \xi | ^2}=
\frac{4it| \xi | ^2F( \xi ) }{( n-2it| \xi
| ^2) ^2}+\frac{\xi \cdot \nabla F( \xi ) }{
n-2it| \xi | ^2}.
\]
Hence
\begin{align*}
&| \int_{| \xi | \leq k}F( \xi ) e^{-it|
\xi | ^2}d\xi | \\
&\leq \int_{| \xi | \leq k}\frac{ 2| F( \xi ) | +| \xi \cdot \nabla F( \xi
) | }{n+2t| \xi | ^2}d\xi +C( k) t^{-
\frac{1}{2}}\| F\| _{\mathbf{L}^{\infty }} \\
&\leq Ct^{-\alpha }\int_{| \xi | \leq k}( \frac{|
F( \xi ) | }{| \xi | ^{2\alpha }}+| \nabla
F( \xi ) | ) d\xi +C( k) t^{-\frac{1}{2}
}\| F\| _{\mathbf{L}^{\infty }} \\
&\leq Ct^{-\alpha }\| F\| _{\mathbf{L}^{\infty }}\int_{|
\xi | \leq k}| \xi | ^{-2\alpha }d\xi +Ct^{-\alpha }\|
\nabla F\| _{\mathbf{L}^{1}}+C( k) t^{-1/2}\|
F\| _{\mathbf{L}^{\infty }} \\
&\leq Ct^{-\alpha }( C( k) \| F\| _{\mathbf{L}
^{\infty }}+\| \nabla F\| _{\mathbf{L}^{1}}) ,
\end{align*}
where $\alpha <1/2$ for $n=1$ and $\alpha =1/2$ for $n\geq 2$.
Therefore taking $F( \xi ) =\widehat{\phi }( -\xi )
\overline{\widehat{\psi }( \xi ) }$ in the above estimate, we obtain
\begin{equation}
\begin{aligned}
&\big| \int_{| \xi | \leq k}\widehat{\phi }( -\xi )
\overline{\widehat{\psi }( \xi ) }e^{-it| \xi |
^2}d\xi \big| \\
&\leq Ct^{-\alpha }\Big( ( k^{n-2\alpha }+1) \| \widehat{
\phi }( -\xi ) \overline{\widehat{\psi }( \xi ) }
\| _{\mathbf{L}^{\infty }}+\| \nabla ( \widehat{\phi }(
-\xi ) \overline{\widehat{\psi }( \xi ) }) \| _{
\mathbf{L}^{1}}\Big) \\
&\leq C( k) t^{-\alpha }\Big( \| \widehat{\phi }\| _{
\mathbf{H}^{1}}+\| \widehat{\phi }\| _{\mathbf{L}^{\infty
}}\Big) \Big( \| \widehat{\psi }\| _{\mathbf{H}^{1}}+\|
\widehat{\psi }\| _{\mathbf{L}^{\infty }}\Big) .
\end{aligned} \label{2.4}
\end{equation}
We apply \eqref{2.4} to \eqref{2.3} and use \eqref{2.2} to obtain
\begin{align*}
&\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t)
\psi \| _{\mathbf{L}^2( | x| \leq kt) } \\
&\geq \Big( \| \widehat{\phi }\| _{\mathbf{L}^2( |
\xi | \leq k) }^2+\| \widehat{\psi }\| _{\mathbf{L}
^2( | \xi | \leq k) }^2\Big) ^{1/2}
-\Big( 2| \int_{| \xi | \leq k}\widehat{\phi }( -\xi
) \overline{\widehat{\psi }( \xi ) }e^{-it| \xi
| ^2}d\xi | \Big) ^{1/2}\\
&\quad -2| t| ^{-\frac{1}{2}}( \| \widehat{\phi }\| _{\mathbf{H}^{1}}
+\| \widehat{\psi }\| _{\mathbf{H}^{1}}) \\
&\geq \frac{1}{2}\| \widehat{\phi }\| _{\mathbf{L}^2(
| \xi | \leq k) }+\frac{1}{2}\| \widehat{\psi }
\| _{\mathbf{L}^2( | \xi | \leq k) } \\
&\quad -C( k) t^{-\alpha/2}\Big( \| \widehat{\phi }
\| _{\mathbf{H}^{1}}+\| \widehat{\psi }\| _{\mathbf{H}
^{1}}+\| \widehat{\phi }\| _{\mathbf{L}^{\infty }}+\|
\widehat{\psi }\| _{\mathbf{L}^{\infty }}\Big) .
