\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 186, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/186\hfil Existence of smooth global solutions] {Existence of smooth global solutions for a 1-D modified Navier-Stokes-Fourier model} \author[J. Sun, J. Fan, G. Nakamura \hfil EJDE-2012/186\hfilneg] {Jianzhu Sun, Jishan Fan, Gen Nakamura} % in alphabetical order \address{Jianzhu Sun \newline Department of Applied Mathematics\\ Nanjing Forestry University, Nanjing 210037, China} \email{jzsun@njfu.com.cn} \address{Jishan Fan \newline Department of Applied Mathematics \\ Nanjing Forestry University, Nanjing 210037, China} \email{fanjishan@njfu.com.cn} \address{Gen Nakamura \newline Department of Mathematics\\ Hokkaido University, Sapporo, 060-0810, Japan} \email{gnaka@math.sci.hokudai.ac.jp} \thanks{Submitted June 18, 2012. Published October 28, 2012.} \subjclass[2000]{35Q30, 76D03, 76D05} \keywords{Mass velocity; volume velocity; Navier-Stokes-Fourier equations} \begin{abstract} We prove the existence of strong global solutions of the 1-D modified compressible Navier-Stokes-Fourier equations proposed by Howard Brenner \cite{2,3}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} We consider the modified Navier-Stokes-Fourier equations proposed by by Brenner \cite{2,3}: \begin{gather} \partial_t\rho+\operatorname{div}(\rho v_m)=0,\label{1.1} \\ \partial_t(\rho v)+\operatorname{div}(\rho v\otimes v_m)+\nabla p=\operatorname{div}\mathbb{S},\label{1.2} \\ \partial_t(\rho(\frac{1}{2}v^2+e)) +\operatorname{div}(\rho(\frac{1}{2}v^2+e)v_m) +\operatorname{div}(pv)+\operatorname{div} q=\operatorname{div}(\mathbb{S}v),\label{1.3} \\ v|_{\partial\Omega}=0,v_m\cdot n|_{\partial\Omega}=\nabla\rho\cdot n|_{\partial\Omega}=0,q\cdot n|_{\partial\Omega}=\nabla\theta\cdot n|_{\partial\Omega}=0,\label{1.4} \\ (\rho,v,\theta)|_{t=0}=(\rho_0,v_0,\theta_0)\quad\text{in }\Omega:=(0,1).\label{1.5} \end{gather} where $\rho$ is the mass density, $v$ is the fluid-based (Lagrangian) volume velocity, $v_m$ is the mass-based (Eulerian) mass velocity, $p=R\rho\theta$ is the pressure with positive constant $R>0$, $e=C_V\theta$ the specific internal energy, $\theta$ the temperature, $\mathbb{S}$ the viscous stress tensor, we will adopt the Newton's rheological law: \begin{equation} \mathbb{S}:=\mu\Big(\nabla v+\nabla v^T-\frac{2}{3}\operatorname{div} v\mathbb{I}\Big)+\eta\operatorname{div} v \mathbb{I},\label{1.6} \end{equation} where $\mu\geq0$ and $\eta\geq0$ stand for the shear and bulk viscosity coefficients, respectively. The relationship between $v_m$ and $v$ is a cornerstone of Brenner's approach. After a careful study \cite{2,3}, Brenner proposes a universal constitutive equation in the form: \begin{equation} v-v_m=K\nabla\log\rho, \label{1.7} \end{equation} with $K\geq0$ a purely phenomenological coefficient. Moreover, we suppose the heat flux obeys Fourier's law, specifically, \begin{equation} q=-k\nabla\theta,\label{1.8} \end{equation} where $k$ is the heat conductivity coefficient. We will assume $K=1$, $C_v=1$, $R=1$, $\mu>0$, $\eta=0$, and \begin{equation} k(\theta):=k_0(1+4\theta^3),\label{1.9} \end{equation} with a positive constant $k_0=1$. \eqref{1.9} is physically relevant as radiation heat conductivity at least for large values of $\theta$ (see \cite{4}). Very recently, Feireisl and Vasseur \cite{5} proved the global-in-time existence of weak solutions to the problem \eqref{1.1}-\eqref{1.5}. Under the conditions that $\rho_0,\theta_0,v_0\in L^\infty(\Omega)$ and $\rho_0\geq C>0,\theta_0\geq C>0$ in $\Omega$. Here it should be noted that similar result for the classical Navier-Stokes-Fourier system (\eqref{1.1}-\eqref{1.3} with $v=v_m$) have not yet been proved. In their proof, they obtained the following global-in-time estimates: \begin{gather} \|v\|_{L^2(0,T;H^1(\Omega))}\leq C,\label{1.10}\\ \|\theta^{3/2}\|_{L^2(0,T;H^1(\Omega))}\leq C,\label{1.11}\\ \|\nabla\theta\|_{L^2(0,T;L^2(\Omega))}\leq C,\label{1.12} \end{gather} where $C$ is a positive constant depending on $\int_\Omega\rho_0dx$, $\int_\Omega\rho(\frac{1}{2}v_0^2+C_V\theta_0)dx$, and $\int_\Omega \rho_0s(\rho_0,\theta_0)dx$, the other norms of $\rho_0$ and $v_0,\ \theta_0$. Our aim in this article is to show the existence of a smooth global solution to the problem \eqref{1.1}-\eqref{1.5}. \begin{theorem}\label{th1.1} Let $\rho_0,v_0,\theta_0\in H^1(\Omega)$ with $\inf\rho_0>0,\inf\theta_0>0$ in $\Omega$. Then there exists a unique strong solution $(\rho,v,\theta)$ to the problem \eqref{1.1}-\eqref{1.5} satisfying $$ (\rho,v,\theta)\in L^\infty(0,T;H^1(\Omega))\cap L^2(0,T;H^2(\Omega)),(\partial_t\rho,\partial_tv,\partial_t\theta)\in L^2(0,T;L^2(\Omega)) $$ for any given $T>0$ and \begin{equation} \inf\rho(x,t)>0,\quad \inf\theta(x,t)>0\quad\text{in } \Omega\times(0,T).\label{1.13} \end{equation} \end{theorem} \begin{remark}\label{re1.1} \rm The methods for the one-dimensional classical Navier-Stokes-Fourier equations \cite{9,7} do not work here. Because their clever method for proving $0<\frac{1}{C}\leq\rho\leq C<\infty$ does not work here. \end{remark} The continuity equation \eqref{1.1} can be rewritten as \begin{equation} \partial_t\rho+\operatorname{div}(\rho v)=\Delta\rho.\label{1.14} \end{equation} The energy equation \eqref{1.3} can be rewritten as \begin{equation} \partial_t(\rho\theta)+\operatorname{div}(\rho v_m\theta)+\operatorname{div} q =\mathbb{S}:\nabla v-p\operatorname{div} v.\label{1.15} \end{equation} \section{Proof of Theorem \ref{th1.1}} Since it is easy to prove a local existence result for smooth solution, which is very similar as that in \cite{1}, we omit the details here. We need to prove only the a priori estimates for smooth solutions and omit the proof of the uniqueness which is standard. Since we take $x\in\Omega:=(0,1)$ and $\partial\Omega=\{0,1\}$, it follows that $\operatorname{div}=\nabla=\partial_x$, $\Delta=\partial_x^2$, $\mathbb{S}:=(\frac{4}{3}\mu+\eta)\partial_xv$ and \eqref{1.4} becomes $$ v|_{\partial\Omega}=0, \quad\nabla\rho|_{\partial\Omega} =\frac{\partial\rho}{\partial x}\big|_{\partial\Omega}=0, \quad \nabla\theta|_{\partial\Omega} =\frac{\partial\theta}{\partial x}\big|_{\partial\Omega}=0. $$ First, we note that in 1-D, we have \begin{equation} \|\rho\|_{L^\infty}\leq C\|\rho\|_{H^1},\quad \|\theta\|_{L^\infty}\leq C\|\theta\|_{H^1},\quad \|v\|_{L^\infty}\leq C\|\nabla v\|_{L^2}.