\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 19, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/19\hfil Existence of positive solutions] {Existence of positive solutions for systems of bending elastic beam equations} \author[P. Kang, Z. Wei \hfil EJDE-2012/19\hfilneg] {Ping Kang, Zhongli Wei} \address{Ping Kang \newline Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300160, China} \email{jnkp1980@163.com, Tel: 86-22-24493329} \address{Zhongli Wei \newline School of Mathematics, Shandong University, Jinan, Shandong, 250100, China\newline Department of Mathematics, Shandong Jianzhu University, Jinan, Shandong, 250101, China} \email{jnwzl@yahoo.com.cn} \thanks{Submitted September 5, 2011. Published January 31, 2012.} \thanks{Supported by grants 10971046 from the NNSF-China, and ZR2009AM004 the NSF \hfill\break\indent of Shandong Province} \subjclass[2000]{34B15, 39A10} \keywords{Positive solutions; fixed points; cone} \begin{abstract} This article discusses the existence of positive solutions for systems of bending elastic beam equations. In mechanics, the problem describes the deformations of two elastic beams in equilibrium state, whose two ends are simply supported. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The deformations of two elastic beams in equilibrium state, whose two ends are simply supported, can be described by the systems of bending elastic beam equations: \begin{equation} \begin{gathered} u^{(4)}(t)=f_1(t,u(t),v(t),u''(t),v''(t)), \quad 00,\quad 00$, \[ K_r=\{u\in K: \|u\|_2\frac{\pi^4}{1+\pi^2}; $$ \item[(H3)] there exist $h_2\in C(I\times \mathbb{R}^{+}\times \mathbb{R}^{-},\mathbb{R}^{+})$, such that $$ f_2(t,x,y,r,s)\leq h_2(t,y,s),\quad \forall t\in I,x, y\in \mathbb{R}^{+},\; r, s\in \mathbb{R}^{-}, $$ where $$ \limsup_{|y|+|s|\to +\infty} \max_{t\in I}\frac{h_2(t,y,s)}{|y|+|s|}<\frac{\pi^4}{1+\pi^2}; $$ \item[(H4)] there exist $\alpha_1$, $\beta_1\geq 0$, with $\frac{\alpha_1}{\pi^4}+\frac{\beta_1}{\pi^2}<1$, and $r_0>0$, such that $$ f_1(t,x,y,r,s)\leq \alpha_1 x- \beta_1 r,\quad \forall t\in I,\;x\in[0,r_0],\; r\in [-r_0,0],\; y\in \mathbb{R}^{+},\; s\in \mathbb{R}^{-}; $$ \item[(H5)] there exist $\alpha_2>0$, $\beta_2\geq0$, $\frac{\alpha_2}{\pi^4}+\frac{\beta_2}{\pi^2}>1$, and $r_0^*>0$, such that $$ f_2(t,x,y,r,s)\geq \alpha_2 y- \beta_2 s,\quad \forall t\in I,\; y\in[0,r_0^*],\; s\in [-r_0^*,0],\; x\in \mathbb{R}^{+},\; r\in \mathbb{R}^{-}. $$ \end{itemize} We obtain the following results concerned with positive solutions for system \eqref{e1.1}. \begin{theorem} \label{thm2.1} Assume that {\rm (H1)--(H5)} hold. Then \eqref{e1.1} has at least one positive solution. \end{theorem} It is easy to see that conditions (H4) and (H5) are weaker than the superlinear