\end{align*}
Finally by \eqref{2.1} we obtain
\begin{align*}
&\| \mathcal{U}( -t) \phi \pm \mathcal{U}( t)
\psi \| _{\mathbf{L}^r}\geq ( 2kt) ^{\frac{n}{2}(
\frac{2}{r}-1) }\| \mathcal{U}( -t) \phi \pm \mathcal{U
}( t) \psi \| _{\mathbf{L}^2( | x| \leq
kt) } \\
&\geq \frac{1}{2}( 2kt) ^{\frac{n}{2}( \frac{2}{r}-1)
}( \| \widehat{\phi }\| _{\mathbf{L}^2( | \xi
| \leq k) }+\| \widehat{\psi }\| _{\mathbf{L}
^2( | \xi | \leq k) }) \\
&\quad -C( k) ( kt) ^{\frac{n}{2}( \frac{2}{r}
-1) }t^{-\alpha/2}( \| \widehat{\phi }\| _{
\mathbf{H}^{1}}+\| \widehat{\psi }\| _{\mathbf{H}^{1}}+\|
\widehat{\phi }\| _{\mathbf{L}^{\infty }}+\| \widehat{\psi }
\| _{\mathbf{L}^{\infty }}),
\end{align*}
which proves Lemma \ref{Lemma 2}.
\end{proof}
\section{Proof of Theorem \ref{Theorem 1}} \label{S3}
By the contradiction, suppose that there
exists a free solution $\mathbf{w}$ of \eqref{1.9} defined by the initial
data such that $\mathbf{w}_{0}\neq 0$: $\mathbf{w}_{0}\in ( \mathbf{H}
^{0,1}\cap \mathbf{L}^{1}) ^2$ satisfying
\begin{equation}
\lim_{t\to \infty }\| \mathbf{u}( t) -\mathbf{w}
( t) \| _{\mathbf{L}^2}=0. \label{3.0}
\end{equation}
Define the functional
\[
\mathbf{H}_{u}( t) =\operatorname{Re}\int_{\mathbb{R}^n}i\mathbf{w}
\cdot \overline{\mathbf{u}}dx=\operatorname{Re}\sum_{j=1}^2\int_{\mathbb{R}
^n}iw_j\overline{u}_jdx
\]
as in \cite{BA84}. By \eqref{1.9} and \eqref{1.2} we have
\begin{align*}
\frac{d}{dt}\mathbf{H}_{u}( t)
& =\operatorname{Re}\int_{\mathbb{R}^n}\Big(
\begin{pmatrix}
i\partial _t & 0 \\
0 & i\partial _t
\end{pmatrix}
\mathbf{w}\cdot \overline{\mathbf{u}}+\mathbf{w\cdot }\overline{
\begin{pmatrix}
-i\partial _t & 0 \\
0 & -i\partial _t
\end{pmatrix}
\mathbf{u}}\Big) dx \\
&= \operatorname{Re}\int_{\mathbb{R}^n}\Big(
\begin{pmatrix}
\frac{1}{2}\Delta & 0 \\
0 & -\frac{1}{2}\Delta
\end{pmatrix}
\mathbf{w}\cdot \overline{\mathbf{u}}+\mathbf{w\cdot }\overline{
\begin{pmatrix}
-i\partial _t & 0 \\
0 & -i\partial _t
\end{pmatrix}
\mathbf{u}}\Big) dx \\
&= \operatorname{Re}\int_{\mathbb{R}^n}\mathbf{w\cdot }\overline{
\begin{pmatrix}
-i\partial _t+\frac{1}{2}\Delta & 0 \\
0 & -( i\partial _t+\frac{1}{2}\Delta )
\end{pmatrix}
\mathbf{u}}dx \\
&= \operatorname{Re}\int_{\mathbb{R}^n}\mathbf{w\cdot }\overline{
\begin{pmatrix}
-2^{-p}i\lambda | u_1-u_2| ^{p-1}( u_1-u_2)
\\
2^{-p}i\lambda | u_1-u_2| ^{p-1}( u_1-u_2)
\end{pmatrix}}dx.