\label{2.1} \end{equation} \begin{lemma}\label{le2.1} If $(\rho,v,\theta)$ is a strong solution, then \begin{gather*} \|\rho\|_{L^\infty(0,T;H^1)}+\|\rho\|_{L^2(0,T;H^2)}\leq C(T),\label{2.2}\\ \|\partial_t\rho\|_{L^2(0,T;L^2)}\leq C(T),\label{2.3}\\ \frac{1}{C(T)}\leq\rho.\label{2.4} \end{gather*} \end{lemma} \begin{proof} Testing \eqref{1.14} with $\rho$, using \eqref{1.10} and \eqref{2.1}, we have \begin{align*} \frac{1}{2}\frac{d}{dt}\int\rho^2dx+\int|\nabla\rho|^2dx &=\int\rho v\nabla\rho dx\\ &\leq \|\rho\|_{L^2}\|v\|_{L^\infty}\|\nabla\rho\|_{L^2}\leq C\|\nabla v\|_{L^2}\|\rho\|_{L^2}\|\nabla\rho\|_{L^2}\\ &\leq \frac{1}{2}\|\nabla\rho\|_{L^2}^2+C\|\nabla v\|_{L^2}^2\|\rho\|_{L^2}^2 \end{align*} which gives $$ \|\rho\|_{L^\infty(0,T;L^2)}+\|\rho\|_{L^2(0,T;H^1)}\leq C(T). $$ Similarly, testing \eqref{1.14} with $-\Delta\rho$, using \eqref{1.10} and \eqref{2.1}, we see that \begin{align*} &\frac{1}{2}\frac{d}{dt}\int|\nabla\rho|^2dx+\int|\Delta\rho|^2dx=\int(\rho\operatorname{div} v+v\nabla\rho)\Delta\rho dx\\ &\leq (\|\rho\|_{L^\infty}\|\operatorname{div} v\|_{L^2}+\|v\|_{L^\infty}\|\nabla\rho\|_{L^2})\|\Delta\rho\|_{L^2}\\ &\leq C\|\rho\|_{H^1}\|\nabla v\|_{L^2}\|\Delta\rho\|_{L^2}\\ &\leq \frac{1}{2}\|\Delta\rho\|_{L^2}^2+C\|\nabla v\|_{L^2}^2\|\rho\|_{H^1}^2 \end{align*} which yields \eqref{2.2}. Here we have $\operatorname{div} v=\nabla v=\frac{\partial v}{\partial x}$. Then \eqref{2.3} follows easily from \eqref{1.14} and \eqref{2.2}. To prove \eqref{2.4}, we multiply \eqref{1.14} by $\frac{1}{\rho}$ to obtain \begin{align*} \partial_t\log\rho-\Delta\log\rho &= |\nabla\log\rho|^2-v\cdot\nabla\log\rho-\operatorname{div} v \\ &= \Big(\nabla\log\rho-\frac{1}{2}v\Big)^2-\frac{1}{4}v^2-\operatorname{div} v \\ &\geq -\frac{1}{4}v^2-\operatorname{div} v.\label{2.5} \end{align*} By the classical comparison principle, it is easy to infer that $\log\rho\geq w$, with $w$ a solution to the problem \begin{equation} \partial_tw-\Delta w=-\frac{1}{4}v^2-\operatorname{div} v, \quad \nabla w|_{\partial\Omega}=\frac{\partial w}{\partial x}\big|_{\partial\Omega}=0,\quad w|_{t=0}=\log\rho_0, \label{2.6} \end{equation} with fixed $v$ satisfying \eqref{1.10}. Testing \eqref{2.6} with $w$, using \eqref{1.10}, we find that \begin{align*} \frac{1}{2}\frac{d}{dt}\int w^2dx+\int|\nabla w|^2dx &\leq (\frac{1}{4}\|v\|_{L^\infty}\|v\|_{L^2}+\|\operatorname{div} v\|_{L^2})\|w\|_{L^2}\\ &\leq C(\|\nabla v\|_{L^2}+\|\nabla v\|_{L^2}^2)\|w\|_{L^2} \end{align*} which gives $$ \|w\|_{L^\infty(0,T;L^2)}+\|w\|_{L^2(0,T;H^1)}\leq