\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb, color} \usepackage{graphicx} \usepackage{subfig} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 194, pp. 1--42.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/194\hfil Dynamic contact of two Gao beams] {Dynamic contact of two Gao beams} \author[J. Ahn, K. L. Kuttler, M. Shillor \hfil EJDE-2012/194\hfilneg] {Jeongho Ahn, Kenneth L. Kuttler, Meir Shillor} % in alphabetical order \address{Jeongho Ahn \newline Department of Mathematics and Statistics \\ Arkansas State University \\ State University, AR 72467, USA} \email{jahn@astate.edu} \address{Kenneth L. Kuttler \newline Department of Mathematics \\ Brigham Young University, Provo, UT 84602, USA} \email{klkuttle@math.byu.edu} \address{Meir Shillor \newline Department of Mathematics and Statistics \\ Oakland University \\ Rochester, MI 48309, USA} \email{shillor@oakland.edu} \thanks{Submitted June 7, 2012. Published November 6, 2012.} \subjclass[2000]{74M15, 35L86,74K10, 74M15, 35L70} \keywords{ Dynamic contact; Gao beam; mechanical joint; normal compliance; \hfill\break\indent Signorini condition; weak solutions; numerical scheme} \begin{abstract} The dynamic contact of two nonlinear Gao beams that are connected with a joint is modeled, analyzed, and numerically simulated. Contact is modeled with either (i) the normal compliance condition, or (ii) the unilateral Signorini condition. The model is in the form of a variational equality in case (i) and a variational inequality in case (ii). The existence of the unique variational solution is established for the problem with normal compliance and the existence of a weak solution is proved in case (ii). The solution in the second case is obtained as a limit of the solutions of the first case when the normal compliance stiffness tends to infinity. A numerical algorithm for the problem is constructed using finite elements and a mixed time discretization. Simulation results, based on the implementation of the algorithm, of the two cases when the horizontal traction vanishes or when it is sufficiently large to cause buckling, are presented. The spectrum of the vibrations, using the FFT, shows a rather noisy system. \end{abstract} \maketitle \numberwithin{equation}{section} \numberwithin{figure}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \newtheorem{problem}[theorem]{Problem} \newtheorem{algorithm}[theorem]{Algorithm} \allowdisplaybreaks \section{Introduction}\label{sec:intro} This work models the vibrations of two uniform elastic or viscoelastic nonlinear Gao beams that are connected with a mechanical joint that has a gap or clearance. The Gao nonlinear beam was introduced in \cite{Gao96, Gao00} to allow for the investigation of the vibrations of beams about buckled states. The model for the process is in the form of a system of nonlinear partial differential equations that are coupled across the joint. We establish the existence of a weak solution to the system. Then, we describe in detail a numerical algorithm for the problem, based on mixed finite elements, and present two typical numerical simulations. One deals with vibration when there is buckling, the other one without buckling. This is a step in our investigation of the noise properties of mechanical systems and the transmission of vibrations across joints. Noise and vibration characteristics of mechanical assemblies, parts, and components are very important in industry. Currently, the automotive industry has considerable interest in the dynamic vibrations of mechanical systems, stemming from the customer's perception of noise characteristics of cars. The topic is under extensive research, mainly experimentally and in part computationally in the industry. However, there exists no complete methods for such investigation, and full mathematical analysis of typical automotive problems is still out of reach. Therefore, most of the models use various ad hoc assumptions, many of which are too simplistic, and thus unrealistic, and not very useful. Here, we introduce a simple one-dimensional geometrical setting to avoid certain mathematical complications related to two- or three-dimensions. On the other hand, the physical content of the problem is not simplified. Our long-term goal is to understand the transmission of vibrations across mechanical joints. This will help industry in the design of parts, assemblies and systems with acceptable noise and vibration characteristics. Eventually, theory will replace the current practice of finding that the system needs to be modified at the testing or even production stages, because of unacceptable noise generation. Preliminary steps in this program have been taken in \cite{AS06, ASW96, KPSZ01, KS98ts} where various aspects of vibrations and contact of the Euler-Bernoulli linear beams were investigated. In particular the modeling, analysis, and simulations of the vibrations of a beam between two stops can be found in \cite{AS06, KPSZ01, KS98ts}. Here, we extend this study to include nonlinear beams, a fact that makes the analysis and computations much more complicated, since more specialized ideas and methods must be used. Various mathematical and numerical results about the nonlinear Gao beam were reported in \cite{ahn:dfcgts, adbps:asndb, AMbS09, KPS11, MFM08, MbS08, MN11,SG12}. The main interest there was to study the buckling of the beam and its vibrations about a buckled state. Contact conditions, even when the governing equations are linear, make the problems nonlinear, which led to the currently developing Mathematical Theory of Contact Mechanics (\cite{KO, SST04} and references therein). Having a nonlinear equation and nonlinear contact conditions, again, makes the problem much harder, both in terms of its analysis and computationally. Computational issues related to contact can be found in \cite{Du03, KO, MO, PS98, Wri02} Recent numerical schemes for dynamic contact problems of linear beams have been developed in \cite{sa:ebdcn, a:topdac, a:vtbclf}. In this paper, we propose a more advanced numerical algorithm that is more technical since we have to