\end{align*}
Letting
\[
W=w_1-w_2, \quad U=u_1-u_2,
\]
from the above identity we have
\begin{equation}
\begin{split}
&\frac{d}{dt}\mathbf{H}_{u}( t)\\
&=2^{-p}\operatorname{Re}\Big( i
\overline{\lambda }\int_{\mathbb{R}^n}| U| ^{p-1}\overline{U}
W\, dx\Big) \\
&= 2^{-p}\operatorname{Re}\Big( i\overline{\lambda }\int_{\mathbb{R}^n}(
| U| ^{p-1}\overline{U}W-| W| ^{p+1}) dx\Big)
+2^{-p}( \operatorname{Im}\lambda ) \int_{\mathbb{R}^n}|
W| ^{p+1}dx.
\end{split} \label{3.1}
\end{equation}
Due to the inequality
\begin{align*}
\big| | a| ^{p-1}a-| b| ^{p-1}b\big|
&\leq C( | a| ^{p-1}+| b| ^{p-1}) |a-b| \\
&\leq C( | a-b| ^{p-1}+| b| ^{p-1}) |a-b| ,
\end{align*}
where $a,b\in\mathbb{C}$ and the H\"older inequality we obtain
\begin{equation}
\begin{aligned}
&\Big| 2^{-p}\operatorname{Re}\Big( i\overline{\lambda }\int_{\mathbb{R}
^n}( | U| ^{p-1}\overline{U}W-| W|
^{p+1}) dx\Big) \Big| \\
&= \Big| 2^{-p}\operatorname{Re}\Big( i\overline{\lambda }\int_{\mathbb{R}
^n}( | U| ^{p-1}\overline{U}-| W| ^{p-1}
\overline{W}) W\,dx\Big) \Big| \\
&\leq C\int_{\mathbb{R}^n}( | U-W| ^{p}| W|
+| U-W| | W| ^{p}) dx \\
&\leq C\| U-W\| _{\mathbf{L}^2}^{p}\| W\| _{\mathbf{
L}^{\frac{2}{2-p}}}+C\| U-W\| _{\mathbf{L}^2}\| W\|
_{\mathbf{L}^{2p}}^{p} \\
&\leq C( \delta ) | t| ^{\frac{n}{2}( 1-p)
}\| U-W\| _{\mathbf{L}^2}( 1+\| U-W\| _{\mathbf{
L}^2}^{p-1}) ,
\end{aligned}\label{3.2}
\end{equation}
since $1 0$ such that $\|
\widehat{w_{1,0}}\| _{\mathbf{L}^2( | \xi | \leq
k) }+\| \widehat{w_{2,0}}\| _{\mathbf{L}^2( |
\xi | \leq k) }>0$. We apply Lemma \ref{Lemma 2} with $r=p+1$ to
the difference $w_1( t) -w_2( t) =\mathcal{U}
( -t) w_{1,0}-\mathcal{U}( t) w_{2,0}$ to find
\begin{equation}
\begin{aligned}
&\| w_1( t) -w_2( t) \| _{\mathbf{L}^{p+1}}^{p+1} \\
&\geq ( \frac{1}{2}) ^{p+1}( 2kt) ^{\frac{n}{2}(
1-p) }\Big( \| \widehat{w_{1,0}}\| _{\mathbf{L}^2(
| \xi | \leq k) }+\| \widehat{w_{2,0}}\| _{
\mathbf{L}^2( | \xi | \leq k) }\Big) ^{p+1}
\\
&\quad-C( k) ( kt) ^{\frac{n}{2}( 1-p)
}t^{-\alpha \frac{p+1}{2}}\Big( \| \mathbf{w}_{0}\| _{\mathbf{H}
^{0,1}}^{p+1}+\| \mathbf{w}_{0}\| _{\mathbf{L}^{1}}^{p+1}\Big)
\\
&\geq C( k,\gamma ) t^{\frac{n}{2}( 1-p) }-C(
k,\delta ) t^{\frac{n}{2}( 1-p) -\alpha \frac{p+1}{2}}
\end{aligned} \label{3.3a}
\end{equation}
for all $t>0$, where $C( k,\gamma ) $ is a constant depending on
$k$ and $\mathbf{\gamma =}\| \widehat{w_{1,0}}\| _{\mathbf{L}
^2( | \xi | \leq k) }+\| \widehat{w_{2,0}}
\| _{\mathbf{L}^2( | \xi | \leq k) }$ and
$C( k,\delta ) $ is a constant depending on $k$ and $\delta $.
