\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 164, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/164\hfil Infinitely many solutions] {Infinitely many solutions for a fourth-order boundary-value problem} \author[S. M. Khalkhali, S. Heidarkhani, A. Razani \hfil EJDE-2012/164\hfilneg] {Seyyed Mohsen Khalkhali, Shapour Heidarkhani, Abdolrahman Razani} \address{Seyyed Mohsen Khalkhali \newline Department of Mathematics, Science and Research branch, Islamic Azad University, Tehran, Iran} \email{sm.khalkhali@srbiau.ac.ir} \address{Shapour Heidarkhani \newline Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran} \email{s.heidarkhani@razi.ac.ir} \address{Abdolrahman Razani \newline Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran \newline School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran} \email{razani@ikiu.ac.ir} \thanks{Submitted June 28, 2012 Published September 22, 2012.} \thanks{A. Razani was supported by grant 91470122 from IPM} \subjclass[2000]{34B15} \keywords{Fourth-order equation; infinitely many solutions; critical point theory; \hfill\break\indent variational methods} \begin{abstract} In this article we consider the existence of infinitely many solutions to the fourth-order boundary-value problem \begin{gather*} u^{iv}+\alpha u''+\beta(x) u=\lambda f(x,u)+h(u),\quad x\in]0,1[\\ u(0)=u(1)=0,\\ u''(0)=u''(1)=0\,. \end{gather*} Our approach is based on variational methods and critical point theory. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} The deformations of an elastic beam in equilibrium, whose two ends are simply supported, can be described by the nonlinear fourth-order boundary-value problem \ \begin{gather*} u^{iv}=g(x,u,u',u''),\quad x\in]0,1[\\ u(0)=u(1)=0,\\ u''(0)=u''(1)=0, \end{gather*} where $g:[0,1]\times\mathbb{R}\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ is continuous \cite{G1,G2}. The importance of existence and multiplicity of solutions of this problem for physicists puts it and its variants at the center of attention of many works in mathematics. The fourth-order boundary-value problem \begin{gather*} u^{iv}+\alpha u''+\beta u=\lambda f(x,u),\quad x\in]0,1[\\ u(0)=u(1)=0,\\ u''(0)=u''(1)=0 \end{gather*} where $\alpha, \beta$ are some real constants, is the subject of many recent researches by different approaches (See \cite{LL1, LL2, TC, BD1, BD3, GST}). In \cite{LL1, TC} the authors by means of a version of Mountain-Pass Theorem of Rabinowitz \cite[Theorem 9.12]{Ra} obtain their results and in \cite{LL2} by decomposition of operators shown by Chen, and in \cite{BD3} by means of a Variational theorems of Ricceri and Bonanno, and in \cite{GST} by means of Morse Theory. In this work, by employing Ricceri's Variational Principle \cite[Theorem 2.5]{R1} and applying the similar methods used