handle properly the nonlinear term in the equation. The theory of its convergence is investigated in \cite{ahn:dfcgts}. Issues of control of the Gao beam can be found in \cite{Gao06, GaoR98}. We assume, for the sake of generality, that the beams are viscoelastic, and describe the viscosity by a short-term memory of the Kelvin-Voigt type. Moreover, we also deal with the the inviscid case by passing to the limit when the viscosity vanishes. The dynamic contact is modeled by either the \emph{Signorini nonpenetration condition} which describes \emph{unilateral contact} of two perfectly rigid stops, or by the \emph{normal compliance condition,} which describes reactive stops. This work is an extension of \cite{AMbS09} where the problem of the vibrations of one Gao beam between two reactive stops was investigated. Some numerical simulations of the vibrations of two Euler-Bernoulli linear beams with a reactive joint problem can be found in \cite{KPSZ01}, where the method of lines was used. Next, we present a rather complex numerical algorithm for the problems. The complexity arises from the nonlinearity of the beam equation coupled with the nonlinear contact condition. The main idea of the numerical algorithm is to use time discretization and the combination of the central difference formula and the mixed finite element methods in space. Two simulations for the vibrations of the system when buckling takes place and when it is absent, are depicted, showing that the numerical scheme seem to be work reasonably well. The finite elements naturally fit with the weak formulation of the problem, since this is their usual setting. We note that, adding to the complexity, it follows from the results of \cite{MoShow83} that even a much simplified system of this type may exhibit chaotic behavior. The rest of the work is organized as follows. In Section \ref{sec:model} we present the physical setting, and the classical model. We describe either the Signorini or the normal compliance contact conditions. The beams are assumed to be either viscoelastic or elastic. Since we allow the left beam to be fixed to an oscillating support, we introduce in Section \ref{sec:var} a change of variable that allows to consider a problem in which the left end is stationary. To present the variational formulation we introduce the relevant function spaces, and state our main existence results, the existence of the unique weak solution for the problem with normal compliance, Theorem \ref{t31}, and an existence of a weak solution for the problem with the Signorini condition, Theorem \ref{t32}. In Section \ref{sec:nc} we investigate the model with the normal compliance condition, which in addition to having its own merit, may be considered as regularization of the Signorini condition. We prove Theorem \ref{t31}. In Section \ref{sec:Signorini} we establish Theorem \ref{t32}, in which a solution is obtained as a limit of a sequence of solutions found in Section \ref{sec:nc}. In Section \ref{sec:novisc} we show in Theorem \ref{t62} that the problems with the normal compliance condition or the Signorini condition with vanishing viscosity posses a weak solution, too. We obtain the necessary a priori estimates (Theorem \ref{t61}) on the solutions with viscosity, and pass to the limit when the viscosity vanishes and the normal compliance stiffness coefficients tend to infinity. We describe in Section \ref{sec:algorithm} a numerical algorithm for the model, based on the mixed finite elements method. The central idea of the algorithm is to drive the recursive formula which enables to compute next time step solutions of the linear system per each step satisfying the contact conditions. The results of our simulations are given in Section \ref{sec:Numerical_results}. We present two sets of simulations without buckling ($p=0$) and with the buckling of the right beam ($p=895$). We also show the Fast Fourier Transform of the motion of the right end of the left beam, and the noise, i.e., the spectrum of frequencies that it generates. The paper is summarized in Section \ref{sec:conclude}, where some unresolved issues and future work are discussed, too. \section{The Model } \label{sec:model} This section presents the classical formulation of the model, a change of variable, the necessary function spaces, the variational form, and a statement of our theoretical results. The physical setting, shown in Figure \ref{fig1} and a detail of the joint in Figure \ref{fig2}, is as follows. Two uniform Gao beams are connected at at a joint with a clearance. The left beam is attached rigidly at its left end to a supporting device that may oscillate with time, possibly periodically. The right end of the second beam is clamped to a rigid support, say a wall. The motion of the right end of the left beam is constrained by the motion of the left end of beam 2, where it may move only within the given clearance. The expanded view of the joint is depicted in Figure \ref{fig2}, where $g$ is the \emph{clearance} or the \emph{gap}. For the sake of generality we assume that the joint may be asymmetrical, and let $g=g_1+g_2$ ($g_1, g_2>0$), where $g_1$ is the upper clearance and $g_2$ is the lower one, when the system is at rest. \begin{figure}[ht] \begin{center} %\begin{picture}(40,50) \begin{picture}(280,50)(0,-20) \thicklines \qbezier(0,10)(30,10)(60,5) \qbezier(60,5)(90,0)(120,0) \qbezier(120,0)(150,0)(180,5) \qbezier(180,5)(210,10)(240,10) \qbezier(0,0)(10,0)(60,-5) \qbezier(60,-5)(90,-10)(120,-10) \qbezier(120,-10)(150,-10)(180,-5) \qbezier(180,-5)(210,0)(240,0) \put(120,-10){\line(0,1){10}} \put(240,-20){\line(0,1){40}} \put(0,5){\vector(1,0){285}} \put(0,-20){\line(0,1){40}} \put(20,10){\vector(0,1){25}} \put(25,20){$u_1$} \put(100,0){\vector(0,1){25}} \put(85,15){$f_1$} \put(120,3){\line(0,1){6}} \put(120,-20){\color[rgb]{0,0,1} $l_*$} \put(220,10){\vector(0,1){25}} \put(258,8){\vector(-1,0){18}} \put(225,20){$u_2$} \put(272,-10){$x$} \put(2,-20){$0$} \put(242,-20){$1$} \put(249,14){\color[rgb]{0,0,1} $p$} \end{picture} %}\end{picture}} \end{center} \caption{The two deflected Gao