Integrating \eqref{3.1} in time, and using \eqref{3.2} and \eqref{3.3a}, we
obtain
\begin{align*}
| \mathbf{H}_{u}( 2T) -\mathbf{H}_{u}( T)|
&\geq 2^{-p}| \operatorname{Im}\lambda | | \int_{T}^{2T}\int_{
\mathbb{R}^n}| W( t,x) | ^{p+1}dxdt| \\
&\quad -C\int_{T}^{2T}| t| ^{\frac{n}{2}( 1-p) }\|
U-W\| _{\mathbf{L}^2}^{p-1}( 1+\| U-W\| _{\mathbf{L}
^2}) dt \\
&\geq 2^{-p}| \operatorname{Im}\lambda | \int_{T}^{2T}\|
w_1( t) -w_2( t) \| _{\mathbf{L}
^{p+1}}^{p+1}dt \\
&\quad -C( \delta ) \int_{T}^{2T}| t| ^{\frac{n}{2}(
1-p) }\| \mathbf{u}( t) \mathbf{-w}( t)
\| _{\mathbf{L}^2}^{p-1}dt \\
&\geq 2^{-p}| \operatorname{Im}\lambda | \int_{T}^{2T}( C(
k,\gamma ) t^{\frac{n}{2}( 1-p) }-C( k,\delta )
t^{\frac{n}{2}( 1-p) -\alpha \frac{p+1}{2}}) dt \\
&\quad -C( \delta ) \int_{T}^{2T}t^{n( 1-p)/2}\| \mathbf{u}( t) \mathbf{-w}( t) \| _{
\mathbf{L}^2}^{p-1}dt.
\end{align*}
By \eqref{3.0}, it follows that for any $\varepsilon $
satisfying $0<\varepsilon \leq 2^{-p-2}| \operatorname{Im}\lambda |
C( k,\gamma ) /C( \delta ) $, there exists a $T_1>0$
such that
\[
\| \mathbf{u}( t) \mathbf{-w}( t) \| _{
\mathbf{L}^2}<\varepsilon ^{\frac{1}{p-1}}
\]
for $t\geq T_1$. Let $T_2>0$ be such that
\[
C( k,\gamma ) t^{\frac{n}{2}( 1-p) }-C( k,\delta
) t^{\frac{n}{2}( 1-p) -\alpha \frac{p+1}{2}}\geq \frac{1}{2
}C( k,\gamma ) t^{\frac{n}{2}( 1-p) }
\]
for $t\geq T_2$. Hence
\begin{equation}
\begin{aligned}
| \mathbf{H}_{u}( 2T) -\mathbf{H}_{u}( T)|
&\geq ( 2^{-p-1}| \operatorname{Im}\lambda | C( k,\gamma
) -C( \delta ) \varepsilon ) \int_{T}^{2T}t^{\frac{n}{
2}( 1-p) }dt \\
&\geq ( 2^{-p-1}| \operatorname{Im}\lambda | C( k,\gamma
) -C( \delta ) \varepsilon ) \int_{T}^{2T}t^{-1}dt
\\
&\geq 2^{-p-2}| \operatorname{Im}\lambda | C( k,\gamma ) \log
2>0
\end{aligned} \label{3.4}
\end{equation}
for $T\geq \max \{ T_1,T_2\} >0$. On the other hand, by the
definition of $\mathbf{H}_{u}( t) $ and \eqref{3.0} we find
\begin{equation}
\begin{aligned}
| \mathbf{H}_{u}( t) |
&= | \operatorname{Re}\int_{
\mathbb{R}^n}( i\mathbf{w}\cdot ( \overline{\mathbf{u}}-
\overline{\mathbf{w}}) ) dx| \leq C\| \mathbf{w}
{}( t) \| _{\mathbf{L}^2}\| \mathbf{u}(
t) \mathbf{-w}( t) \| _{\mathbf{L}^2} \\
&\leq C\| \mathbf{w}_{0}\| _{\mathbf{L}^2}\| \mathbf{u}
( t) \mathbf{-w}( t) \| _{\mathbf{L}
^2}\to 0
\end{aligned} \label{3.3}
\end{equation}
for $t\to \infty $. From \eqref{3.3} and \eqref{3.4} we have the
desired contradiction. This completes the proof.
