\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 163, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/163\hfil Infinitely many solutions] {Infinitely many solutions for class of Navier boundary $(p,q)$-biharmonic systems} \author[M. Massar, E. M. Hssini, N. Tsouli \hfil EJDE-2012/163\hfilneg] {Mohammed Massar, El Miloud Hssini, Najib Tsouli} \address{Mohammed Massar \newline University Mohamed I, Faculty of Sciences, Department of Mathematics, Oujda, Morocco} \email{massarmed@hotmail.com} \address{El Miloud Hssini \newline University Mohamed I, Faculty of Sciences, Department of Mathematics, Oujda, Morocco} \email{hssini1975@yahoo.fr} \address{Najib Tsouli \newline University Mohamed I, Faculty of Sciences, Department of Mathematics, Oujda, Morocco} \email{tsouli@hotmail.com} \thanks{Submitted June 4, 2012. Published September 21, 2012.} \subjclass[2000]{35J40, 35J60} \keywords{Navier value problem; infinitely many solutions; \hfill\break\indent Ricceri's variational principle} \begin{abstract} This article shows the existence and multiplicity of weak solutions for the $(p,q)$-biharmonic type system \begin{gather*} \Delta(|\Delta u|^{p-2}\Delta u)=\lambda F_u(x,u,v)\quad\text{in }\Omega,\\ \Delta(|\Delta v|^{q-2}\Delta v)=\lambda F_v(x,u,v)\quad\text{in }\Omega,\\ u=v=\Delta u=\Delta v=0\quad \text{on }\partial\Omega. \end{gather*} Under certain conditions on $F$, we show the existence of infinitely many weak solutions. Our technical approach is based on Bonanno and Molica Bisci's general critical point theorem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In this paper we are concerned with the existence and multiplicity of weak solutions for the $(p,q)$-biharmonic type system \begin{equation} \label{E11} \begin{gathered} \Delta(|\Delta u|^{p-2}\Delta u)=\lambda F_u(x,u,v) \quad \text{in }\Omega, \\ \Delta(|\Delta v|^{q-2}\Delta v)=\lambda F_v(x,u,v) \quad \text{in }\Omega, \\ u=v=\Delta u=\Delta v=0 \quad \text{on }\partial\Omega, \end{gathered} \end{equation} where $\Omega$ is an open bounded subset of $\mathbb{R}^{N}$ $(N\geq1)$, with smooth boundary, $\lambda\in(0,\infty)$, $p>\max\{1,\frac{N}2\}$, $q>\max\{1,\frac{N}2\}$. $F: \overline{\Omega}\times \mathbb{R}^2\to\mathbb{R}$ is a function such that $F(.,s,t)$ is continuous in $\overline{\Omega }$, for all $(s,t)\in \mathbb{R}^2$ and $F(x,.,.)$ is $C^1$ in $\mathbb{R}^2$ for every $x\in\Omega$, and $F_u,F_v$ denote the partial derivatives of $F$, with respect to $u,v$ respectively. The investigation of existence and multiplicity of solutions for problems involving biharmonic and p-biharmonic operators has drawn the attention of many authors, see \cite{CL,LT,SZ,WS} and references therein. Candito and Livrea \cite{CL} considered the nonlinear elliptic Navier boundary-value problem \begin{equation} \label{E12} \begin{gathered} \Delta(|\Delta u|^{p-2}\Delta u)=\lambda f(x,u) \quad \text{i n}\Omega, \\ u=\Delta u=0\quad\text{on }\partial\Omega. \end{gathered} \end{equation} There the authors established the existence of infinitely many solutions. In the present paper, we look for the existence of infinitely many solutions of system \eqref{E11}. More precisely, we will prove the existence of well precise intervals of parameters such that problem \eqref{E11} admits either an unbounded sequence of solutions provided that $F(x,u,v)$ has a suitable behaviour at infinity or a