and sublinear conditions. \section{Basic lemmas} For $\lambda \in I$, $u, v\in C^2[0,1]$, we define two operators $A_\lambda, B_\lambda :C^2[0,1]\times C^2[0,1]\to C^2[0,1]$ by \begin{equation} \begin{gathered} \begin{aligned} A_{\lambda}(u,v)(t) &=\int_0^1\int_0^1 G(t,s)G(s,\tau)[\lambda f_1(\tau,u(\tau),v(\tau),u''(\tau),v''(\tau))\\ &\quad +(1-\lambda)h_1(\tau,u(\tau),u''(\tau))]\mathrm{d}\tau \mathrm{d}s, \end{aligned} \\ \begin{aligned} B_{\lambda}(u,v)(t) &=\int_0^1\int_0^1 G(t,s)G(s,\tau)[\lambda f_2(\tau,u(\tau),v(\tau),u''(\tau),v''(\tau))\\ &\quad +(1-\lambda)h_2(\tau,v(\tau),v''(\tau))]\mathrm{d}\tau \mathrm{d}s. \end{aligned} \end{gathered}\label{e3.1} \end{equation} Then we define an operator $T_{\lambda}:C^2[0,1]\times C^2[0,1]\to C^2[0,1]\times C^2[0,1]$ by \begin{equation} T_{\lambda}(u,v)=(A_{\lambda}(u,v),B_{\lambda}(u,v)),\ (u,v)\in C^2[0,1]\times C^2[0,1].\label{e3.2} \end{equation} \begin{lemma} \label{lem3.1} Assume that {\rm (H1)} holds. Then \begin{itemize} \item[(1)] $T_{\lambda}: C^2[0,1]\times C^2[0,1]\to C^2[0,1]\times C^2[0,1]$ is completely continuous. \item[(2)] $T_{\lambda}: K\times K\to K\times K$ is completely continuous. \item[(3)] If $(u,v)\in K\times K$ is a nontrivial fixed point of $T_1$, then $(u,v)$ is a positive solution of system \eqref{e1.1}. \end{itemize} \end{lemma} \begin{proof} (1) The proof is similar to that of \cite[Lemma 2.1]{l2}, and we omit it. (2) By (1), we only need to prove that operator $T_{\lambda}: K\times K\to K\times K$. In fact, for any $(u,v)\in K\times K$, it follows from \eqref{e3.1} that \begin{equation} \begin{gathered} A_{\lambda}(u,v)(t)\geq 0,\quad A_{\lambda}(u,v)''(t)\leq 0,\quad t\in [0,1],\\ \begin{aligned} \|A_{\lambda}(u,v)\| &\leq \int^1_0\int^1_0 s(1-s)G(s,\tau)[\lambda f_1(\tau,u(\tau),v(\tau),u''(\tau),v''(\tau))\\ &\quad +(1-\lambda)h_1(\tau,u(\tau),u''(\tau))]\mathrm{d}\tau \mathrm{d}s, \end{aligned} \\ \begin{aligned} \|A_{\lambda}''(u,v)\| &\leq \int^1_0G(s,s)[\lambda f_1(s,u(s),v(s),u''(s),v''(s))\\ &\quad +(1-\lambda)h_1(s,u(s),u''(s))] \mathrm{d}s. \end{aligned} \end{gathered}\label{e3.3} \end{equation} On the other hand, for any $(u,v)\in K\times K$ and any $0\leq t\leq1$, It follows from \eqref{e2.2}, \eqref{e3.1}, and \eqref{e3.3} that \begin{align*} A_{\lambda}(u,v)(t) &= \int_0^1\int_0^1 G(t,s)G(s,\tau)[\lambda f_1(\tau,u(\tau),v(\tau),u''(\tau),v''(\tau))\\ &\quad +(1-\lambda)h_1(\tau,u(\tau),u''(\tau))]\mathrm{d}\tau \mathrm{d}s\\ &\geq q(t)\int_0^1\int_0^1s(1-s)G(s,\tau) [\lambda f_1(\tau,u(\tau),v(\tau),u''(\tau),v''(\tau))\\ &\quad +(1-\lambda)h_1(\tau,u(\tau),u''(\tau))]\mathrm{d}\tau \mathrm{d}s\\ & \geq q(t)\|A_{\lambda}(u,v)\|, \end{align*} and \begin{align*} A_{\lambda}''(u,v)(t) &= -\int_0^1G(t,s)[\lambda