in \cite{BD3}, albeit with different calculations that it seems practically has significant difference with respect to \cite{BD3}, we ensure the existence of infinitely many solutions for \begin{equation} \begin{gathered} %\tag{$B_\lambda$} \label{p} u^{iv}+\alpha u''+\beta(x) u=\lambda f(x,u)+h(u),\quad x\in]0,1[\\ u(0)=u(1)=0,\\ u''(0)=u''(1)=0, \end{gathered} \end{equation} where $\alpha$ is a real constant, $\beta(x)$ is a continuous function on $[0,1]$ and $\lambda$ is a positive parameter, $f:[0,1]\times\mathbb{R}\to \mathbb{R}$ is an $L^2$-Carath\'eodory function and $h:\mathbb{R}\to \mathbb{R}$ be a Lipschitz continuous function with the Lipschitz constant $L\geqslant 0$; i.e., \begin{equation}\label{eq.8} |h(t_1)-h(t_2)|\leqslant L|t_1-t_2| \end{equation} for all $t_1, t_2\in\mathbb{R}$, satisfying $h(0)=0$. To be precise, using Ricceri's Variational Principle \cite{R1} (see Theorem \ref{t.1}), under some appropriate hypotheses on the behavior of the potential of $f$, under some conditions on the potentials of $h$, at infinity, we establish the existence of a precise interval of parameters $\Lambda$ such that, for each $\lambda\in\Lambda$, the problem \eqref{p} admits a sequence of weak solutions which are unbounded in the Sobolev space $W^{2,2}([0,1])\cap W_0^{1,2}([0,1])$; see Theorem \ref{t.2}. Further, replacing the conditions at infinity of the potentials of $f$ and $h$, by a similar one at zero, the same results hold and, in addition, the sequence of weak solutions uniformly converges to zero; see Theorem \ref{t.3}. Existence of infinitely many solutions for boundary value problems using Ricceri's Variational Principle \cite{R1} and its variants has been widely investigated (see \cite{BM2,MM}). We refer the reader to the papers \cite{D,FJ,GHK,HH,K,R2,BD3}, and \cite{BM3}-\cite{C}. We refer the reader also to\cite{AHO,B,BD1,BD2,Ch,L,SR} and their references, in which fourth-order boundary value problems have been studied. Recall that a function $f:[0,1]\times\mathbb{R}\to \mathbb{R}$ is said to be an \emph{$L^2$-Carath\'eodory function}, if \begin{itemize} \item[(C1)] the function $x\to f(x,t)$ is measurable for every $t\in\mathbb{R}$; \item[(C2)] the function $t\to f(x,t)$ is continuous for almost every $x\in [0,1]$; \item[(C3)] for every $\rho>0$ there exists a function $\ell_\rho\in L^2([0,1])$ such that \[ \sup_{|t|\leqslant\rho}|f(x,t)|\leqslant\ell_\rho(x)\quad\text{for a.e.