sequence of nontrivial solutions converging to zero if a similar behaviour occurs at zero. Our main tool is a general critical points theorem due to Bonanno and Molica Bisci \cite{BM} that is a generalization of a previous result of Ricceri \cite{R}. In the sequel, $X$ will denote the space $\big(W^{2,p}(\Omega)\cap W_0^{1,p}(\Omega)\big)\times\big(W^{2,q}(\Omega)\cap W_0^{1,q}(\Omega)\big)$, which is a reflexive Banach space endowed with the norm $$ \|(u,v)\|=\|u\|_p+\|v\|_q, $$ where $$ \|u\|_p=\Big(\int_\Omega|\Delta u|^pdx\Big)^{1/p}\quad\text{and} \quad \|v\|_q=\Big(\int_\Omega|\Delta v|^qdx\Big)^{1/q}. $$ Let \begin{equation}\label{E13} K:=\max\Big\{\underset{u\in W^{2,p}(\Omega)\cap W_0^{1,p}(\Omega)\setminus\{0\}} \sup\frac{\underset{x\in\Omega}\max|u(x)|^p}{\|u\|_p^p}, \underset{v\in W^{2,q}(\Omega)\cap W_0^{1,q}(\Omega)\setminus\{0\}}\sup \frac{\underset{x\in\Omega}\max|v(x)|^q}{\|v\|_q^q}\Big\}. \end{equation} Since $p>\max\{1,\frac{N}2\}$ and $q>\max\{1,\frac{N}2\}$, the Rellich Kondrachov theorem assures that $W^{2,p}(\Omega)\cap W_0^{1,p}(\Omega)\hookrightarrow C(\overline{\Omega})$ and $W^{2,q}(\Omega)\cap W_0^{1,q}(\Omega)\hookrightarrow C(\overline{\Omega})$ are compact, and hence $K<\infty$. \begin{definition} \label{def1.1} \rm We say that $(u,v)\in X$ is a weak solution of problem \eqref{E11} if \begin{align*} &\int_\Omega|\Delta u|^{p-2}\Delta u\Delta\varphi\, dx +\int_\Omega|\Delta v|^{q-2}\Delta v \Delta\psi\, dx\\ &-\lambda\int_\Omega F_u(x,u,v)\varphi\, dx -\lambda\int_\Omega F_v(x,u,v)\psi \,dx=0, \end{align*} for all $(\varphi,\psi)\in X$. \end{definition} Define the functional $I_\lambda: X\to\mathbb{R}$, given by $$ I_\lambda(u,v)=\Phi(u,v)-\lambda\Psi(u,v), $$ for all $(u,v)\in X$, where $$ \Phi(u,v)=\frac1p\|u\|_p^p+\frac1q\|v\|_q^q\quad\text{and}\quad \Psi(u,v)=\int_\Omega F(x,u,v)dx. $$ Since $X$ is compactly embedded in $C^0(\overline{\Omega})\times C^0(\overline{\Omega})$, it is well known that $\Phi$ and $\Psi$ are well defined G\^{a}teaux differentiable functionals whose G\^{a}teaux derivatives at $(u,v)\in X$ are given by \begin{gather*} \langle\Phi'(u,v),(\varphi,\psi)\rangle=\int_\Omega|\Delta u|^{p-2}\Delta u \Delta\varphi dx+\int_\Omega|\Delta v|^{q-2}\Delta v \Delta\psi dx, \\ \langle\Psi'(u,v),(\varphi,\psi)\rangle=\int_\Omega F_u(x,u,v)\varphi dx +\int_\Omega F_v(x,u,v)\psi dx, \end{gather*} for all $(\varphi,\psi)\in X$. Moreover, by the weakly lower semicontinuity of norm, we see that $\Phi$ is sequentially weakly lower semi continuous. Since $\Psi$ has compact derivative, it follows that $\Psi$ is sequentially weakly continuous. In view of \eqref{E13}, for every $(u,v)\in X$, we have $$ \sup_{x\in\Omega}|u(x)|^p\leq K\|u\|_p^p\quad\text{and}\quad \sup_{x\in\Omega}|v(x)|^q\leq K\|v\|_q^q, $$ thus \begin{equation}\label{E14} \sup_{x\in\Omega}\Big(\frac1p|u(x)|^p+\frac1q|v(x)|^q\Big)\leq K\Big(\frac1p\|u\|_p^p+\frac1q\|v\|_q^q\Big). \end{equation} Hence, for every $r>0$ \begin{equation} \label{E15} \begin{split} \Phi^{-1}(]-\infty,r[):&= \big\{(u,v)\in X: \Phi(u,v)\inf_X\Phi$, let us put $$ \varphi(r):=\inf_{u\in\Phi^{-1}(]-\infty,r[)}\frac {\big(\sup_{v\in\Phi^{-1}(]-\infty,r[)}\Psi(v)\big)-\Psi(u)}{r-\Phi(u)} $$ and $$ \gamma:=\liminf_{r\to+\infty}\varphi(r),\quad \delta:=\liminf_{r\to(\inf_X\Phi)^+}\varphi(r). $$ Then, one has (a) for every $r>\inf_X\Phi$ and every $\lambda\in]0,\frac1{\varphi(r)}[$, the