f_1(s,u(s),v(s),u''(s),v''(s))\\ &\quad +(1-\lambda)h_1(s,u(s),u''(s))] \mathrm{d}s\\ &\leq -q(t) \int_0^1G(s,s)[\lambda f_1(s,u(s),v(s),u''(s),v''(s))\\ &\quad +(1-\lambda)h_1(s,u(s),u''(s))]\mathrm{d}s\\ & \leq -q(t) \|A_{\lambda}''(u,v)\|. \end{align*} In a similar way, it follows that $$ B_{\lambda}(u,v)(t)\geq 0,\quad B_{\lambda}(u,v)''(t)\leq 0,\quad t\in I, $$ and $$ B_{\lambda}(u,v)(t)\geq q(t)\|B_{\lambda}(u,v)\|,\quad B_{\lambda}''(u,v)(t)\leq -q(t) \|B_{\lambda}''(u,v)\|,\quad \forall\ t\in I. $$ From the above, we assert that $T_{\lambda}(u,v)=(A_{\lambda}(u,v),B_{\lambda}(u,v))\in K\times K$; that is, $T_{\lambda}:K\times K\to K\times K$. (3) Let $(u,v)\in K\times K$ is a fixed point of $T_1$, Then \begin{align*} u(t)&=A_1(u,v)(t)\\ &=\int_0^1\Big[\int_0^1 G(t,s)G(s,\tau) f_1(\tau,u(\tau),v(\tau),u''(\tau),v''(\tau))\mathrm{d}\tau\Big] \mathrm{d}s,\quad t\in I,\\ v(t)&=B_1(u,v)(t)\\ &=\int_0^1\Big[\int_0^1 G(t,s)G(s,\tau)f_2(\tau,u(\tau), v(\tau),u''(\tau),v''(\tau))\mathrm{d}\tau\Big]\mathrm{d}s,\quad t\in I. \end{align*} After direct computations, we obtain \begin{gather*} u''(t) =-\int_0^1G(t,s)f_1(s,u(s),v(s),u''(s),v''(s))\mathrm{d}s,\\ \begin{aligned} u'''(t) &= \int_0^t sf_1(s,u(s),v(s),u''(s),v''(s))\mathrm{d}s\\ &\quad -\int_t^1(1-s)f_1(s,u(s),v(s),u''(s),v''(s))\mathrm{d}s, \end{aligned}\\ u^{(4)}(t) =f_1(t,u(t),v(t),u''(t),v''(t)),\\ v''(t)=-\int_0^1G(t,s)f_2(s,u(s),v(s),u''(s),v''(s))\mathrm{d}s,\\ \begin{aligned} v'''(t) &=\int_0^t sf_2(s,u(s),v(s),u''(s),v''(s))\mathrm{d}s\\ &\quad -\int_t^1(1-s)f_2(s,u(s),v(s),u''(s),v''(s))\mathrm{d}s, \end{aligned} \\ v^{(4)}(t)=f_2(t,u(t),v(t),u''(t),v''(t)). \end{gather*} Moreover, since $G(0,s)=G(1,s)=0$, we see that $u(0)=u(1)=u''(0)=u''(1)=v(0)=v(1)=v''(0)=v''(1)=0$. Therefore, $(u,v)$ is a solution of \eqref{e1.1}. Moreover, since the graphs of $u\in K$ and $v\in K$ are concave down on $I$, we assert that $(u,v)$ is a positive solution of system \eqref{e1.1}. This completes the proof. \end{proof} \begin{remark} \label{rmk2.1}\rm Denoting $T(\lambda,u,v)(t)=T_{\lambda}(u,v)(t)$, we see that $\overline{T(\lambda\times K\times K)}$ is a compact set by the Arzela-Ascoli theorem. \end{remark} \begin{lemma}[\cite{g1,z1}] \label{lem3.2} Let $E$ be a real Banach space and let $P$ be a closed convex cone in $E$. $\Omega$ be a bounded open set of $E$, $\theta \in \Omega$, $A:P\cap \overline{\Omega}\to P$ be completely continuous. Then the following conclusions are valid: \begin{itemize} \item[(i)] if $\mu Au\neq u$ for every $u\in P\cap\partial \Omega$ and $\mu\in (0,1]$, then $i(A,P\cap \Omega,P)=1$; \item[(ii)] if mapping $A$ satisfies the following two conditions:\\ (a) $\inf_{u\in P\cap\partial \Omega}\|Au\|>0$,\\ (b) $\mu Au\neq u$ for every $u\in P\cap\partial \Omega$ and $\mu\geq 1$, then $i(A,P\cap \Omega,P)=0$. \end{itemize} \end{lemma} \begin{lemma}[\cite{c1}] \label{lem3.3} Let $E$ be a Banach space and let $K_i\subset E(i=1,2)$ be a closed convex cone in $E$. For $r_i>0$ $(i=1,2)$, denote $K_{r_i}=\{u\in K_i: \|u\|0.