}\ x\in[0,1]. \] \end{itemize} A special case of our main result is the following theorem. \begin{theorem}\label{1.1} Let $f:[0,1]\times\mathbb{R}\to \mathbb{R}$ be a non-negative continuous function and denote by $F(x,\xi)$ its antiderivative with respect to its second argument at any $x\in [0,1]$ such that $F(x,0)=0$. Assume that $\ell_\xi\in L^2([0,1])$ satisfies condition {\rm (C3)} for every $\xi>0$. Suppose $\pi^4>|\alpha|\pi^2+\|\beta\|_\infty+L$ and $$ \liminf_{\xi\to +\infty}\frac{\|\ell_\xi\|_2}{\xi}=0\quad \text{and}\quad \limsup_{\xi\to +\infty}\frac{\int_{a}^{b}F(x,\xi)dx}{\xi^{2}}=+\infty $$ for some $[a,b]\subset ]0,1[$ then, the problem \begin{gather*} u^{iv}+\alpha u''+\beta(x) u=f(x,u)+h(u),\quad x\in]0,1[\\ u(0)=u(1)=0,\\ u''(0)=u''(1)=0 \end{gather*} admits a sequence of pairwise distinct classical solutions. \end{theorem} Our main tool to investigate the existence of infinitely many solutions for the problem \eqref{p} is a smooth version of \cite[Theorem 2.1]{BM2} which is a more precise version of Ricceri's Variational Principle \cite[Theorem 2.5]{R1}, which we now recall. \begin{theorem}\label{t.1} Let $X$ be a reflexive real Banach space and $\Phi ,\Psi :X\to \mathbb{R}$ be two G\^ateaux differentiable functionals such that $\Phi $ is sequentially weakly lower semicontinuous, strongly continuous, and coercive and $\Psi$ is sequentially weakly upper semicontinuous. For every $r>\inf_X\Phi$ put \[ \varphi (r):=\inf_{u\in\Phi^{-1}(]-\infty,r[)} \frac{\sup_{v\in\Phi^{-1}(]-\infty,r])}\Psi(v) -\Psi(u)}{r-\Phi(u)}\] and \[ \gamma:=\liminf_{r\to +\infty}\varphi (r),\quad \delta:=\liminf_{r\to (\inf_X\Phi)^+}\varphi(r). \] Then \begin{itemize} \item[(a)] for every $r>\inf_X\Phi$ and every $\lambda\in ]0, \frac{1}{\varphi(r)}[$ the restriction of the functional $I_\lambda=\Phi-\lambda\Psi$ to $\Phi^{-1}(]-\infty,r[)$ admits a global minimum, which is a critical point (local minimum) of $I_\lambda$ in $X$; \item[(b)] if $\gamma<+\infty$ then for every $\lambda\in]0,\frac{1}{\gamma}[$ either $I_\lambda$ has a global minimum or there is a sequence $\{u_n\}$ of critical points (local minimum) of $I_\lambda$ such that \[ \lim_{n\to +\infty}\Phi(u_n)=+\infty; \] \item[(c)] if $\delta<+\infty$ then for every $\lambda\in]0,\frac{1}{\delta}[$ either there is a global minimum of $\Phi$ which is a local minimum of $I_\lambda$ or there is a sequence of pairwise distinct critical points (local minimum) of $I_\lambda$ which weakly converges to a global minimum of $\Phi$. \end{itemize} \end{theorem} \section{Preliminaries and basic lemmas} Hereafter, let $X=W^{2,2}([0,1])\cap W_0^{1,2}([0,1])$ with its usual norm inherited from $W^{2,2}([0,1])$ and $\|\cdot\|_2$ denotes the usual norm of $L^2([0,1])$; i.e., \[ \|u\|_2=\Big(\int_0^1|u(x)|^2dx\Big)^{1/2}. \] Since $\beta(x)$ in \eqref{p}, by assumption, is continuous on $[0,1]$, there exist $\beta_1,\beta_2\in\mathbb{R}$ such that \[ \beta_1\leqslant\beta(x)\leqslant\beta_2 \] for every $x\in [0,1]$. Therefore, \begin{align*} \int_0^1|u''(x)|^2-\alpha|u'(x)|^2+\beta_1|u(x)|^2dx &\leqslant\int_0^1|u''(x)|^2-\alpha|u'(x)|^2+\beta(x)|u(x)|^2dx\\ &\leqslant\int_0^1|u''(x)|^2-\alpha|u'(x)|^2+\beta_2|u(x)|^2dx. \end{align*} We