\section{Proof of Theorem \ref{Theorem 2}}
As in the proof of Theorem \ref{Theorem 1}, suppose that there exists a free
solution $\mathbf{w}$ of \eqref{1.9} defined by the initial data such that
$\mathbf{w}_{0}\neq 0$, $\mathbf{w}_{0}\in ( \mathbf{H}^{0,1}\cap
\mathbf{L}^{1}) ^2$ satisfying
\begin{equation}
\lim_{t\to \infty }\| \mathbf{v}( t) -\mathbf{w}
( t) \| _{\mathbf{L}^2}=0. \label{4.1}
\end{equation}
Define the functional
\[
\mathbf{G}_{v}( t) =\operatorname{Re}\int_{\mathbb{R}^n}( iw_1
\overline{v}_1-iw_2\overline{v}_2) dx
\]
and denote
\[
\Omega =\frac{\nabla }{| \nabla | }( w_1+w_2) ,\quad
V=\frac{\nabla }{| \nabla | }( v_1+v_2) .
\]
Then by \eqref{1.9} and \eqref{1.5} we obtain
\begin{equation}
\begin{split}
\frac{d}{dt}\mathbf{G}_{v}( t)
&=\operatorname{Re}\int_{\mathbb{R}^n}
\mathbf{w\cdot }\overline{\mathbf{Lv}}dx \\
&= -\operatorname{Re}\Big( \overline{\mu }\int_{\mathbb{R}^n}( \mathbf{
a\cdot w}) \frac{\nabla }{| \nabla | }| V| ^{p-1}
\overline{V}dx\Big)
=\operatorname{Re}\Big( \overline{\mu }\int_{\mathbb{R}
^n}\Omega | V| ^{p-1}\overline{V}dx\Big) \\
&= \operatorname{Re}\Big( \overline{\mu }\int_{\mathbb{R}^n}\Omega ( |
V| ^{p-1}\overline{V}-| \Omega | ^{p-1}\overline{\Omega }
) dx\Big) +( \operatorname{Re}\overline{\mu }) \int_{\mathbb{R}
^n}| \Omega | ^{p+1}dx.
\end{split} \label{3.5}
\end{equation}
As in \eqref{3.2} we find
\begin{equation}
\begin{split}
&\big| \operatorname{Re}\Big( \overline{\mu }\int_{\mathbb{R}^n}\Omega (
| V| ^{p-1}\overline{V}-| \Omega | ^{p-1}\overline{
\Omega }) dx\Big) \big| \\
&\leq C\| V-\Omega \| _{\mathbf{L}^2}^{p}\| \Omega
\| _{\mathbf{L}^{\frac{2}{2-p}}}+C\| V-\Omega \| _{\mathbf{L
}^2}^{p-1}\| \Omega \| _{\mathbf{L}^{\frac{4}{3-p}}}^2
\\
&\leq C( \delta ) | t| ^{\frac{n}{2}( 1-p)
}\| V-\Omega \| _{\mathbf{L}^2}^{p-1}( 1+\| V-\Omega
\| _{\mathbf{L}^2}) .