\label{e4.3} \end{equation} Hence, $\int_0^1u_0(t)\sin(\pi t)\mathrm{d}t>0$. From \eqref{e4.2} and \eqref{e4.3}, we obtain that $\pi^4\leq (\alpha_1+\beta_1\pi^2)$, which is a contradiction. \textbf{Step 2.} From (H2), there exist $\epsilon>0$, $m>0$, $C>0$, such that \begin{equation} h_1(t,u,u'')\geq (\frac{\pi^4}{1+\pi^2}+\epsilon)(|u|+|u''|),\quad \forall t\in I,\; |u|+|u''|\geq m,\label{e4.4} \end{equation} and \begin{equation} h_1(t,u,u'')\geq (\frac{\pi^4}{1+\pi^2}+\epsilon)(|u|+|u''|)-C,\quad \forall t\in I, \; u\in \mathbb{R}^{+}.\label{e4.5} \end{equation} We will prove that there exist $R_1>r_1$, such that \begin{equation} \mu A_{\lambda}(u,v)\neq u ,\quad \inf_{u\in \partial K_{R_1}}\|A_{\lambda}(u,v)\|_2>0, \quad \forall \mu\geq 1,\; (u,v)\in \partial K_{R_1}\times K. \label{e4.6} \end{equation} In fact, if there exist $\mu_1 \geq 1$ and $(u_1,v_1)\in \partial K_{R_1}\times K$, such that $\mu_1 A_{\lambda}(u_1,v_1)= u_1$, then $u_1(t)$ satisfies the differential equation \begin{gather*} u_1^{(4)}(t)=\mu_1[\lambda f_1(t,u_1(t),v_1(t),u_1''(t),v_1''(t)) +(1-\lambda)h_1(t,u_1(t),u_1''(t))] \\ u_1(0)=u_1(1)=u_1''(0)=u_1''(1)=0. \end{gather*} In combination with \eqref{e4.5} and the condition (H2), we obtain that \begin{align*} u_1^{(4)}(t)&\geq \lambda f_1(t,u_1(t),v_1(t),u_1''(t),v_1''(t)) +(1-\lambda)h_1(t,u_1(t),u_1''(t))\\ &=\lambda (f_1(t,u_1(t),v_1(t),u_1''(t),v_1''(t)) -h_1(t,u_1(t),u_1''(t)))+h_1(t,u_1(t),u_1''(t))\\ &\geq h_1(t,u_1(t),u_1''(t))\\ &\geq(\frac{\pi^4}{1+\pi^2}+\epsilon)(u_1-u_1'')-C,\quad \forall t\in I. \end{align*} Multiplying the both sides of this inequality by $\sin(\pi t)$ and integrating on $I$, then using integrating by parts, we obtain $$ \pi^4\int_0^1u_1(t)\sin(\pi t)\mathrm{d}t \geq(\frac{\pi^4}{1+\pi^2}+\epsilon)(1+\pi^2)\int_0^1u_1(t) \sin(\pi t)\mathrm{d}t -\frac{2C}{\pi}. $$ Hence $$ \int_0^1u_1(t)\sin(\pi t)\mathrm{d}t \leq \frac{1}{(1+\pi^2)\epsilon}\frac{2C}{\pi}. $$ In combination with \eqref{e4.3}, we obtain $$ \|u_1\|_2\leq \frac{\pi^3+\pi^5}{4(1+\pi^2)\epsilon}\frac{2C}{\pi} =\frac{\pi^2C}{2\epsilon}:=R^*. $$ So, as $R_1>R^{*}$, we have $\mu A_{\lambda}(u,v)\neq u $, for all $(u,v)\in \partial K_{R_1}\times K$ and $\mu\geq 1$. In addition, if $R_1>\frac{5C}{\epsilon}$, by \eqref{e4.5}, we know that for all $(u,v)\in \partial K_{R_1}\times K$, \begin{align*} &A_{\lambda}(u,v)(\frac{1}{2})\\ &= \int_0^1\int_0^1 G(\frac{1}{2},s)G(s,\tau)[\lambda f_1(\tau,u(\tau),v(\tau),u''(\tau),v''(\tau)) \\ &\quad +(1-\lambda)h_1(\tau,u(\tau),u''(\tau))]\mathrm{d}\tau \mathrm{d}s\\ &\geq \frac{1}{4}\int_0^1\int_0^1G(s,s)G(s,\tau) [\lambda f_1(\tau,u(\tau),v(\tau),u''(\tau),v''(\tau)) \\ &\quad +(1-\lambda)h_1(\tau,u(\tau),u''(\tau))]\mathrm{d}\tau \mathrm{d}s\\ &\geq \frac{1}{4}\int_0^1G(s,s)\int_0^1q(s)G(\tau,\tau) [\lambda f_1(\tau,u(\tau),v(\tau),u''(\tau),v''(\tau)) \\ &\quad +(1-\lambda)h_1(\tau,u(\tau),u''(\tau))]\mathrm{d}\tau \mathrm{d}s\\ &= \frac{1}{4}\int_0^1G(s,s)q(s)\mathrm{d}s\int_0^1G(\tau,\tau) [\lambda f_1(\tau,u(\tau),v(\tau),u''(\tau),v''(\tau)) \\ &\quad +(1-\lambda)h_1(\tau,u(\tau),u''(\tau))]\mathrm{d}\tau \\ &\geq \frac{1}{120}\int_{0}^{1}G(\tau,\tau)[(\frac{\pi^4}{1+\pi^2} +\epsilon)(u(\tau)-u''(\tau))]\mathrm{d}\tau -\frac{1}{120}\int_{0}^{1}G(\tau,\tau)\mathrm{d}\tau\cdot C\\ &\geq \frac{1}{120}\Big[\epsilon\int_{0}^{1}G(\tau,\tau) q(\tau)(\|u\|+\|u''\|)\mathrm{d}\tau\Big]-\frac{1}{720} C\\ &= \frac{1}{120}\frac{\epsilon}{30}\|u\|_2-\frac{1}{720} C >0, \end{align*} which follows that $\inf_{u\in \partial K_{R_1}}\|A_{\lambda}(u,v)\|_2>0$. Hence, we choose \begin{equation} R_1>\max\{R^*, \frac{5C}{\epsilon},r_1\}. \label{e4.7} \end{equation} \textbf{Step 3.} For each $r_2\in (0, r_0^*)$, we will prove that \begin{equation} \mu B_{\lambda}(u,v)\neq v,\quad \inf_{v\in \partial K_{r_2}}\|B_{\lambda}(u,v)\|_2>0, \quad \forall \mu\geq 1,\; (u,v)\in K\times \partial K_{r_2}.\label{e4.8} \end{equation} From (H3) and (H5), \begin{equation} \begin{gathered} \lambda f_2(t,u,v,u'',v'')+(1-\lambda)h_2(t,v,v'') \geq \alpha_2v-\beta_2v'',\\\ \forall t\in I,\; v\in[0,r_2],\; v''\in [-r_2,0],\; u\in \mathbb{R}^{+},\; u''\in \mathbb{R}^{-}. \end{gathered} \label{e4.9} \end{equation} By \eqref{e4.9} and a proof similar to Step 1 and 2, we deduce that \eqref{e4.8} holds. \textbf{Step 4.} We will prove that \begin{equation} \mu B_{\lambda}(u,v)\neq v, \quad \forall \mu\in (0,1],\; (u,v)\in K\times \partial K_{R_2}.\label{e4.10} \end{equation} From (H3),we know that there exist $\epsilon>0$, $m>0$, $C>0$, such that \begin{gather*} \lambda f_2(t,u,v,u'',v'')+(1-\lambda)h_2(t,v,v'') \leq (\frac{\pi^4}{1+\pi^2}-\epsilon)( |v|+|v''|),\\ \forall t\in I,\; |v|+|v''|\geq m,\; u\in \mathbb{R}^{+}, \; u''\in \mathbb{R}^{-};\\ \lambda f_2(t,u,v,u'',v'')+(1-\lambda)h_2(t,v,v'') \leq (\frac{\pi^4}{1+\pi^2}-\epsilon)( |v|+|v''|)+C,\\ \forall t\in I,\; u\in \mathbb{R}^{+},\; v\in \mathbb{R}^{+},\; u''\in \mathbb{R}^{-},\; v''\in \mathbb{R}^{-}. \end{gather*} %\label{e4.11} Then the proof similar to Step 2. If we choose $R_2>\max\{R^*,r_2\}$, we deduce that \eqref{e4.10} holds. \textbf{Step 5.