beams} \label{fig1} \end{figure} \begin{figure}[ht] \begin{center} \begin{picture}(180,60)(-30,-40) \thicklines \put(-30,0){\line(1,0){80}} \put(-30,-30){\line(1,0){80}} \put(50,-30){\line(0,1){30}} \put(40,8){\line(0,1){15}} \put(40,23){\line(1,0){20}} \put(55,-35){\line(0,1){43}} \put(40,8){\line(1,0){15}} \put(40,-35){\line(1,0){15}} \put(40,-40){\line(1,0){20}} \put(60,-40){\line(0,1){63}} \put(40,-40){\line(0,1){5}} \put(60,-30){\line(1,0){90}} \put(60,0){\line(1,0){90}} \thinlines \put(37,9){\line(-1,0){10}} \put(37,-38){\line(-1,0){10}} \put(35,-15){\line(-1,0){10}} \put(30, 0){\vector(0,1){9}} \put(30,-30){\vector(0,-1){8}} \put(15,-38){$g_2$} \put(15,6){$g_1$} \end{picture} \end{center} \caption{The joint; $g=g_1+g_2$ is the gap} \label{fig2} \end{figure} The area-centers of gravity of the beams in their (stress free) dimensionless reference configurations coincide with the intervals $0\leq x\leq l_{*}$, and $ l_{*}\leq x\leq 1$, respectively. A prescribed traction $p=p(t)$ acts at the right end $x=1$; the beams' edges in the joint are assumed to be permanently in frictionless contact. Adding friction may be of interest in a future study. We use dimensionless variables and denote by $u_1=u_1(x,t)$ and $ u_2=u_2(x,t)$ the vertical displacements of the beams, and by $\sigma _i=\sigma _{i}(x,t)$ the shear stresses, for $i=1,2$, where here and below $i=1$ indicates the left beam and $i=2$ the right one. The equations of motion are \begin{gather} \rho _1u_{1tt}- \sigma _{1x} =\rho _1 f_1, \quad 00$ is the normal compliance stiffness of the top stop, and the reaction (acting on the edge of the left beam) is downward. When \[ u_1(l_{\ast },t) \leq u_2(l_{\ast},t) -g_2, \] the reaction is \[ \sigma = \lambda_2 ( u_2(l_{\ast },t) -u_1(l_{\ast },t) -g_2), \] where $\lambda_2>0$ is the normal compliance stiffness of the lower stop, and the reaction (acting on the edge of the left beam) is upward. The discussion of the reaction of the stops can be summarized as follows, \begin{equation} \label{29} \begin{split} \sigma(t)&=\Lambda(u_1(l_{*}, t)-u_2(l_{*}, t))\\ &\equiv -\lambda_1 ( u_1(l_{\ast },t) -u_2(l_{\ast},t) -g_1) _{+}+ \lambda_2 ( u_2(l_{\ast },t) -u_1(l_{\ast },t) -g_2) _{+}, \end{split} \end{equation} and $(f)_+=\max(f, 0)$ is the positive part of the function. We note that more general normal compliance power laws were introduced and used in \cite{KO, Kl1, Kl2, KMS, Ken97, MO, SST04}, among many other references. Finally, we assume that the ends do not exert moments on each other, and thus, \begin{equation} w_{ixx}=0,\quad x=l_{*}. \label{210} \end{equation} Given the problem data; i.e., $u_{0i}=u_{0i}(x)$, $v_{0i}=v_{0i}(x)$, $(i=1,2)$, $p(t)$, and $\phi=\phi(t)$, the physical parameters and the constitutive relations \eqref{23}, the \emph{classical formulation} of \emph{the dynamic contact at a joint of two Gao beams with the normal compliance contact condition} is: \begin{problem} \label{pbm21} Find a pair of functions $(u_1,\,u_2)$ such that \eqref{21}--\eqref{210} hold. \end{problem} The problem, in its variational form, is studied in Section \ref{sec:nc} where we establish the existence of its unique weak solution. The second contact condition that is often used is the so-called \emph{ Signorini nonpenetration} or \emph{unilateral} condition in which the stops are assumed to be \emph{perfectly rigid.} It is, essentially, an idealization of the normal compliance condition, and may be justified in certain settings. We discuss the relationship between the conditions below. Since the stops are rigid right, the right end of the left beam must be within the clearance of the left end of the right beam. Thus, \[ u_2(l_{\ast },t)-g_2\leq u_1(l_{\ast },t)\leq u_2(l_{\ast},t)+g_1. \] When strict inequalities hold, there is no contact, the ends are free, and then $\sigma(t)=0.$ On the other hand, when the ends are in contact, the stresses are equal but opposite, then \eqref{28} holds. Next, when contact takes place at the lower stop $u_1(l_{\ast },t)=u_2(l_{\ast },t)-g_2$ and $\sigma \geq 0$, and when the contact is at the upper stop, $u_1(l_{\ast },t)=u_2(l_{\ast},t)+g_1$ and $\sigma \leq 0.$ We may write it concisely by using the indicator function $\chi$, \begin{equation} \chi (r)=\begin{cases} 0 & \text{if }u_2-g_2\leq r \leq u_2+g_1, \\ +\infty & \text{ otherwise}. \end{cases} \label{211} \end{equation} Then, we let $\partial \chi $ denote the \emph{subdifferential} of $\chi $, i.e., \begin{equation} \partial \chi (r)=\begin{cases} 0 & \text{if } u_2-g_20$. We denote by $(v,v)_{H_{i}}$ the inner product on $H_{i}$ and the norm by $|v|_{H_{i}}^2=(v,v)_{H_{i}}$, for $i=1,2$. The inner products and norms on the other spaces are defined similarly. On $\mathcal{V}$ we may use the equivalent norm \begin{equation*} \| \mathbf{v} \| =| \mathbf{v}_{xx}| _H, \end{equation*} and we do so when it is convenient. We also define \[ W_1 \equiv \{ w\in H^{1}(0,l_{\ast}) :w( 0)=0\},\quad W_2 \equiv \{ w\in H^{1}( l_{\ast },1) :w( 1)=0\}, \] with similar notation as above. Let $\mathbf{w}=(w_1,w_2)\in \mathcal{V}$, and let $\phi \in C^{\infty }( [0,T] ) $ with $\phi ( T) =0.$ We multiply \eqref{21} with $w_1(x)\phi(t) $ and integrate (formally) over $(0,l_{\ast }) \times (0,T)$, and integrating by parts we obtain the following variational equations for $u_1$, \begin{equation} \label{35} \begin{aligned} &-( v_{01},w_1) _{H_1}\phi ( 0) -\int_0^T( u_{1t},w_1) _{H_1}\phi '(t) dt \\ &-\int_0^T(\sigma _1( l_{\ast }) w_1( l_{\ast}) +( k_1u_{1xx}+d_1u_{1txx},w_{1xx}) _{H_1})\phi ( t) dt \\ &+\frac{1}{3}a_1\int_0^T\Big( ( u_{1x}+\Phi _x) ^3,w_{1x}\Big) _{H_1}\phi ( t)\,dt \\ &+ \int_0^T(-\overline{\nu }_1p( t) ( u_{1x},w_{1x}) _{H_1} - ( \Psi_x,w_1) _{H_1})\phi ( t)\,dt \\ &=\int_0^T( f_1,w_1) _{H_1}\phi ( t) . \end{aligned} \end{equation} Similarly, we multiply \eqref{22} with $w_2(x)\phi(t) $, integrate over $(l_{\ast },1)\times ( 0,T)$ and find \begin{equation} \label{36} \begin{aligned} &-( v_{02},w_2) _{H_2}\phi ( 0) -\int_0^T( u_{2t},w_2) _{H_1}\phi '(t) dt \\ &+\int_0^T( \sigma _2( l_{\ast }) w_2( l_{\ast }) +( k_2u_{2xx}+d_2u_{2txx},w_{2xx}) _{H_2}) \phi ( t) dt \\ &+ \int_0^T( ( \frac{1}{3}a_2u_{2x}^3-\overline{\nu } _2p( t) u_{2x}) ,w_{2x}) _{H_2}\phi (t) dt\\ &=\int_0^T( f_2,w_{2s}) _{H_2}\phi (t) dt \end{aligned} \end{equation} Here, the shear stresses $\sigma _1( l_{\ast }) $ and $\sigma _2( l_{\ast }) $ satisfy \eqref{28} and either the normal compliance condition \eqref{29} or the Signorini condition \eqref{213} and \eqref{214}. The convex set of admissible pairs of displacements is \begin{equation} \label{37} \begin{split} K=\big\{&\mathbf{w}=(w_1,w_2)\in V: w_1(0)=0, w_2(1)=0, \\ &\quad w_2(l_{\ast })-g_2\leq w_1(l_{\ast})\leq w_2(l_{\ast })+g_1\big\}. \end{split} \end{equation} and we set $\mathcal{K}=L^2(0, T; K)$. We make the following assumptions on the problem data: \begin{itemize} \item[(A1)] The initial displacements $\mathbf{u}_0=(u_{01}, u_{02})$ and velocities $\mathbf{v}_0=(v_{01}, v_{02})$ satisfy \begin{equation}\label{38} \mathbf{u}_0\in K,\quad \mathbf{v}_0 \in H. \end{equation} \item[(A2)] The traction $p=p(t)$ satisfies \begin{equation}\label{39} p\in C^{1}([0, T]), \quad |p|, |p'|\leq p_0. \end{equation} \item[(A3)] The motion of the left support $\phi=\phi(t)$ satisfies \begin{equation} \label{310} \phi\in C^2([0, T]),\quad u_{01}(0)=\phi(0). \end{equation} \item[(A4)] The body forces $\mathbf{f}=(f_1(x, t), f_2(x,t))$ satisfy \begin{equation}\label{311} \mathbf{f} \in H. \end{equation} \item[(A5)] The coefficients \begin{equation} \label{312} g_1, g_2, k_{i}, d_{i}, a_{i}, \overline{\nu}_{i}, \lambda_{i}, \quad i=1,2, \end{equation} are positive constants. \end{itemize} The main theoretical result in this work is the following existence and uniqueness result for the problem with the normal compliance contact condition. \begin{theorem} \label{t31} Assume that {\rm (A1)--(A5)} hold. Then, there exists a unique solution $\mathbf{u} =(u_1, u_2) \in \mathcal{V}$, such that $\mathbf{u}(\cdot, 0)=\mathbf{u}_0$, $\mathbf{u}_t(\cdot, 0)=\mathbf{v}_0$, and the variational equations \eqref{35} and \eqref{36} hold. The stress $\sigma(t)$ satisfies \eqref{29} in a weak sense. \end{theorem} The proof of the theorem is presented in Section \ref{sec:nc}. We conclude that Problem \ref{pbm21} has a unique weak solution. In the case of the Signorini condition, we consider the following variational formulation of the problem to find $\mathbf{u}$, $\mathbf{v}\in \mathcal{V}$ such that if $\mathbf{w,w}'\in \mathcal{V}$ is such that $\mathbf{w}( T) =\mathbf{u}(T) $ and \begin{equation*} -g_2\leq w_1(l_{\ast },t) -w_2(l_{\ast },t) \leq g_1, \end{equation*} then, \begin{align*} &( \mathbf{v}_0,\mathbf{w}( 0) -\mathbf{u}_0)_H -\int_0^T( \mathbf{v},\mathbf{v}-\mathbf{w}')_Hdt \\ &+\int_0^T\Big( \Big( \int_0^{l_{\ast }}k_1u_{1xx}( u_{1xx}-w_{1xx}) dx\Big) +\Big( \int_{l_{\ast }}^{1}k_2u_{2xx}( u_{2xx}-w_{2xx}) dx\Big) \Big) ds \\ &+\int_0^T\Big( \Big( \int_0^{l_{\ast }}d_1v_{1xx}( u_{1xx}-w_{1xx}) dx\Big) +\Big( \int_{l_{\ast }}^{1}d_2v_{2xx}( u_{2xx}-w_{2xx}) dx\Big) \Big) ds \\ &+\int_0^T\frac{1}{3}a_1\Big( ( u_{1x}+\Phi _x) ^3,u_{1x}-w_{1x}\Big) _{H_1}-\overline{\nu }_1( pu_{1x},u_{1x}-w_{1x}) _{H_1}dt \\ &+\int_0^T-( \Psi _x,u_1-w_1) _{H_1} \frac{1}{3}a_2\Big( ( ( u_{2x}) ^3-\nu _2pu_{2x}) ,u_{2x}-w_{2x}\Big) _{H_2}dt \\ &\leq \int_0^T(\mathbf{f},\mathbf{u}-\mathbf{w}) _Hds. \end{align*} The existence result for the problem with the Signorini condition is: \begin{theorem} \label{t32} Assume that {\rm (A1)--(A5)} hold. Then, there exists a function $\mathbf{u} =(u_1, u_2) \in \mathcal{K}$, such that $\mathbf{u}(\cdot, 0)=\mathbf{u}_0$, $\mathbf{u}_t(\cdot, 0)=\mathbf{v}_0$, and for a.a. $t\in(0, T)$ the variational equations \eqref{35} and \eqref{36} hold, together with \eqref{213} and \eqref{214}. \end{theorem} The theorem is established in Section \ref{sec:Signorini}, and is based on obtaining the necessary a priori estimates on the solutions of the problems with normal compliance and passing to the limit as the normal compliance stiffnesses become rigid; i.e., $\lambda_1, \lambda_2\to \infty$. We conclude that Problem \ref{pbm22} has a weak solution and note that, quite typically, the uniqueness of the solution is an unresolved question. We also note that the corresponding problems without viscosity have variational solutions, too, see Section \ref{sec:novisc}, however their uniqueness is open. \section{The problem with normal compliance} \label{sec:nc} We establish Theorem \ref{t31} by transforming the variational equation into an abstract evolution equation in $\mathcal{V}'$ to which we apply various results for such abstract equations. To deal with the cubic terms in the constitutive relations \eqref{23} we introduce a truncation. For detailed description of the various Sobolev Spaced used here, we refer to \cite{Ad}. First, we depict in Figure \ref{fig3} the normal compliance condition \eqref{29} with the Lipschitz continuous function $\Lambda$, and the contact shear is given by \begin{equation} \label{41} \sigma(t)= \Lambda(u_1(l_{*}, t)-u_2(l_{*}, t)). \end{equation} \begin{figure}[ht] \begin{center} \begin{picture}(225,92)(30,-12) \put(30,30){\vector(1,0){225}} \put(140,-10){\vector(0,1){95}} \put(245,18){$r$} \put(142,18){$0$} \thicklines \put(130,30){\put(-30,0){\color[rgb]{0,0,1} \line(-1,-5){10}} \put(50,0){\color[rgb]{0,0,1} \line(1,5){10}} \put(-30,0){\color[rgb]{0,0,1} \line(1,0){80}} \put(-30,0){\line(1,0){80}} \put(-54, -11){$-g_2$} \put(44,-11){$g_1$} \put(55,10){$\lambda_1$} \put(-30,-25){$\lambda_2$} \put(-14,42){$\Lambda(r)$} } \end{picture} \end{center} \caption{The normal compliance graph, the slopes are $\lambda_{i}$, $i=1,2$, $r=0$ corresponds to the center at $u_2(l_{*}, t)$} \label{fig3} \end{figure} When we study the problem with the Signorini condition, in the following section, we let $\lambda_1, \lambda_2\to \infty$ leading the multifunction $\Lambda_{\infty}=\partial \chi$ given in \eqref{212} and depicted in Figure \ref{fig4}. To deal with the nonlinear cubic term, we use truncation and replace the function $Q( r) =r^3$ with \begin{equation} Q_{m}( r) \equiv \begin{cases} m^3 & \text{if }r>m \\ r^3 & \text{if }| r| \leq m \\ -m^3& \text{if }r<-m \end{cases} \label{42} \end{equation} Integration of \eqref{35} and \eqref{36} in time over $(0, T)$ leads to the approximate problem of finding, for a fixed $m>0$, a pair $\mathbf{u}_{m}=(u_{1m}, u_{2m})\in \mathcal{V}$ such that \begin{equation} \begin{split} &\langle u_{1tt},w_1\rangle _{\mathcal{V}_1} -\int_0^T\sigma(t ) w_1( l_{\ast })\,dt +( k_1u_{1xx}+d_1u_{1txx}, w_{1xx}) _{\mathcal{H}_1} \\ &+\frac{1}{3}a_1( Q_{m}( u_{1x}+\Phi_x),w_{1x}) _{\mathcal{H}_1} -\overline{\nu} _1 ( p u_{1x},w_{1x}) _{\mathcal{H}_1} -( \Psi _x,w_1) _{\mathcal{H}_1} \\ &=( f_1,w_1) _{\mathcal{H}_1}, \end{split}\label{43} \end{equation} and \begin{equation} \begin{split} &\langle u_{2tt},w_2\rangle _{\mathcal{V}_2}- \int_0^T\sigma ( t ) w_2( l_{\ast })\,dt +( k_2u_{2xx}+d_2u_{2txx},w_{2xx}) _{\mathcal{H}_2} \\ &+ \frac{1}{3}a_2 ( (Q_{m}( u_{2x}) -\overline{\nu} _2pu_{2x}), w_{2x}) _{\mathcal{H}_2}\\ &=( f_2,w_2)_{\mathcal{H}_2}, \end{split} \label{44} \end{equation} where we used condition \eqref{28} for $\sigma$, along with the initial conditions $\mathbf{u}(\cdot, 0)=\mathbf{u}_0$, $\mathbf{u}_t(\cdot, 0)=\mathbf{v}_0$. Here, $w_{i}\in \mathcal{V}_{i}$ and the time derivatives are understood in the sense of $V_{i}'$ valued distributions. Let $\mathbf{u} =(u_1, u_2) \in \mathcal{V}$, we use the notation \begin{equation*} \mathbf{v}=\mathbf{u}',\quad \mathbf{u}( t) =\mathbf{u}_0+\int_0^t \mathbf{v} (s)\, ds, \end{equation*} where here and below the prime denotes the partial $t$ derivative. We use the notation $\gamma $ for the trace map from $V$ on $x=l_{\ast }$ and the projection $\pi _{i}\mathbf{u}\equiv u_{i}$, for $i=1,2$, and $\gamma^{*}$ is the adjoint map of $\gamma$. Next, we define the operators $A,B,N_{m}( t,\cdot ) :V\to V'$ by \begin{gather} \langle A\mathbf{v},\mathbf{w}\rangle \equiv ( \int_0^{l_{\ast }}d_1v_{1xx}w_{1xx}dx) +( \int_{l_{\ast }}^{1}d_2v_{2xx}w_{2xx}dx) , \label{45} \\ \langle B\mathbf{u},\mathbf{w}\rangle \equiv ( \int_0^{l_{\ast }}k_1u_{1xx}w_{1xx}dx) +( \int_{l_{\ast }}^{1}k_2u_{2xx}w_{2xx}dx) , \label{46} \end{gather} and \begin{equation} \begin{split} \langle N_{m}( t,\mathbf{u}) ,\mathbf{w}\rangle &=\frac{1}{3}a_1( Q_{m}( u_{1x}+\Phi _x) ,w_{1x}) _{H_1}- \overline{\nu}_1( pu_{1x},w_{1x}) _{H_1} \\ &\quad -( \Psi _x,w_1) _{H_1}+\frac{1}{3}a_2( ( Q_{m}( u_{2x}) -\overline{\nu }_2pu_{2x}) ,w_{2x}) _{H_2}. \end{split} \label{47} \end{equation} Here and below, $\langle \cdot ,\cdot \rangle $ denotes the duality pairing between $V$ and $V'$ and we consider these operators as also being defined on $\mathcal{V}$ in the obvious way. Then, \eqref{35} and \eqref{36}, along with the initial conditions, can be written as an abstract equation in $\mathcal{V}'$ as follows: \begin{problem} \label{pbm41} \rm Find a pair $\mathbf{u}_{m}, \mathbf{v}_{m} \in \mathcal{V}$ with $\mathbf{v}'_{m} \in \mathcal{V}'$, for integer $m>0$, such that, \begin{gather} \begin{aligned} &\mathbf{v} '+A\mathbf{v} +B\mathbf{u}+N_{m}( \cdot ,\mathbf{u}) +\pi _1^{\ast }\gamma ^{\ast }\Lambda(u_1(l_{*}, \cdot)-u_2(l_{*}, \cdot))\\ & -\pi _2^{\ast}\gamma ^{\ast }\Lambda(u_1(l_{*}, \cdot)-u_2(l_{*}, \cdot)) =\mathbf{f}, \end{aligned}\label{48} \\ \mathbf{v} ( 0) =\mathbf{v} _0, \label{49} \\ \mathbf{u}( t) = \mathbf{u}_0+\int_0^t \mathbf{v} (s) ds. \label{410} \end{gather} \end{problem} Here, and below, we omit the subscript $m$ from the solution, until we need it in passing to the limit $m\to \infty$. We note that the operator $N_{m}$ is Lipschitz continuous, and satisfies \begin{equation*} \| N_{m}( t,\mathbf{u}) -N_{m}( t,\mathbf{w} ) \| _{V'}\leq K_{m}\| \mathbf{u}-\mathbf{w} \| _{V}, \end{equation*} where the constant $K_{m}$ which is independent of $t$. Also, let $N( t,\mathbf{u}) :V\to V'$ be defined by \begin{equation} \begin{split} \langle N( \cdot ,\mathbf{u}) ,\mathbf{w}\rangle &= \frac{1}{3}a_1( ( u_{1x}+\Phi _x) ^3,w_{1x}) _{H_1}-\overline{\nu }_1( pu_{1x},w_{1x}) _{H_1} \\ &\quad -( \Psi _x,w_1) _{H_1}+\frac{1}{3}a_2( ( ( u_{2x}) ^3-\nu _2pu_{2x}) ,w_{2x}) _{H_2}. \end{split} \label{411} \end{equation} Next, let \begin{equation*} R_{m}( r) =\int_0^{r}Q_{m}( z) dz, \end{equation*} Moreover, using assumption (A2), we obtain \begin{align*} \int_0^t p( s) ( u_{1x},u_{1tx}) _{H_1}\,ds &=\frac{ 1}{2}\int_0^t p( s) \frac{d}{ds}| u_{1x}|_{H_1}^2 \\ &\geq -p_0| u_{1x}( t) | _{H_1}^2-C( p( 0) ,u_{01}) -p_0\int_0^t | u_{1x}( s) | _{H_1}^2ds. \end{align*} This implies that for suitable $\delta >0$, depending only on $a_1$ and $a_2$, we can derive the estimate \begin{align*} &\int_0^t \langle N_{m}( s,\mathbf{u}( s) ), \mathbf{v}( s) \rangle ds \\ &\geq \delta \int_0^{l_{\ast }}R_{m}( u_{1x}( t) +\Phi _x( t) ) dx-\frac{a_1}{3}\int_0^t ( Q_{m}( u_{1x}+\Phi _x) ,\Phi _x') _{H_1}dt \\ &\quad +\delta \int_{l_{\ast }}^{1}R_{m}( u_{2x}( t) ) dx-C( u_{10},\Phi _x( 0,\cdot ) ,\Phi _x) -( 2+p_0) \int_0^t \int_0^{l_{\ast }}| u_{1x}| ^2\,dx\,ds \\ &\quad -C( \Psi _x,\Psi _{tx},\Psi _x( 0,\cdot ) ) -C( p) | u_{1x}( t) | _{H_1}^2. \end{align*} Consider that second term on the right of the inequality. \begin{equation*} \big| \int_0^t ( Q_{m}( u_{1x}+\Phi _x) ,\Phi _x') _Hdt\big| \leq C( \Phi _x') \int_0^t \int_0^{l_{\ast }}Q_{m}( | u_{1x}+\Phi _x| ) \,dx\,ds+C( \Phi _x',\Phi _x). \end{equation*} Then, adjusting the constants, we find \begin{equation*} \leq C( \Phi _x') \int_0^t \int_0^{l_{\ast }}R_{m}( u_{1x}+\Phi _x) \,dx\,ds+C( \Phi _x',\Phi_x). \end{equation*} It follows that \begin{align*} &\int_0^t \langle N_{m}( s,\mathbf{u}( s) ), \mathbf{v}( s) \rangle ds\\ &\geq \delta \int_0^{l_{\ast }}R_{m}( u_{1x}( t) +\Phi _x( t) ) dx-C( \Phi _x') \int_0^t \int_0^{l_{\ast }}R_{m}( u_{1x}+\Phi _x) \,dx\,ds \\ &\quad -C( \Phi _x',\Phi _x) +\delta \int_{l_{\ast }}^{1}R_{m}( u_{2x}( t) ) dx-C( u_{10},\Phi _x( 0,\cdot ) ,\Phi _x) \\ &\quad -( 2+p_0) \int_0^t \int_0^{l_{\ast }}| u_{1x}| ^2\,dx\,ds -C( \Psi _x,\Psi _{tx},\Psi _x( 0,\cdot ) ) -C( p) | u_{1x}( t) | _{H_1}^2. \end{align*} Written in a simpler form, we have, \begin{equation} \begin{split} &\int_0^t \langle N_{m}( s,\mathbf{u}( s) ), \mathbf{v}( s) \rangle ds\\ &\geq \delta \int_0^{l_{\ast }}R_{m}( u_{1x}( t) +\Phi_x( t) ) dx +\delta \int_{l_{\ast }}^{1}R_{m}(u_{2x}( t) ) dx\\ &\quad -C( p) \int_0^t \| \mathbf{u}\|_{W}^2ds -C( p) \| \mathbf{u}( t) \|_{W}^2 -C\int_0^t \int_0^{l_{\ast }}R_{m}( u_{1x}+\Phi _x) \,dx\,ds -C, \end{split} \label{412} \end{equation} where the constants depend on the initial data and the given functions, but not on $a_{i},d_{i}$ or $k_{i}$, $i=1,2$. The following existence and uniqueness result holds for each integer $m$. \begin{lemma}\label{lemma42} For each positive integer $m$, there exists a unique solution $(\mathbf{u}_m, \mathbf{v}_m)$ to Problem \ref{pbm41}. \end{lemma} \begin{proof} For the sake of convenience, let the operator $M(\cdot ,\mathbf{u})$ be defined as \begin{equation*} B\mathbf{u}+N_{m}( \cdot ,\mathbf{u}) +\pi _1^{\ast }\gamma ^{\ast }\Lambda ( u_1( l_{\ast }) -u_2( l_{\ast }) ) -\pi _2^{\ast }\gamma ^{\ast }\Lambda ( u_1( l_{\ast }) -u_2( l_{\ast }) ), \end{equation*} so that $M$ is Lipschitz as a map from $\mathcal{V}$ to $\mathcal{V}^{\prime}$ with a constant $K$ depending on $m$ and $\lambda _1,\lambda _2$. For $\mathbf{u_1}\in \mathcal{V}$, let $\mathbf{v}_1$ be the solution of \begin{equation*} \mathbf{v}_1'+A\mathbf{v}_1+M( t,\mathbf{u}_1) = \mathbf{f},\quad {\mathbf{v}}_1( 0) =\mathbf{v}_0. \end{equation*} Then, let $\mathbf{w}_1$ be given by \begin{equation*} \mathbf{w}_1( t) =\mathbf{u}_0+\int_0^t \mathbf{v} _1( s) ds. \end{equation*} Consider the map $\mathbf{u}_1\to \mathbf{v}_1\to \mathbf{w}_1.$ Consider $\mathbf{u}_1,\mathbf{u}_2$ and the corresponding $\mathbf{w}_{i}$ that result in this way. First, from the equation, we have \begin{align*} &\frac{1}{2}| \mathbf{v}_1( t) -\mathbf{v}_2( t) | _H^2+\delta \int_0^t \| \mathbf{v} _1( s) -\mathbf{v}_2( s) \| _{V}^2ds \\ & \leq \int_0^t \langle M( s,\mathbf{u}_1) -M( s, \mathbf{u}_1) ,\mathbf{v}_1( s) -\mathbf{v}_2( s) \rangle ds \\ &\leq C\int_0^t \| \mathbf{u}_1( s) -\mathbf{u} _2( s) \| _{V}^2ds+\frac{\delta }{2} \int_0^t \| \mathbf{v}_1( s) -\mathbf{v}_2(s) \| _{V}^2ds, \end{align*} and so \begin{equation*} | \mathbf{v}_1( t) -\mathbf{v}_2( t)| _H^2+\int_0^t \| \mathbf{v}_1( s) -\mathbf{v}_2( s) \| _{V}^2ds \leq C\int_0^t \| \mathbf{u}_1( s) -\mathbf{u}_2(s) \| _{V}^2ds. \end{equation*} Now, it follows from the definition of $\mathbf{w}_{i}$ and the above inequality, that \begin{align*} \| \mathbf{w}_1( t) -\mathbf{w}_2( t) \| _{V}^2 &\leq C( T) \int_0^t \| \mathbf{v }_1( s) -\mathbf{v}_2( s) \| _{V}^2ds \\ &\leq C\int_0^t \| \mathbf{u}_1( s) -\mathbf{u} _2( s) \| _{V}^2ds. \end{align*} Iterating this inequality sufficient number of times shows that a high enough power of this map is a contraction map on $\mathcal{V}$. Therefore, it has a unique fixed point $\mathbf{u}$ which yields the unique solution to Problem \ref{pbm41}. \end{proof} Next, we derive the necessary estimates that are independent of $m$. We denote by $(\mathbf{u}_m, \mathbf{v}_m)$ the solution guaranteed in Lemma \ref{lemma42}, however, below we omit the subscript $m$. From \eqref{48} and the estimate given for $N_{m}$ in \eqref{412}, it follows that there exists a constant $\delta >0$, depending on the parameters of the problem, such that \begin{align*} &\frac{1}{2}| \mathbf{v}( t) | _H^2+\min ( d_1,d_2) \int_0^t \| \mathbf{v}( s) \| _{V}^2ds+\min ( k_1,k_2) \| \mathbf{u} ( t) \| _{V}^2 \\ &+\delta \int_0^{l_{\ast }}R_{m}( u_{1x}( t) +\Phi _x( t) ) dx+\delta \int_{l_{\ast }}^{1}R_{m}( u_{2x}( t) ) dx \\ &+\int_0^t \Lambda ( u_1( s,l_{\ast }) -u_2( s,l_{\ast }) ) ( v_1( s,l_{\ast }) ) ds \\ &-\int_0^t \Lambda ( u_1( s,l_{\ast }) -u_2( s,l_{\ast }) ) ( v_2( s,l_{\ast }) ) ds \\ &\leq \frac{1}{2}| \mathbf{v}_0| _H^2+ C( p') \int_0^t \| \mathbf{u} \| _{W}^2ds+C( p) \| \mathbf{u}( t)\| _{W}^2 \\ &\quad +\int_0^t \int_0^{l_{\ast }}R_{m}( u_{1x}+\Phi _x) \,dx\,ds+ C. \end{align*} The two terms involving $\Lambda $ taken together are nonnegative. In fact, they equal \[ S( u_1( t, l_{\ast }) -u_2( t,l_{\ast }) ), \] where \[ S( r) =\int_0^{r}\Lambda ( s)ds. \] Then, by using Gronwall's inequality to eliminate the term \[ \int_0^t \int_0^{l_{ \ast }}R_{m}( u_{1x}+\Phi _x) \,dx\,ds, \] on the right-hand side, we can adjust the constants and obtain \begin{align*} &| \mathbf{v}( t) | _H^2+\min ( d_1,d_2) \int_0^t \| \mathbf{v}( s) \| _{V}^2ds+\min ( k_1,k_2) \| \mathbf{u} ( t) \| _{V}^2 \\ &+\delta \int_0^{l_{\ast }}R_{m}( u_{1x}( t) +\Phi _x( t) ) dx+\delta \int_{l_{\ast }}^{1}R_{m}(u_{2x}( t) ) dx +S( u_1( t, l_{\ast }) -u_2( t,l_{\ast })) \\ &\leq C\Big( | \mathbf{v}_0| _H^2+\int_0^t \| \mathbf{u}\| _{W}^2ds+\| \mathbf{u}( t) \| _{W}^2+1\Big). \end{align*} The two terms involving $R_{m}$ are nonnegative, since $R_{m}$ is nonnegative. Therefore, discarding these two terms yields \begin{align*} &| \mathbf{v}( t) | _H^2+\min (d_1,d_2) \int_0^t \| \mathbf{v}( s) \| _{V}^2ds\\ &+\min ( k_1,k_2) \| \mathbf{u}( t) \| _{V}^2 +S( u_1( t,l_{\ast }) -u_2( t,l_{\ast })) \\ &\leq C\Big( | \mathbf{v}_0| _H^2+\int_0^t \| \mathbf{u}\| _{W}^2ds+\| \mathbf{u}( t) \| _{W}^2+1\Big). \end{align*} The compactness of the embedding of $V$ into $W$ implies \begin{align*} &| \mathbf{v}( t) | _H^2+\min ( d_1,d_2) \int_0^t \| \mathbf{v}( s)\| _{V}^2ds\\ &+\min ( k_1,k_2) \| \mathbf{u}( t) \| _{V}^2 +S( u_1( t,l_{\ast }) -u_2( t,l_{\ast })) \\ &\leq C\Big( | \mathbf{v}_0| _H^2+\int_0^t \| \mathbf{u}\| _{W}^2ds+1\Big) +\frac{1}{2}\min ( k_1,k_2) \| \mathbf{u}( t) \| _{V}^2+C| \mathbf{u}( t)| _H^2. \end{align*} Also, \[ \ | \mathbf{u}( t) | _H^2\leq C\Big( | \mathbf{u}_0| ^2+\int_0^t |\mathbf{v}( s) | ^2ds\Big), \] and so an application of the Gronwall inequality yields \begin{equation} \begin{aligned} &| \mathbf{v}( t) | _H^2+\min (d_1,d_2) \int_0^t \| \mathbf{v}( s) \| _{V}^2ds\\ &+S( u_1( t,l_{\ast }) -u_2(t,l_{\ast }) ) +\min ( k_1,k_2) \| \mathbf{u}( t) \| _{V}^2\\ &\leq C( \Phi ,u_0,v_0,T,p_0,k_1,k_2) . \end{aligned} \label{413} \end{equation} It follows from the continuity of the embedding of $H^{1}$ into $C([ 0,1])$ that this estimate provides an upper bound on the values of $|u_{ix}( x,t) |$ that is independent of $m$. Therefore, by