\end{split} \label{3.6}
\end{equation}
Applying Lemma \ref{Lemma 2} to $\Omega =\frac{\nabla }{| \nabla
| }( w_1+w_2) $, we obtain
\begin{equation}
\| \Omega ( t) \| _{\mathbf{L}^{p+1}}^{p+1}\geq
C( k,\gamma ) t^{\frac{n}{2}( 1-p) }-C( k,\delta
) t^{\frac{n}{2}( 1-p) -\alpha \frac{p+1}{2}} \label{3.6a}
\end{equation}
for all $t>0$, since the norm $\| \frac{\nabla }{| \nabla | }
\cdot \| _{\mathbf{L}^{p+1}}$ is equivalent to $\| \cdot \|
_{\mathbf{L}^{p+1}}$ (see \cite{Stein}). Integrating \eqref{3.5} in time,
and using \eqref{3.6} and \eqref{3.6a}, we obtain
\begin{align*}
&| \mathbf{G}_{v}( 2T) -\mathbf{G}_{v}( T)|\\
&\geq | \operatorname{Re}\mu | \int_{T}^{2T}\| \Omega (
t) \| _{\mathbf{L}^{p+1}}^{p+1}dt
-C( \mathbf{\delta }) \int_{T}^{2T}| t| ^{\frac{n}{2}
( 1-p) }\| \mathbf{v}( t) \mathbf{-w}(
t) \| _{\mathbf{L}^2}^{p-1}dt \\
&\geq | \operatorname{Re}\mu | \int_{T}^{2T}\Big( C( k,\gamma
) t^{\frac{n}{2}( 1-p) }-C( k,\delta ) t^{\frac{n
}{2}( 1-p) -\alpha \frac{p+1}{2}}\Big) dt \\
&\quad -C( \delta ) \int_{T}^{2T}t^{\frac{n}{2}( 1-p)
}\| \mathbf{v}( t) \mathbf{-w}( t) \| _{
\mathbf{L}^2}^{p-1}dt.
\end{align*}
By \eqref{4.1}, it follows that for any $\varepsilon $
satisfying $0<\varepsilon \leq 2^{-2}| \operatorname{Re}\mu | C(
k,\gamma ) /C( \delta ) $, there exists a $T_1>0$ such
that
\[
\| \mathbf{u}( t) \mathbf{-w}( t) \| _{\mathbf{L}^2}<\varepsilon ^{\frac{1}{p-1}}
\]
for $t\geq T_1$. Again, let $T_2>0$ such that
\[
C( k,\gamma ) t^{\frac{n}{2}( 1-p) }-C( k,\delta
) t^{\frac{n}{2}( 1-p) -\alpha \frac{p+1}{2}}\geq \frac{1}{2
}C( k,\gamma ) t^{\frac{n}{2}( 1-p) }
\]
for $t\geq T_2$. Therefore,
\begin{equation}
\begin{split}
| \mathbf{G}_{v}( 2T) -\mathbf{G}_{v}( T)|
&\geq ( 2^{-1}| \operatorname{Re}\mu | C( k,\gamma )
-C( \delta ) \varepsilon ) \int_{T}^{2T}t^{\frac{n}{2}
( 1-p) }dt \\
&\geq ( 2^{-1}| \operatorname{Re}\mu | C( k,\gamma )
-C( \delta ) \varepsilon ) \int_{T}^{2T}t^{-1}dt \\
&\geq 2^{-2}| \operatorname{Re}\mu | C( k,\gamma ) \log 2>0
\end{split} \label{3.7a}
\end{equation}
for $T\geq \max \left\{ T_1,T_2\right\} >0$. On the other hand, by the
definition of $\mathbf{G}_{v}( t) $ and \eqref{4.1} we find
\begin{equation}
\begin{split}
| \mathbf{G}_{v}( t) |
& =\big| \operatorname{Re}\int_{
\mathbb{R}^n}( iw_1( \overline{v}_1-\overline{w}_1)
-iw_2( \overline{v}_2-\overline{w}_2) ) dx\big|\\
&\leq C\| \mathbf{w}{}( t) \| _{\mathbf{L}
^2}\| \mathbf{v}( t) -\mathbf{w}( t) \| _{\mathbf{L}^2}\\
&\leq C\| \mathbf{v}( t) \mathbf{-w}(t) \| _{\mathbf{L}^2}\to 0
\end{split} \label{3.7}
\end{equation}
as $t\to \infty $. Therefore we have the desired contradiction by
\eqref{3.7a} and \eqref{3.7}. This completes the proof.