need the following Poincar\'e type inequality. \begin{lemma}[{\cite[Lemma 2.3]{PTV}}] \label{l.4} For every $u\in X$ \begin{equation}\label{eq.12} \|u\|_2\leqslant\frac{1}{\pi^2}\|u''\|_2. \end{equation} \end{lemma} From which we have as a consequence \begin{equation}\label{eq.13} \|u'\|_2\leqslant\frac{1}{\pi}\|u''\|_2. \end{equation} Now put \begin{itemize} \item $\sigma_1:=1-\frac{\alpha}{\pi^2}+\frac{\beta_1}{\pi^4}$, $\sigma_2:=1$ when $\beta_2\leqslant 0$ and $\alpha\geqslant 0$; \item $\sigma_1:=1+\frac{\beta_1}{\pi^4}$, $\sigma_2:=1-\frac{\alpha}{\pi^2}$ when $\beta_2\leqslant 0$ and $\alpha< 0$; \item $\sigma_1:=1-\frac{\alpha}{\pi^2}$ and $\sigma_2:=1+\frac{\beta_2}{\pi^4}$ when $\beta_1\geqslant 0$ and $\alpha\geqslant 0$; \item $\sigma_1:=1$ and $\sigma_2:=1-\frac{\alpha}{\pi^2}+\frac{\beta_2}{\pi^4}$ when $\beta_1\geqslant 0$ and $\alpha< 0$; \item $\sigma_1:=1-\frac{\alpha}{\pi^2}+\frac{\beta_1}{\pi^4}$ and $\sigma_2:=1+\frac{\beta_2}{\pi^4}$ when $\beta_1<0<\beta_2$ and $\alpha\geqslant 0$; \item $\sigma_1:=1+\frac{\beta_1}{\pi^4}$ and $\sigma_2:=1-\frac{\alpha}{\pi^2}+\frac{\beta_2}{\pi^4}$ when $\beta_1<0<\beta_2$ and $\alpha< 0$. \end{itemize} In each of these cases, if $\sigma_1>0$ and \begin{equation}\label{eq.19} \theta_i:=\sqrt{\sigma_i}\quad (i=1,2) \end{equation} then by \eqref{eq.12} and \eqref{eq.13} \begin{equation}\label{eq.14} \theta_1\|u''\|_2\leqslant\|u\|\leqslant\theta_2\|u''\|_2 \end{equation} where \[ \|u\|=\Big(\int_0^1\big(|u''(x)|^2-\alpha|u'(x)|^2+\beta(x)|u(x)|^2\big)dx\Big)^{1/2} \] and so, $\|\cdot\|$ defines a norm on $X$ equivalent to usual norm of $X$ inherited from $W^{2,2}([0,1])$. In the remainder, we suppose $\theta_1$ defined by \eqref{eq.19} satisfies $\theta_1>0$ and therefore \eqref{eq.14} holds. The following result is useful for proving our main result. \begin{proposition}\label{l.1} For every $u\in X$. \[ \|u\|_\infty\leqslant\frac{1}{2\pi\theta_1}\|u\| \] \end{proposition} \begin{proof} Similar to the proof of \cite[Proposition 2.1]{BD1}, considering \eqref{eq.13} and \eqref{eq.14} and using well-known inequality $\|u\|_\infty\leqslant\frac{1}{2}\|u'\|_2$ yields the conclusion. \end{proof} A function $u:[0,1]\to\mathbb{R}$ is said a \emph{generalized solution to the problem} \eqref{p}, if $u\in C^3([0,1])$, $u'''\in AC([0,1])$, $u(0)=u(1)=0,\ u''(0)=u''(1)=0$ and $u^{iv}+\alpha u''+\beta u=\lambda f(x,u)+h(u)$. If $f$ is continuous in $[0,1]\times \mathbb{R}$, then each generalized solution of the problem \eqref{p} is a classical one. Standard methods (see \cite[Proposition 2.2]{BD1}) show that a weak solution to \eqref{p} is a generalized one when $f$ is an $L^2$-Carath\'eodory function. We define \begin{equation}\label{eq.10} F(x,\xi)=\int_0^{\xi}f(x,t)dt\quad\text{and}\quad