} We choose an open set $D=(K_{R_1}\backslash \overline{K_{r_1}})\times (K_{R_2}\backslash \overline{K_{r_2}})$. By \eqref{e4.1}, \eqref{e4.6}, \eqref{e4.8}, and \eqref{e4.10}, it is easy to verify that $\{T_{\lambda}\}_{\lambda\in I}$ satisfy the sufficient conditions for the homotopy invariance of fixed point index on $\partial D$; on the other hand, in combination with the classical fixed point index results (see Lemma \ref{lem3.2}), we have \begin{gather*} i(A_{0},K_{r_1},K)= i(B_{0},K_{R_2},K)=1,\\ i(A_{0},K_{R_1},K)=i(B_{0},K_{r_2},K)=0. \end{gather*} Applying the homotopy invariance of fixed point index and the product formula for the fixed point index (see Lemma \ref{lem3.3}), we obtain \begin{align*} &i(T_1,D, K\times K)=i(T_{0},D, K\times K)\\ &=i(A_{0},K_{R_1}\backslash \overline{K_{r_1}},K) \times i(B_{0},K_{R_2}\backslash \overline{K_{r_2}},K)\\ &=[i(A_{0},K_{R_1},K)-i(A_{0},K_{r_1},K)]\times [i(B_{0},K_{R_2},K)-i(B_{0}, K_{r_2},K)] =-1. \end{align*} Thus, $T_1$ has at least a fixed point$(u^{*},v^{*})\in (K_{R_1}\backslash \overline{K_{r_1}})\times (K_{R_2}\backslash \overline{K_{r_2}})$. Hence, by Lemma \ref{lem3.1}, system \eqref{e1.1} has at least one positive solution $(u^{*},v^{*})$. The proof of Theorem \ref{thm2.1} is complete. \begin{thebibliography}{0} \bibitem{c1} X. Cheng, C. Zhong; \emph{Existence of positive solutions for a second order ordinary differential equations system}, J. Math. Anal. Appl., 312 (2005) 14-23. \bibitem{g1} D. Guo, V. Lakshmikantham; \emph{Nonlinear Problems in Abstract Cones}, Academic Press Inc., New York, 1988. \bibitem{k1} P. Kang, L. Liu; \emph{Positive solutions of fourth order singular boundary value problems}, Jour. of Sys. Sci. and Math. Sci., 28 (2008): 604-615 (in Chinese). \bibitem{l1} Y. Li; \emph{On the existence of positive solutions for the bending elastic beam equations}, Applied Mathematics and Computation, 189(1) (2007) 821-827. \bibitem{l2} L. Liu, P. Kang, Y. Wu, B. Wiwatanapataphee; \emph{Positive solutions of singular boundary value problems for systems of nonlinear fourth order differential equations}, Nonlinear Anal., 68(2008): 485-498. \bibitem{w1} Z. Wei; \emph{Positive solutions to singular boundary value problems of a class of fourth order sublinear differential equations}, Acta Math. Sini., 48 (2005): 727-738 (in Chinese). \bibitem{w2} Z. Wei, X. Li; \emph{Positive solutions of a class of singular superlinear boundary value problems of fourth order differential equations}, Chin. Jour. of Engi. Math., 22 (2005):84-88 (in Chinese). \bibitem{x1} L. Xi, F. Li; \emph{Multiple positive solutions for boundary value problem of fourth order system}, Acta Mathematica Scientia, 287 (2003) 435-441 (in Chinese). \bibitem{z1} C. Zhong, X. Fan, W. Chen; \emph{An intoduction to nonlinear functional analysis}, Lanzhou University Press, Lanzhou, 1988. \end{thebibliography} \end{document}