\section{Appendix} \label{S4}
In this section we prove the existence of global solutions to the systems
\eqref{1.3}) and \eqref{1.6}. We introduce the following space-time norm
\[
\| \phi \| _{\mathbf{L}^{q}( \mathbf{I};\mathbf{L}
^r) }=\| \| \phi ( t,x) \| _{\mathbf{L}
_x^r}\| _{\mathbf{L}_t^{q}( \mathbf{I}) },
\]
where $\mathbf{I}$ is a bounded or unbounded time interval.
To prove the local existence of $\mathbf{L}^2$-solutions, we write
\eqref{1.3} as a system of integral equations
\begin{equation}
\begin{gathered}
u_1( t) =\overline{\mathcal{U}( t) }\phi
_1+i\int_{0}^{t}\overline{\mathcal{U}( t-\tau ) }F(u_1(\tau
),u_2(\tau ))d\tau , \\
u_2( t) =\mathcal{U}( t) \phi _2-i\int_{0}^{t}
\mathcal{U}( t-\tau ) F(u_1(\tau ),u_2(\tau ))d\tau ,
\end{gathered} \label{NLSI}
\end{equation}
where $\mathcal{U}( t) $ is the free Schr\"odinger evolution
group. As in \cite{TS87}, we treat the problem in $\mathbf{L}^2$ space by
applying the results for a single nonlinear Schr\"odinger equation with
power nonlinearities.
Define the space
\[
\mathbf{X}( \mathbf{I}) =(\mathbf{C}\cap \mathbf{L}^{\infty
}) ( \mathbf{I;L}^2) \cap \mathbf{L}^{\beta }(
\mathbf{I};\mathbf{L}^{p+1})
\]
with the norm
\[
\| u\| _{\mathbf{X}( \mathbf{I})}
=\sum_{j=1}^2\Big( \| u_j\| _{\mathbf{L}^{\infty
}( \mathbf{I};\mathbf{L}^2) }+\| u_j\| _{
\mathbf{L}^{\beta }( \mathbf{I};\mathbf{L}^{p+1}) }\Big) ,
\]
on a time-interval $\mathbf{I}=[ -T,T] $, where
$\beta =\frac{4}{n }\frac{p+1}{p-1}$, $1 0$ there exists a $T( \rho ) >0$
such that for any initial data
$\phi =( \phi _1,\phi _2) \in \mathbf{L}^2$ with the norm
$\| \phi \| _{\mathbf{L}^2}\leq \rho $, the Cauchy problem for \eqref{1.3}
has a unique solution $\mathbf{u}=( u_1,u_2) \in \mathbf{X}( \mathbf{I}) $ with
$\mathbf{I}=[ -T( \rho ) ,T( \rho )] $.
\end{theorem}
\begin{proof}
We denote the right-hand sides of \eqref{NLSI} by
$\Phi _j( \mathbf{u}) $ for $j=1,2$. Applying the Strichartz inequality
\[
\| \int_{0}^{t}\mathcal{U}( t-\tau ) g( \tau )
d\tau \| _{\mathbf{L}_t^r( \mathbf{I};\mathbf{L}_x^{q}) }
\leq C\| g\| _{\mathbf{L}_t^{s}( \mathbf{I};\mathbf{L}_x^{l}) }
\]
for $2\leq r\leq \infty $, $1\leq s\leq 2$,
$\frac{1}{q}=\frac{1}{2}-\frac{2}{nr}$,
$\frac{1}{l}=\frac{1}{2}+\frac{2}{n}( 1-\frac{1}{s}) $
(see \cite{TH}), we estimate $\Phi _j( \mathbf{u}) $ via the
H\"older inequality in space and in time. We choose $r=\beta $, $q=p+1$,
$s=\frac{\beta }{\beta -1}$, $l=\frac{p+1}{p}$ and $\beta =\frac{4}{n}\frac{
p+1}{p-1}$, then
\begin{align*}
\| \Phi _j( \mathbf{u}) \| _{\mathbf{X}(\mathbf{I}) }
&\leq C\| \phi \| _{\mathbf{L}^2}+C\|
\mathbf{F}( \mathbf{u}) \| _{\mathbf{L}^{s}( \mathbf{I}
;\mathbf{L}^{\frac{p+1}{p}}) } \\
&\leq C\| \phi \| _{\mathbf{L}^2}+C\Big( \int_{I}\|
\mathbf{u}\| _{\mathbf{L}^{p+1}}^{ps}dt\Big) ^{1/s} \\
&\leq C\| \phi \| _{\mathbf{L}^2}+CT^{\frac{1}{s}-\frac{p}{
\beta }}\| \mathbf{u}\| _{\mathbf{X}( \mathbf{I})
}^{p}.