H(\xi)=\int_0^{\xi}h(x)dx \end{equation} for every $x\in [0,1]$ and $\xi\in\mathbb{R}$. \begin{lemma}\label{l.2} Suppose $h:\mathbb{R}\to\mathbb{R}$ satisfies \eqref{eq.8} and $H(\xi)$ defined by \eqref{eq.10} for every $\xi\in\mathbb{R}$. Then the functional $\Theta:X\to\mathbb{R}$ defined by \begin{equation}\label{eq.11} \Theta(u):=\int_0^1H(u(x))dx \end{equation} is a G\^{a}teaux differentiable sequentially weakly continuous functional on $X$ with compact derivative \[\Theta'(u)[v]=\int_0^1h(u(x))v(x)dx\] for every $v\in X$. \end{lemma} \begin{proof} If $u_n\rightharpoonup u$ in $X$ then compactness of embedding $X\hookrightarrow C([0,1])$ implies $u_n\to u$ in $C([0,1])$ i.e. $u_n\to u$ uniformly on $[0,1]$ (see Proposition 2.2.4 of \cite{Dr}). Hence, for some constant $M>0$ and any $n\in\mathbb{N}$ we have $\|u_n\|_\infty\leqslant M$, and so \begin{equation*} |H(u_n(x))-H(u(x))|dx\leqslant L\Big|\int_{u(x)}^{u_n(x)}|t|dt\Big| \leqslant\frac{L}{2}(|u_n(x)|^2+|u(x)|^2) \leqslant\frac{L}{2}(M^2+\|u\|_\infty^2) \end{equation*} for every $n\in\mathbb{N}$ and $x\in [0,1]$. Furthermore, $H(u_n(x))\to H(u(x))$ at any $x\in [0,1]$ and therefore, the Lebesgue Convergence Theorem yields \[ \Theta(u_n)=\int_0^1H(u_n(x))dx\to\int_0^1H(u(x))dx=\Theta(u). \] For proving G\^{a}teaux differentiability of $\Theta$ suppose $u,v\in X$ and $t\neq 0$ then \begin{align*} &\Big|\frac{\Theta(u+tv)-\Theta(u)}{t}-\int_0^1h(u(x))v(x)dx\Big|\\ &\leqslant \int_0^1\Big|\frac{H(u+tv)-H(u)}{t}-h(u(x))v(x)\Big|dx\\ &=\int_0^1|h\big(u(x)+t\zeta(x)v(x)\big)-h(u(x))||v(x)|dx\\ &\leqslant L\|v\|_\infty^2|t| \end{align*} in which $0<\zeta(x)<1$ for every $x\in [0,1]$. Therefore, $\Theta:X\to\mathbb{R}$ is a G\^{a}teaux differentiable at every $u\in X$ with derivative \[ \Theta'(u)[v]=\int_0^1h(u(x))v(x)dx \] for every $v\in X$. Also, since \begin{equation*} \big(\Theta'(u)-\Theta'(v)\big)[w]\leqslant L\int_0^1|u(x)-v(x)||w(x)|dx\leqslant \frac{L}{2\pi\theta_1}\|u-v\|_\infty\|w\| \end{equation*} for every three elements $u, v \text{ and }w$ of $X$, then \[ \|\Theta'(u)-\Theta'(v)\|_{X^*}\leqslant\frac{L}{2\pi\theta_1}\|u-v\|_\infty \] which implies compactness of $\Theta':X\to X^*$. \end{proof} \begin{lemma}\label{l.3} Let $f:[0,1]\times\mathbb{R}\to\mathbb{R}$ be an $L^2$-Carath\'eodory function and $F(x,\xi)$ defined by \eqref{eq.10}. Then $\Psi:X\to\mathbb{R}$ defined by \begin{equation*} \Psi(u):=\int_0^1F\big(x,u(x)\big)dx \end{equation*} is a G\^{a}teaux differentiable sequentially weakly continuous functional on $X$. \end{lemma} \begin{proof} If $u_n\rightharpoonup u$ in $X$, in Lemma \ref{l.2} was proved that $u_n\to u$ uniformly on $[0,1]$ and there exists $M>0$ such that $\|u_n\|_\infty\leqslant M$ for any $n\in\mathbb{N}$. Since $F(x,\xi)$ is differentiable with respect to $\xi$ for a.e. $x\in [0,1]$ so $F\big(x,u_n(x)\big)\to F\big(x,u_n(x)\big)$ a.e. on $[0,1]$. Moreover, by the assumption (C3) on $f(x,t)$ \[F\big(x,u_n(x)\big)\leqslant M\ell_M(x)\] and by the Lebesgue Convergence Theorem \begin{equation*} \Psi(u_n)=\int_0^1F\big(x,u_n(x)\big)dx\to \int_0^1F\big(x,u(x)\big)dx=\Psi(u). \end{equation*} Therefore $\Psi$ is a sequentially weakly continuous functional on $X$. For proving the G\^{a}teaux differentiability of $\Psi$, let $u,v\in X$ with $\|u\|<2\pi\theta_1 M$ and $\|v\|<2\pi\theta_1 M$ for some $M>0$. Then for $t\neq 0$ by the Mean Value Theorem \begin{align*} &\Big|\frac{\Psi(u+tv)-\Psi(u)}{t}-\int_0^1 f(x,u(x))v(x)dx\Big|\\ &\leqslant\int_0^1 \big|f(x,u(x)+t\zeta(x)v(x))-f(x,u(x))\big||v(x)|dx\\ &\leqslant \|v\|_\infty \int_0^1 \big|f(x,u(x)+t\zeta(x)v(x))-f(x,u(x))\big|dx \end{align*} where $0<\zeta(x)<1$ for every $x\in [0,1]$ for which $F(x,\xi)$ is differentiable with respect to $\xi$. Since the assumption \textbf{C}$_2$ on $f(x,t)$ implies \[ \lim_{t\to 0} f(x,u(x)+t\zeta(x)v(x))=f(x,u(x))\quad\text{for a.e. }x\in[0,1] \] and by Proposition \ref{l.1} we have $\|v\|_\infty \leqslant M$ and $\|u\|_\infty \leqslant M$, then by the assumption (C3) on $f(x,t)$ we have \[ |f(x,u(x)+t\zeta(x)v(x))-f(x,u(x))|\leqslant\ell_{2M}(x)+\ell_M(x) \] for any $|t|<1$. Therefore the Lebesgue Convergence Theorem implies \[ \lim_{t\to 0}\frac{\Psi(u+tv)-\Psi(u)}{t}=\int_0^1 f(x,u(x))v(x)dx. \] Since for every $v\in X$, some constant $M>0$ can be found so that both of inequalities $\|u\|<2\pi\theta_1 M$ and $\|v\|<2\pi\theta_1 M$ hold, thus $\Psi$ is G\^{a}teaux differentiable at every $u\in X$. \end{proof} \section{Main Results} Our approach closely depends on the test function $v_0\in X$ defined by \begin{equation*} v_0(x)= \begin{cases} \frac{2ax-x^2}{a^2} &\text{if } x\in [0,a[,\\ 1 &\text{if } x\in [a,b],\\ \frac{2bx-x^2-2b+1}{(1-b)^2} &\text{if } x\in ]b,1]. \end{cases} \end{equation*} Let \begin{equation*} K(a,b):=\frac{4\pi^2\theta_1^2}{\|v_0\|^2} \end{equation*} for every $00$. Furthermore, suppose that there exist an interval $[a,b]\subset [\epsilon,1-\epsilon]$ for some $0<\epsilon<\frac{1}{2}$ for which $k(\epsilon)$ defined by \eqref{eq.20} and two positive constants $T$ and $p$ and a function $q\in L^2([0,1])$ such that \begin{itemize} \item[(i)] $f(x,t)\geqslant q(x)-p|t|$ for every $(x,t)\in \big([0,a]\cup [b,1]\big)\times\{t\in\mathbb{R}\,|\,t\geqslant T\}$; \item[(ii)] ${\liminf_{\xi\to \infty} \frac{\|\ell_\xi\|_2}{(\pi^4\theta_1^2-L)\xi} <\frac{\pi k(\epsilon)}{2(\pi^4\theta_1^2+L)} \limsup_{\xi\to\infty}\frac{\int_a^bF(x,\xi)\,dx}{\xi^2}}$. \end{itemize} Then, for every \begin{equation*} \lambda\in\Lambda:=\Big]\frac{2(\pi^4\theta_1^2+L)}{\pi^2k(\epsilon)} \frac{1}{{\limsup_{\xi\to\infty} \frac{\int_a^bF(x,\xi)\,dx}{\xi^2}}},\ \limsup_{\xi\to \infty} \frac{(\pi^4\theta_1^2-L)\xi}{\pi\|\ell_\xi\|_2}\Big[ \end{equation*} problem \eqref{p} has an unbounded sequence of generalized solutions in $X$. \end{theorem} \begin{proof} Put \begin{equation*} \Phi(u)=\frac{1}{2}\|u\|^2-\int_0^1H\big(u(x)\big)dx=\frac{1}{2}\|u\|^2-\Theta(u) , \quad \Psi(u)=\int_0^1F\big(x,u(x)\big)dx \end{equation*} for every $u\in X$. Since \eqref{eq.8} holds for every $t_1,t_2\in\mathbb{R}$ and $h(0)=0$, we have $|h(t)|\leqslant L|t|$ for every $t\in\mathbb{R}$, and so using \eqref{eq.12}, \eqref{eq.14} and Lemma \ref{l.2} we obtain \begin{equation} \Phi(u)\geqslant\frac{1}{2}\|u\|^2-\Big|\int_0^1H\big(u(x)\big)dx\Big| \geqslant\frac{1}{2}\|u\|^2-\frac{L}{2}\int_0^1|u(x)|^2dx \geqslant\Big(\frac{1}{2}-\frac{L}{2\pi^4\theta_1^2}\Big)\|u\|^2 \label{eq.4}, \end{equation} and similarly \begin{equation} \Phi (u)\leqslant\frac{1}{2}\|u\|^2+\Big|\int_0^1H\big(u(x)\big)dx\Big|\leqslant \Big(\frac{1}{2}+\frac{L}{2\pi^4\theta_1^2}\Big)\|u\|^2. \label{eq.5} \end{equation} Also, since $\Phi+\Theta$ is a continuous functional on $X$ and $\Theta$, by Lemma \ref{l.2}, is a G\^{a}teaux differentiable weakly continuous and therefore continuous functional on $X$ then $\Phi$ is a continuous functional on $X$ and by a routine argument can be proved that $\Phi$ is a G\^{a}teaux differentiable functional with the differential \begin{equation*} \Phi'(u)[v]=\int_0^1[u''(x)v''(x)-\alpha u'(x)v'(x)+\beta(x) u(x)v(x)]dx -\int_0^1h(u(x))v(x)dx \end{equation*} and it is sequentially weakly lower semicontinuous since $\Theta$ is sequentially weakly continuous, and if $u_n\rightharpoonup u$ in $X$ then \begin{equation*} \liminf_{n\to\infty}\Phi(u_n) =\liminf_{n\to\infty}\frac{1}{2}\|u_n\|^2-\lim_{n\to\infty}\Theta(u_n) \geqslant\frac{1}{2}\|u\|^2-\Theta(u)=\Phi(u). \end{equation*} It is easy to see that the critical points of the functional $I_\lambda=\Phi-\lambda\Psi$ and the weak solutions (and therefore generalized solutions) of the problem \eqref{p} are the same and by Theorem \ref{t.1} we prove our result. Assume that $\{\xi_n\}_{n=1}^\infty$ is a sequence of positive numbers such that $\xi_n\to \infty$ and \[ \lim_{n\to \infty}\frac{\|\ell_{\xi_n}\|_2}{(\pi^4\theta_1^2-L)\xi_n}= \liminf_{\xi\to \infty}\frac{\|\ell_\xi\|_2}{(\pi^4\theta_1^2-L)\xi} \] and let $r_n=\frac{2(\pi^4\theta_1^2-L)}{\pi^2}\xi_n^2$ then by \eqref{eq.4} for any $v\in X$ such that $\Phi(v)0$ and there exists an interval $[a,b]\subset [\epsilon,1-\epsilon]$ for some $0<\epsilon<\frac{1}{2}$ such that assumption (i) in Theorem \ref{t.2} holds. Furthermore, suppose that \begin{itemize} \item[(iii)] ${\liminf_{\xi\to \infty}}\frac{\|\ell_\xi\|_2}{\xi} <\frac{(\pi^4\theta_1^2-L)}{\pi}$; \item[(iv)] ${\limsup_{\xi\to\infty}} \frac{\int_a^bF(x,\xi)\,dx}{\xi^2}>\frac{2(\pi^4\theta_1^2+L)}{\pi^2k(\epsilon)}$, \end{itemize} then