C(T). $$ Similarly, testing \eqref{2.6} with $-\Delta w$, using \eqref{1.10}, we infer that \begin{align*} \frac{1}{2}\frac{d}{dt}\int|\nabla w|^2dx+\int|\Delta w|^2dx &\leq \big|\int\frac{1}{4}\nabla v^2\cdot\nabla w dx\big| +|\int\operatorname{div} v\cdot\Delta w dx|\\ &\leq \frac{1}{2}\|v\|_{L^\infty}\|\operatorname{div} v\|_{L^2}\|\nabla w\|_{L^2} +\|\operatorname{div} v\|_{L^2}\|\Delta w\|_{L^2}\\ &\leq \frac{1}{2}\|\Delta w\|_{L^2}^2+C\|\operatorname{div} v\|_{L^2}^2+C\|\nabla v\|_{L^2}^2\|\nabla w\|_{L^2} \end{align*} which yields $$ \|w\|_{L^\infty(0,T;H^1)}\leq C(T). $$ This yields $$ \log\rho\geq w\geq -C(T)>-\infty $$ and thus \eqref{2.4} holds. The proof is complete. \end{proof} Using \eqref{1.1}, \eqref{1.2}, \eqref{2.2}, \eqref{2.4}, $p:=R\rho\theta$, \eqref{1.11}, \eqref{1.12} and the method in \cite{5}, it is easy to verify the following lemma. \begin{lemma}[\cite{5}] \label{le2.2} If $(\rho,v,\theta)$ is a weak solution, then \begin{equation} \|v\|_{L^\infty(0,T;L^m(\Omega))}\leq C(T)\quad\text{for some $m>2$}.\label{2.7} \end{equation} \end{lemma} It follows from \eqref{1.11} and \eqref{2.1} that \begin{equation} \|\theta\|_{L^3(0,T;L^\infty(\Omega))}\leq C(T).\label{2.8} \end{equation} \begin{lemma}\label{le2.3} If $(\rho,v,\theta)$ is a strong solution, then \begin{gather} \|v\|_{L^\infty(0,T;H^1)}+\|v_t\|_{L^2(0,T;L^2)}\leq C(T),\label{2.9}\\ \|v\|_{L^2(0,T;H^2)}\leq C(T).\label{2.10} \end{gather} \end{lemma} \begin{proof} We start rewriting the momentum equation \eqref{1.2} in the form \begin{equation} \rho(\partial_tv+v_m\cdot\nabla v)+R\nabla(\rho\theta)=\mu\Delta v+\frac{1}{3}\mu\nabla\operatorname{div} v.\label{2.11} \end{equation} Testing \eqref{2.11} with $v_t$, using \eqref{2.1}, \eqref{2.2}, \eqref{1.12}, \eqref{2.7} and \eqref{2.8}, we deduce that \begin{equation} \begin{split} &\frac{1}{2}\frac{d}{dt}\int\mu|\nabla v|^2+\frac{1}{3}\mu(\operatorname{div} v)^2dx+\int\rho v_t^2dx \\ &= -\int\rho v_m\cdot\nabla v\cdot v_t dx-R\int\nabla(\rho\theta)\cdot v_t dx \\ &= -\int\rho v\cdot\nabla v\cdot v_t dx+\int\nabla\rho\cdot\nabla v\cdot v_t dx-R\int(\rho\nabla\theta+\theta\nabla\rho)v_t dx \\ &\leq \|\rho\|_{L^\infty}\|v\|_{L^\infty}\|\nabla v\|_{L^2}\|v_t\|_{L^2}+\|\nabla\rho\|_{L^\infty}\|\nabla v\|_{L^2}\|v_t\|_{L^2} \\ &\quad +R(\|\rho\|_{L^\infty}\|\nabla\theta\|_{L^2} +\|\theta\|_{L^\infty}\|\nabla\rho\|_{L^2})\|v_t\|_{L^2} \\ &\leq C\|\nabla v\|_{L^2}^2\|v_t\|_{L^2}+C\|\Delta\rho\|_{L^2}\|\nabla v\|_{L^2}\|v_t\|_{L^2} \\ &\quad +C(\|\nabla\theta\|_{L^2}+\|\theta\|_{L^\infty})\|v_t\|_{L^2}. \end{split}\label{2.12} \end{equation} On the other hand, using \eqref{2.11} and the $H^2$-theory of second order elliptic equations, we have \begin{equation} \begin{split} \|v\|_{H^2} &\leq C\|\rho\partial_tv+\rho v_m\cdot\nabla v+R\nabla(\rho\theta)\|_{L^2} \\ &\leq C(\|v_t\|_{L^2}+\|v\cdot\nabla v\|_{L^2}+\|\nabla\rho\|_{L^\infty}\|\nabla v\|_{L^2}+\|\nabla\theta\|_{L^2}+\|\theta\|_{L^\infty}) \\ &\leq C(\|v_t\|_{L^2}+\|\nabla v\|_{L^2}^2+\|\Delta\rho\|_{L^2}\|\nabla v\|_{L^2}+\|\nabla\theta\|_{L^2}+\|\theta\|_{L^\infty}). \end{split}\label{2.13} \end{equation} Now using \eqref{2.7}, Young's inequality and the Gagliardo-Nirenberg inequality \cite{6}, $$ \|\nabla v\|_{L^2}^2\leq C\|v\|_{L^m}^{2\alpha} \|v\|_{H^2}^{2(1-\alpha)}\leq C\|v\|_{H^2}^{2(1-\alpha)}\leq\frac{1}{2C}\|v\|_{H^2}+C, $$ with $1-\alpha=\frac{m+2}{3m+2}<\frac{1}{2}\big)$, we obtain \begin{equation} \|v\|_{H^2}\leq C(\|v_t\|_{L^2}+\|\Delta\rho\|_{L^2}\|\nabla v\|_{L^2}+\|\nabla\theta\|_{L^2}+\|\theta\|_{L^\infty}+C).\label{2.14} \end{equation} Combining \eqref{2.12}, \eqref{2.13} and \eqref{2.14} and using Gronwall's inequality, we obtain \eqref{2.9} and \eqref{2.10}. This completes the proof. \end{proof} \begin{lemma}\label{le2.4} Let $K(\theta):=\theta+\theta^4$. If $(\rho,v,\theta)$ is a strong solution, then \begin{equation} \|K(\theta)\|_{L^\infty(0,T;L^2)}+\|K(\theta)\|_{L^2(0,T;H^1)}\leq C(T).\label{2.15} \end{equation} \end{lemma} \begin{proof} We start by rewriting the energy equation \eqref{1.15} in the form: \begin{equation} \rho\partial_tK(\theta)+\rho v_m\cdot\nabla K(\theta)-\Delta K(\theta)=(\mathbb{S}:\nabla v-p\operatorname{div} v)K'(\theta).\label{2.16} \end{equation} Testing \eqref{2.16} with $K(\theta)$, using \eqref{1.1}, \eqref{2.9}, \eqref{2.2} and \eqref{2.4}, we find that \begin{align*} &\frac{1}{2}\frac{d}{dt}\int\rho K^2(\theta)dx+\int|\nabla K(\theta)|^2dx\\ &= \int(\mathbb{S}:\nabla v-p\operatorname{div} v)K'(\theta)K(\theta)dx\\ &\leq \|\mathbb{S}\|_{L^2}\|\nabla v\|_{L^2}\|K'(\theta)K(\theta)\|_{L^\infty} +C\|\rho\|_{L^\infty}\|\operatorname{div} v\|_{L^2}\|K(\theta)\|_{L^4}^2\\ &\leq C\|K(\theta)\|_{L^\infty}^{7/4}+C\|K(\theta)\|_{L^4}^2\\ &\leq C\|K(\theta)\|_{L^2}^{7/8}\|K(\theta)\|_{H^1}^{7/8}+\frac{1}{8}\|\nabla K(\theta)\|_{L^2}^2+C\|K(\theta)\|_{L^2}^2\\ &\leq \frac{1}{4}\|\nabla K(\theta)\|_{L^2}^2+C\|K(\theta)\|_{L^2}^2+C \end{align*} which yields \eqref{2.15}. Here we have used the Gagliardo-Nirenberg inequalities: \begin{gather*} \|K(\theta)\|_{L^\infty}\leq C\|K(\theta)\|_{L^2}^{1/2}\|K(\theta)\|_{H^1}^{1/2},\\ \|K(\theta)\|_{L^4}\leq C\|K(\theta)\|_{L^2}^{3/4}\|K(\theta)\|_{H^1}^{1/4}. \end{gather*} This completes the proof. \end{proof} \begin{lemma}\label{le2.5} If $(\rho,v,\theta)$ is a strong solution, then \begin{gather} \|\theta\|_{L^\infty(0,T;H^1)}+\|\theta\|_{L^2(0,T;H^2)}\leq C(T),\label{2.17}\\ \|\theta_t\|_{L^2(0,T;L^2)}\leq C(T).\label{2.18} \end{gather} \end{lemma} \begin{proof} We start by rewriting the energy equation \eqref{2.16} in the form: $$ \partial_tK(\theta)+v_m\cdot\nabla K(\theta)-\frac{1}{\rho}\Delta K(\theta)=\frac{\mathbb{S}:\nabla v-p\operatorname{div} v}{\rho}K'(\theta). $$ Testing the above equation with $-\Delta K(\theta)$, using \eqref{2.9}, \eqref{2.10}, \eqref{2.2}, \eqref{2.4} and \eqref{2.15}, we deduce that \begin{align*} &\frac{1}{2}\frac{d}{dt}\int|\nabla