taking $m$ sufficiently large, we find that the values of $u_{ix}$ and $u_{1x}( t) +\Phi _x( t) $ remain in the unmodified region in the definition of $Q_{m}$ in \eqref{42}. This observation completes the proof of the following abstract version of Theorem \ref{t31}. \begin{theorem} \label{t43} Let {\rm (A1)--(A5)} hold. Then, for each pair $(\lambda_1, \lambda_2)$ there exists a unique solution $(\mathbf{u}, \mathbf{v})$ to \begin{gather} \begin{aligned} &\mathbf{v} '+A\mathbf{v} +B\mathbf{u}+N( \cdot ,\mathbf{u} ) +\pi _1^{\ast }\gamma ^{\ast }\Lambda( u_1(l_{\ast }) -u_2( l_{\ast }) ) \\ &-\pi _2^{\ast }\gamma ^{\ast }\Lambda ( u_1( l_{\ast }) -u_2( l_{\ast }) ) =\mathbf{f}, \end{aligned}\label{414} \\ \mathbf{v} ( 0) =\mathbf{v} _0,\label{415} \\ \mathbf{u}( t) = \mathbf{u}_0+\int_0^t \mathbf{v} (s) ds. \label{416} \end{gather} This solution satisfies the estimate \begin{equation} \begin{aligned} &| \mathbf{v} ( t) | _H^2+\min ( d_1,d_2) \int_0^t \| \mathbf{v} ( s) \| _{V}^2ds +\| \mathbf{u}( t) \| _{V}^2\\ &+\int_0^{l_{\ast}}u_{1x}^{4}( t) \,dx +\int_{l_{\ast }}^{1}u_{2x}^{4}( t)\,dx +S( u_1( t,l_{\ast }) -u_2( t,l_{\ast}) ) \\ &\leq C( p_0, u_0, v_0, C_0,k_1,k_2,T), \end{aligned}\label{417} \end{equation} where the constant on the right depends on the indicated quantities but is independent of $\lambda_1, \lambda_2, d_1$, and $ d_2$. \end{theorem} The estimate follows directly from \eqref{413} and the continuity of the embedding of $H^{1}( I) $ into $C( I) $ when $I$ is an interval. The continuity of this embedding implies that the solution to the truncated problem is such that $u_{1x}$ and $u_{2x}$ remain in the region where the truncation is inactive, thus yielding the unique solution in the theorem. This proves Theorem \ref{t31} as well. \section{The problem with the Signorini condition} \label{sec:Signorini} We turn to the idealized problem with perfectly rigid stops, and use the results of the previous section. Indeed, we obtain a weak solution for the problem with the Signorini contact condition as a limit of the solutions of the problem with normal compliance in the limit when the normal compliance stiffness coefficients tend to infinity. Therefore, in this section we replace the coefficients with \begin{equation} \label{51} \lambda_1=\lambda_2= n, \end{equation} and obtain the necessary a priori estimates to pass to the limit as $n\to \infty$. \begin{figure}[ht] \begin{center} \begin{picture}(225,95)(30,-10) \put(30,30){\vector(1,0){225}} \put(140,-10){\vector(0,1){95}} \put(245,18){$r$} \put(142,18){$0$} \thicklines \put(130,30){\put(-30,-30) {\color[rgb]{0,0,1} \line(0,1){30}}\put(-30,0) {\line(1,0){80}} \put(50,0){\color[rgb]{0,0,1} \line(0,1){30}} \put(-30,0){\color[rgb]{0,0,1} \line(1,0){80}} %\put(0,0){\qbezier(0,-3)(0,0)(0,3)} \put(-54, -11){$-g_2$} \put(44,-11){$g_1$} \put(-20,40){$\partial \chi(r)$} } \end{picture} \end{center} \caption{The Signorini graph $\partial \chi(r)$, $r=0$ corresponds to the center at $u_2(l_{*}, t)$} \label{fig4} \end{figure} We have that the graph $\partial \chi(r)$, depicted in Figure \ref{fig4}, can be obtained from the graph of $\Lambda$ in Figure \ref{fig3} in the limit $n \to \infty$. For the sake of convenience we will assume in this section that \begin{equation*} u_{0ixx}\in L^{\infty }( I_{i}),\quad i=1,2. \end{equation*} Now, we recall the Signorini condition \eqref{213}-\eqref{214}, \begin{gather*} -g_2 \leq u_1-u_2 \leq g_1, \\ \sigma(t)=\sigma_1(l_*, t)=-\sigma_2(l_*, t) \in \partial \chi (u_1( l_{\ast }, t) -u_2( l_{\ast }, t) ). \end{gather*} We note that assumption (A1) implies that $\chi( u_{10}( l_{\ast }) -u_{20}( l_{\ast}) ) =0$. We now add a subscript $n$ to the solution to the problem with the normal compliance condition obtained in Section \ref{sec:nc} that corresponds to the stiffnesses \eqref{51}, so we denote the solutions of \eqref{414}--\eqref{416} as $(\mathbf{u}_{n}, \mathbf{v} _{n})$. We use below the following important theorem found in \cite{Sim87}. \begin{theorem} \label{t51} Let $q>1$ and let $E\subseteq W\subseteq X$, where the injection map from $W$ to $X$ is continuous and is compact from $E$ to $W$. Let $S_R$ be defined by \begin{equation*} S_R=\big\{ u: \| u( t) \| _{E}+\| u'\| _{L^{q}( [a,b] ;X) }\leq R, \;t\in [a,b] \big\}. \end{equation*} Then, $S_R\subseteq $ $C( [a,b] ;W) $ and if $\{ u_{n}\} \subseteq S_R$, there exists a subsequence, $\{ u_{n_{k}}\} $ that converges uniformly to a function $u\in C( [a,b] ;W) $. \end{theorem} It follows from the theorem and estimate \eqref{417} that there exists a subsequence, still denoted as $\mathbf{u}_{n}$, such that as $n\to \infty$ the following convergences are obtained. \begin{equation} u_{inx}\to u_{ix}\quad \text{strongly in }C( [0,T];C( I_{i}) ), \label{52} \end{equation} where here and below $I_1=[0,l_{\ast }] ,I_2=[l_{\ast },1]$, and $i=1,2$. \begin{gather} u_{ni}\to u_{i}\quad \text{strongly in }C( [0,T];C( I_{i}) ), \label{53} \\ \mathbf{u}_{n}\to \mathbf{u}\quad \text{weak}\ast \text{ in }L^{\infty}( 0,T;V), \label{54} \\ \mathbf{v} _{n}\to \mathbf{v}\quad\text{weakly in }\mathcal{V},\label{55} \\ \mathbf{v} _{n}\to \mathbf{v} \quad \text{weak}\ast \text{ in }L^{\infty}( 0,T;H). \label{56} \end{gather} Next, let $\Lambda_n$ be the function \eqref{29} with an obvious subscript, then it follows from the bound in \eqref{417} that \[ S_n( u_{1n}( l_{\ast }, t) -u_{2n}( l_{\ast}, t) ) \leq C, \] where $C$ is independent of $n$, and so in the limit it follows from \eqref{53} that \begin{equation*} -g_2\leq ( u_1(l_{\ast },t) -u_2(l_{\ast},t) ) \leq g_1. \end{equation*}% Therefore, $\mathbf{u}\in \mathcal{K}$ and so it satisfies the necessary constraint. It follows from the equations estimate \eqref{52}, that $v_{i}'$ is bounded in \[ L^2\Big( 0,T;( H_0^2( I_{i}) ) '\Big). \] More precisely, we mean $i^{\ast }v_{in}'$ is bounded, where $i:H_0^2 \to V_0$ is the inclusion map. Therefore, we can also assume that \begin{equation} v_{ni}'\to v'\quad \text{in }L^2( 0,T;(H_0^2( I_{i}) ) '). \label{57} \end{equation} To continue, we need the following fundamental theorem in \cite{Lio69}. \begin{theorem}\label{t52} Let $E\subseteq W\subseteq X$, where the injection map $i:W \to X$ is continuous and is compact from $E$ to $W$. Let $p\geq 1$, let $ q>1$, and define \begin{align*} S\equiv \big\{&u\in L^{p}( [a,b] ;E) :u'\in L^{q}( [a,b] ;X) \text{ and}\\ &\| u\| _{L^{p}([a,b] ;E) }+\| u'\| _{L^{q}( [a,b] ;X) }\leq R\big\}. \end{align*} Then, $S$ is precompact in $L^{p}( [a,b] ;W) $, hence, if $\{ u_{n}\} _{n=1}^{\infty }\subseteq S$, it has a subsequence $\{ u_{n_{k}}\} $ which converges in $L^{p}( [a,b] ;W).