the problem \begin{equation} \begin{gathered} u^{iv}+\alpha u''+\beta(x) u=h(u)+ f(x,u),\quad x\in(0,1)\\ u(0)=u(1)=0,\\ u''(0)=u''(1)=0 \end{gathered} \end{equation} has an unbounded sequence of generalized solutions in $X$. \end{corollary} Note that Theorem \ref{1.1} is an immediate consequence of Corollary \ref{c1}. Now we present the following example to illustrate our results. \begin{example}\label{e1} \rm Let $r>0$ be a real number and $\{t_n\},\,\{s_n\}$ be two strictly increasing sequences of reals that recursively defined by \[ t_1=r,\ s_1=2r \] and for $n\geqslant 1$ by \begin{gather*} t_{2n}=(2^{2n+1}-1)t_{2n-1},\quad t_{2n+1}=(2-\frac{1}{2^{2n+1}})t_{2n},\\ s_{2n}=\frac{t_{2n}}{2^n}=(2-\frac{1}{2^{2n}})s_{2n-1},\quad s_{2n+1}=2^{n+1} t_{2n+1}=(2^{2n+2}-1)s_{2n}. \end{gather*} If $f:[0,1]\times\mathbb{R}\to\mathbb{R}$ be the function defined as \[ f(x,t)=\begin{cases} 2g(x)t& (x,t)\in[0,1]\times [0,t_1],\\ g(x)\Big(s_{n-1}+\frac{s_n-s_{n-1}}{t_n-t_{n-1}}(t-t_{n-1})\Big) & (x,t)\in[0,1]\times [t_{n-1},t_n] \\ &\text{for some } n>1 \end{cases} \] where $g:[0,1]\to \mathbb{R}$ is a positive continuous function with $00$ and there exists an interval $[a,b]\subset [\epsilon,1-\epsilon]$ for some $0<\epsilon<\frac{1}{2}$ such that \begin{itemize} \item[(i)] $F(x,t)\geqslant 0$ for every $(x,t)\in [0,a[\,\cup\,]b,1]\times\mathbb{R}$; \item[(ii)] $$ {\liminf_{\xi\to 0^+}\frac{\|\ell_\xi\|_2}{(\pi^4\theta_1^2-L)\xi} <\frac{\pi k(\epsilon)}{2(\pi^4\theta_1^2+L)} \limsup_{\xi\to 0^+}\frac{\int_a^bF(x,\xi)\,dx}{\xi^2}}. $$ \end{itemize} Then, for every \begin{equation*} \lambda\in\Lambda:=\Big]\frac{2(\pi^4\theta_1^2+L)}{\pi^2k(\epsilon)} \frac{1}{{\limsup_{\xi\to 0^+} \frac{\int_a^bF(x,\xi)\,dx}{\xi^2}}},\ \limsup_{\xi\to 0^+}\frac{(\pi^4\theta_1^2-L)\xi}{\pi\|\ell_\xi\|_2}\Big[ \end{equation*} Problem \eqref{p} has a sequence of non-zero generalized solutions in $X$ that converges weakly to $0$. \end{theorem} \begin{proof} Since $\inf_X\Phi=\min_X\Phi=0$ as a consequence of \eqref{eq.4} and the assumption $L<\pi^4\theta_1^2$. Exactly as in the proof of Theorem \ref{t.2} it can be shown that \[ \delta=\liminf_{r\to (\inf_X\Phi)^+}\varphi(r)\leqslant\frac{\pi}{\pi^4\theta_1^2-L} \liminf_{\xi\to 0^+} \frac{\|\ell_\xi\|_2}{\xi}<+\infty \] and therefore \[ \Lambda\subset ]0,\frac{1}{\delta}[. \] If $\lambda\in\Lambda$ then \[ \frac{2(\pi^4\theta_1^2+L)}{\pi^2 k(\epsilon)}<\lambda\limsup_{\xi\to 0^+} \frac{\int_a^bF(x,\xi)dx}{\xi^2} \] and there exist a constant $c$ and a sequence of reals $\{\zeta_n\}$ so that, $\zeta_n\leqslant\frac{1}{n}$ and \[ \lim_{n\to\infty}\frac{\int_a^bF(x,\zeta_n)dx}{\zeta_n^2}= \limsup_{\xi\to 0^+}\frac{\int_a^bF(x,\xi)dx}{\xi^2} \] and in addition \begin{equation} \frac{2(\pi^4\theta_1^2+L)}{\pi^2 k(\epsilon)}