K(\theta)|^2dx+\int\frac{1}{\rho}|\Delta K(\theta)|^2dx \\ &= \int\big[(v-\nabla\log\rho)\nabla K(\theta)-\frac{\mathbb{S}:\nabla v-p\operatorname{div} v}{\rho}K'(\theta)\big]\Delta K(\theta)dx \\ &\leq \Big(\|v\|_{L^\infty}\|\nabla K(\theta)\|_{L^2}+\left\|\frac{1}{\rho}\right\|_{L^\infty}\|\nabla \rho\|_{L^\infty}\|\nabla K(\theta)\|_{L^2} \\ &\quad +\|\frac{1}{\rho}\|_{L^\infty}\|\mathbb{S}:\nabla v\|_{L^2}\|K'(\theta)\|_{L^\infty}+C\|\operatorname{div} v\|_{L^2}\|K(\theta)\|_{L^\infty}\Big)\|\Delta K(\theta)\|_{L^2} \\ &\leq C(\|K(\theta)\|_{H^1}+\|\rho\|_{H^2}\|K(\theta)\|_{H^1}+\|\nabla v\|_{L^4}^2\|K(\theta)\|_{L^\infty}^{3/4})\|\Delta K(\theta)\|_{L^2} \\ &\leq C(\|K(\theta)\|_{H^1}+\|\rho\|_{H^2}\|K(\theta)\|_{H^1} +\|v\|_{H^2}^{1/2}\|K(\theta)\|_{H^1}^{3/8})\|\Delta K(\theta)\|_{L^2} \\ &\leq \frac{1}{2}\|\Delta K(\theta)\|_{L^2}^2+C\|K(\theta)\|_{H^1}^2+C\|\rho\|_{H^2}^2 \|K(\theta)\|_{H^1}^2+C\|v\|_{H^2}\|K(\theta)\|_{H^1}^{3/4} \end{align*} which yields \eqref{2.17}. Here we have used the Gagliardo-Nirenberg inequalities: \begin{gather*} \|\nabla v\|_{L^4}^2 \leq C\|\nabla v\|_{L^2}^{3/2}\|v\|_{H^2}^{1/2}, \|K(\theta)\|_{L^\infty}\leq C\|K(\theta)\|_{L^2}^{1/2}\|K(\theta)\|_{H^1}^{1/2},\\ \|\theta\|_{L^\infty(0,T;L^\infty)}\leq C\|\theta\|_{L^\infty(0,T;H^1)},\\ \|\nabla\theta\|_{L^\infty(0,T;L^2)}\leq C\|\nabla K(\theta)\|_{L^\infty(0,T;L^2)},\\ \|\Delta\theta\|_{L^2(0,T;L^2)}\leq C\|\Delta K(\theta)\|_{L^2(0,T;L^2)}. \end{gather*} Equation \eqref{2.18} follows easily from \eqref{2.16}, \eqref{2.17}, \eqref{2.9}, \eqref{2.10}, and \eqref{2.2}. This completes the proof. \end{proof} \subsection*{Acknowledgments} This work is partially supported by grant 11171154 from the NSFC . \begin{thebibliography}{0} \bibitem{2} H. Brenner; \emph{Navier-Stokes revisited}. Physica A 349 (2005), 60--132. \bibitem{3} H. Brenner; \emph{Fluid mechanics revisited}. Physica A 370 (2006), 190--224. \bibitem{1} Y. Cho, H. Kim; \emph{Existence results for viscous polytropic fluid with vacuum}. J. Differential Equations 228 (2006), 377-411. \bibitem{5} E. Feireisl, A. Vasseur; \emph{New perspectives in fluid dynamics: mathematical analysis of a model poposed by Howard Brenner}. In New Directions in Mathematical Fluid Mechanics, A. Fursikov, G. Galdi, and V. Pukhnachev, eds. Advances in Mathematical Fluid Mechanics. Birkh\"{a}user, 2009, pp. 153--179. \bibitem{6} A. Friedman; \emph{Partial differential equations}. Holt, Rinehart and Winston, Inc., New York-Montreal (1969). \bibitem{9} S. Jiang, On the asymptotic behavior of the motion of a viscous, heat conducting, one-dimensional real gas. Math. Z. 216 (1994), 317--336. \bibitem{7} V. V. Shelukhin; \emph{A shear flow problem for the compressible Navier-Stokes equations}. Int. J. Nonlinear Mech. 33 (1998), 247--257. \bibitem{4} Y. B. Zel'dovich, Y. P. Raizer; \emph{Physics of shock waves and high temperature hydrodynamic phenomena}. Academic Press, New York, 1966. \end{thebibliography} \end{document}