restriction of the functional $I_\lambda=\Phi-\lambda\Psi$ to $\Phi^{-1}(]-\infty,r[)$ admits a global minimum, which is a critical point (local minimum) of $I_\lambda$ in $X$. (b) If $\gamma<+\infty$ then, for each $\lambda\in]0,\frac1\gamma[$, the following alternative holds: either \begin{itemize} \item[(b1)] $I_\lambda$ possesses a global minimum,or \item[(b2)] there is a sequence $(u_n)$ of critical points (local minima) of $I_\lambda$ such that $\lim_{n\to+\infty}\Phi(u_n)=+\infty$. \end{itemize} (c) If $\delta<+\infty$ then, for each $\lambda\in]0,\frac1\delta[$, the following alternative holds: either \begin{itemize} \item[(c1)] there is a global minimum of $\Phi$ which is a local minimum of $I_\lambda$,or \item[(c2)] there is a sequence of pairwise distinct critical points (local minima) of $I_\lambda$ which weakly converges to global minimum of $\Phi$. \end{itemize} \end{theorem} \section{Main results} Fix $x^0\in\Omega$ and pick $R_2>R_1>0$ such that $B(x^0,R_2)\subseteq\Omega$. Set \begin{equation}\label{E21} \begin{gathered} L_p:=\frac{\Gamma(1+N/2)} {\left((Kp)^{1/p}+(Kq)^{1/q}\right)^{\min(p,q)} \pi^{N/2}} \Big(\frac{R_2^2-R_1^2}{2N}\Big)^p\frac1{R_2^N-R_1^N},\\ L_q:=\frac{\Gamma(1+N/2)}{\left((Kp)^{1/p}+(Kq)^{1/q}\right)^{\min(p,q)}\pi^{N/2}} \Big(\frac{R_2^2-R_1^2}{2N} \Big)^q\frac1{R_2^N-R_1^N} \end{gathered} \end{equation} where $\Gamma$ denotes the Gamma function and $K$ is given by \eqref{E13}. Now we are ready to state our main results. \begin{theorem}\label{theo21} Assume that \begin{itemize} \item[(i1)] $F(x,s,t)\geq0$ for every $(x,s,t)\in\Omega\times[0,+\infty)^2;$ \item[(i2)] There exist $x^0\in\Omega$, $00$, \begin{equation} \label{E31} \begin{split} \varphi(r)&= \inf_{(u,v)\in\Phi^{-1}(]-\infty,r[)}\frac {\left(\sup_{(w,z)\in\Phi^{-1}(]-\infty,r[)}\Psi(w,z)\right) -\Psi(u,v)}{r-\Phi(u,v)} \\ &\leq \frac {\sup_{\Phi^{-1}(]-\infty,r[)}\Psi}r \\ &= \frac{\sup_{\Phi(u,v)1)$, \begin{align*} |u(x)|+|v(x)|&\leq (Kpr_n)^{1/p}+(Kqr_n)^{1/q}\\ &\leq \left((Kp)^{1/p}+(Kq)^{1/q}\right)r_n^{\frac1{\min(p,q)}} = \sigma_n. \end{align*} Therefore, \begin{equation}\label{E33} \begin{split} \varphi(r_n)&\leq \frac{\sup_{\{(u,v)\in X: |u(x)|+|v(x)|<\sigma_n,\,\forall \,x\in \Omega\}}\int_\Omega F(x,u,v)dx}{\big(\frac{\sigma_n} {(Kp)^{1/p}+(Kq)^{1/q}}\big)^{\min(p,q)}} \\ &\leq \left((Kp)^{1/p}+(Kq)^{1/q}\right)^{\min(p,q)} \frac{\int_\Omega\sup_{|s|+|t|<\sigma_n} F(x,s,t)dx}{\sigma_n^{\min(p,q)}}. \end{split} \end{equation} Let $$ \gamma:=\liminf_{r\to+\infty}\varphi(r). $$ It follows from \eqref{E32} and \eqref{E33} that \begin{equation} \label{E34} \begin{split} \gamma &\leq \liminf_{n\to+\infty}\varphi(r_n) \\ &\leq \left((Kp)^{1/p}+(Kq)^{1/q}\right)^{\min(p,q)}\lim_{n\to+\infty} \frac{\int_\Omega \sup_{|s|+|t|<\sigma_n}F(x,s,t)}{\sigma_n^{\min(p,q)}} \\ &= \alpha \left((Kp)^{1/p}+(Kq)^{1/q}\right)^{\min(p,q)}<+\infty. \end{split} \end{equation} From \eqref{E34}, it is clear that $\Lambda\subseteq ]0,\frac1\gamma[$. For $\lambda\in\Lambda$, we claim that the functional $I_\lambda$ is unbounded from below. Indeed, since $\frac1\lambda<\left((Kp)^{1/p}+(Kq)^{1/q}\right)^{\min(p,q)}L\beta$, we can consider a sequence $(\tau_n)$ of positive numbers and $\eta>0$ such that $\tau_n\to+\infty$ and \begin{equation}\label{E35} \frac1\lambda<\eta0$ such that $\tau_n\to0^+$ and \begin{equation}\label{E313} \frac1\lambda<\eta