\end{align*}
Note that $\beta -ps>0$ since $p<1+\frac{4}{n}$. Similarly, we find the
estimate for the difference
\[
\| \Phi _j( \mathbf{u}) -\Phi _j( \mathbf{u}')
\| _{\mathbf{X}( \mathbf{I}) }\leq CT^{
\frac{1}{s}-\frac{p}{\beta }}( \| \mathbf{u}\| _{\mathbf{X}
( \mathbf{I}) }^{p-1}+\| \mathbf{u}^{\prime }\| _{
\mathbf{X}( \mathbf{I}) }^{p-1}) \| \mathbf{u}-\mathbf{
u}^{\prime }\| _{\mathbf{X}( \mathbf{I}) }.
\]
Therefore the conclusion of the theorem follows from the contraction mapping
principle if we take $T>0$ sufficiently small which depends only on the size
$\rho $ of the initial data.
\end{proof}
The existence of global solutions for \eqref{1.3} follows from Theorem
\ref{Theorem 4} and a-priori estimates \eqref{1.4a}. Similarly, a-priori
estimates \eqref{1.4-2} and Theorem \ref{Theorem 4} ensure the
existence of global solutions to \eqref{1.6}.
\subsection*{Acknowledgements}
The work of P.I.N. is partially supported by CONACYT and PAPIIT. The authors
would like to thank an anonymous referee for the useful suggestions and comments.
\begin{thebibliography}{99}
\bibitem{BA84} J. E. Barab;
\emph{Nonexistence of asymptotically free
solutions for a nonlinear Schr\"odinger equation,} J. Math. Phys.,
\textbf{25} (1984), pp. 3270-3273.
\bibitem{TH} T. Cazenave;
\emph{Semilinear Schr\"odinger equations},
Courant Institute of Mathematical Sciences, New York; American Mathematical
Society, Providence, RI, 2003. xiv+323.
\bibitem{GL73} R. T. Glassey;
\emph{On the asymptotic behavior of
nonlinear wave equations,} Trans. Amer. Math. Soc., \textbf{182} (1973), pp.
187-200.
\bibitem{NH08} N. Hayashi, P. I. Naumkin;
\emph{Asymptotic properties
of solutions to dispersive equation of Schr\"odinger type, }J. Math. Soc.
Japan, \textbf{60} (2008), pp. 631-652.
\bibitem{HNKobayashi11} N. Hayashi, S. Kobayashi, P. I. Naumkin;
\emph{Global existence of solutions to nonlinear dispersive wave equations, }
Differential and Integral Equations, \textbf{25 }(2012), pp. 685-698.
\bibitem{MA76} A. Matsumura;
\emph{On the asymptotic behavior of
solutions of semi-linear wave equations,} Publ. Res. Inst. Math. Sci.,
\textbf{12} (1976/77), pp. 169-189.
\bibitem{Nakamura10} M. Nakamura;
\emph{Remarks on Keel-Smith-Sogge estimates and some applications
to nonlinear higher order wave equations},
Differential and Integral Equations, \textbf{24 }(2011), pp. 519-540.
\bibitem{Stein} E.M. Stein;
\emph{Singular Integrals and Differentiability Properties of Functions},
\textbf{30}, Princeton Univ. Press, Princeton, NJ, 1970.
\bibitem{TS87} Y. Tsutsumi;
\emph{$\mathbf{L}^2$-solutions for
nonlinear Schr\"odinger equations and nonlinear groups}, Funkcialaj
Ekvacioj, \textbf{30} (1987), pp. 115-125.
\bibitem{Yoshikawa05} S. Yoshikawa;
\emph{Weak solutions for the Falk model system of shape memory alloys
in energy class, } Math. Meth. Appl. Sci., \textbf{28 }(2005), pp. 1423-1443.
\end{thebibliography}
\end{document}