$ \end{theorem} We apply this theorem to the case where $W=H_{i}$ and $E=V_{i}$ and find that addition to the above convergences, we also have \begin{equation} v_{ni}\to v_{i}\quad \text{strongly in }\mathcal{H}_{i}, \label{58} \end{equation} for a suitable subsequence. We let \[ V_0=\{\mathbf{u} =(u_1, u_2) \in V: u_{i}\in H_0^2( I_{i}) \; i=1,2\}, \] and let $\mathcal{V}_0=L^2((0, T); V_0)$. Then, it follows from the definition of the operators in \eqref{414} and the estimates above, that the expression \begin{equation} u_{n1tt}+d_1v_{n1xxxx}+k_1u_{n1xxxx} -\frac{1}{3}a_1( ( u_{n1x}+\Phi_x) ^3) _x +\overline{\nu} _1p u_{n1xx}+\Psi _{xx} \label{59} \end{equation} is bounded in $\mathcal{H}_1$, independently of $n$. Here, we use the appropriate measurable representatives so that the result is product measurable. It is obtained by applying the expression to $( \varphi ,0)$, where $\varphi \in C_0^{\infty }( [0,T] \times [0,l_{\ast }] ) $, and using the density of the functions $\varphi $ in $\mathcal{H}_1$. Similarly, we find that the expression \begin{equation} u_{n2tt}+d_2v_{n2xxxx}+k_2u_{n2xxxx}- \frac{1}{3}a_2(( u_{n2x}) ^3-\nu _2pu_{n2x}) _x \label{510} \end{equation} is bounded in $\mathcal{H}_2$, independently of $n$. Because of the strong convergence in \eqref{52} - \eqref{56}, there exists a further subsequence, still indexed by $n$, such that, in addition to \eqref{52} - \eqref{56}, it also follows that the expression in \eqref{59} converges weakly in $\mathcal{H}_1$ to \begin{equation} m(x, t) \equiv u_{1tt}+d_1v_{1xxxx}+k_1u_{1xxxx} -\frac{1}{3} a_1( ( u_{1x}+\Phi_x ) ^3) _x+\overline{\nu} _1pu_{1xx}+\Psi _{xx}, \label{511} \end{equation} and the expression in \eqref{510} converges weakly in $\mathcal{H}_1$ to \begin{equation} u_{2tt}+d_2v_{2xxxx}+k_2u_{2xxxx}-( \frac{a_2}{3}( u_{2x}) ^3-\overline{\nu} _2pu_{2x}) _x. \label{512} \end{equation} Now, let $\psi \in W_0^{2,\infty }( I_1) ,\varphi \in W_0^{1,\infty }( 0,T)$ and consider \begin{align} &\int_{I_1}\int_0^Tm(x, t) u_1( x, t) \psi ( x) \varphi ( t) \,dt\,dx \label{513} \\ &= \int_{I_1}\int_0^T\Big( {-u_{1t}^2} +d_1v_{1xx}u_{1xx}+k_1u_{1xx}^2 \nonumber \\ &\quad + \frac{a_1}{3}( u_{1x}+\Phi_x) ^3u_{1x}\Big) \psi(x) \varphi(t)s \,dt\,dx \label{514} \\ &\quad +\int_{I_1}\int_0^T( -\overline{\nu} _1pu_{1x}^2-\Psi _xu_{1x}) \psi ( x) \varphi ( t) \,dt\,dx \label{515} \\ &\quad +\int_{I_1}\int_0^T( -u_{1t}\varphi '( t) \psi ( x) u_1+d_1v_{1xx}\psi _{xx}(x) \varphi ( t) u_1) \,dt\,dx \\ &\quad + \int_{I_1}\int_0^T \Big(k_1u_{1xx}\psi _{xx}(x)\phi(t) u_1+\frac{1}{3}a_1 ( u_{1x}+\Phi_x ) ^3\psi _x(x)\phi(t) u_1\Big)\,dt\,dx \\ &\quad -\int_{I_1}\int_0^T(\overline{ \nu} _1pu_{1x}\psi _x(x)\phi(t) u_1 +\Phi _x\psi _x(x)\phi(t) u_1) \,dt\,dx. \label{516} \end{align} We proceed in a similar way and obtain the analogous expression for the solutions that depend on $n$, so we replace $u_1$ with $u_{n1}$ and $v_1$ with $v_{n1}$ in \eqref{513}--\eqref{516}. We also replace $m( x, t) $ with $m_{n}(x, t) $. We obtain, \begin{align} &\int_{I_1}\int_0^Tm_{n}( x, t) u_{n1}( x, t) \psi ( x) \varphi ( t) \,dt\,dx \label{517} \\ &= \int_{I_1}\int_0^T\Big( {-u_{n1t}^2} +d_1v_{n1xx}u_{n1xx}+k_1u_{n1xx}^2 \nonumber \\ &\quad + \frac{1}{3} a_1 ( u_{n1x}+\Phi_x ) ^3u_{n1x}\Big) \psi(x) \varphi(t) \,dt\,dx \label{518} \\ &\quad +\int_{I_1}\int_0^T( -\overline{\nu} _1pu_{n1x}^2-\Psi _xu_{n1x}) \psi ( x) \varphi ( t) \,dt\,dx \label{519} \\ &\quad +\int_{I_1}\int_0^T( -u_{n1t}\varphi '( t) \psi ( x) u_{n1}+d_1v_{n1xx}\psi _{xx}(x)\varphi(t) u_{n1}) \,dt\,dx \nonumber \\ &\quad+ \int_{I_1}\int_0^T (k_1u_{n1xx}\psi _{xx}(x)\varphi(t) u_{n1}+\frac{1}{3}a_1 ( u_{n1x}+\Phi_x ) ^3\psi _x(x)\varphi(t) u_{n1}) \,dt\,dx \nonumber \\ &\quad -\int_{I_1}\int_0^T( \overline{\nu} _1pu_{n1x}\psi _x(x)\varphi(t) u_{n1}+\Psi _x\psi _x(x)\varphi(t) u_{n1}) \,dt\,dx. \label{520} \end{align} Then, the convergences established above imply that $m_{n}$ converges weakly to $m$ in $\mathcal{H}_1$ as $n\to \infty$. Indeed, \eqref{517} converges to \eqref{513} and the part between \eqref{519} - \eqref{520} converges to \eqref{515} - \eqref{516}, and the part between \eqref{518} - \eqref{519} converges to \eqref{514} - \eqref{515}. This is summarized as the following lemma. \begin{lemma}\label{lemma53} Let $\psi \in W_0^{2,\infty }( I_1) ,\phi \in W_0^{1,\infty }( 0,T)$, then \begin{align*} &\lim_{n\to \infty }\int_{I_1}\int_0^T\Big( -u_{n1t}^2 +d_1v_{n1xx}u_{n1xx}+k_1u_{n1xx}^2 \\ &+ \frac{1}{3} a_1( u_{n1x}+\Phi_x) ^3u_{n1x}\Big) \psi \phi \,dt\,dx \\ &+\int_{I_1}\int_0^T( -\overline{\nu} _1pu_{n1x}^2-\Psi _xu_{n1x}) \psi \phi \,dt\,dx \\ &=\int_{I_1}\int_0^T\Big( {-u_{1t}^2} +d_1v_{1xx}u_{1xx}+k_1u_{1xx}^2 + \frac{1}{3}a_1 ( u_{1x}+\Phi_x ) ^3u_{1x}\Big) \psi \phi \,dt\,dx \\ &\quad +\int_{I_1}\int_0^T( -\overline{\nu} _1pu_{1x}^2-\Psi _xu_{1x}) \psi \phi \,dt\,dx. \end{align*} \end{lemma} We claim that the above estimate holds without the product $\psi \phi $. To show this, we let $\varphi_{\delta }$ be a piecewise linear function such that $\varphi _{\delta}(0)=\varphi _{\delta }(T)=0$, and $\varphi _{\delta }(t)=1$ for $t\in [\delta ,T-\delta ]$, and let $\psi _{\delta }\in W_0^{2,\infty }( I_1) $ be a function such that $\psi _{\delta }(0)=\psi _{\delta }(1)=0$, and $\psi _{\delta }(x)=1$ for $x\in [\delta ^2,l_{\ast }-\delta ^2] $, with both $\psi _{\delta }$ and $\phi _{\delta }$ having values in $[0,1] $. Then, we have the following lemma. \begin{lemma}\label{lemma54} The following estimate holds, \begin{align*} &\limsup_{n\to \infty }\int_{I_1}\int_0^T\Big( { u_{n1t}^2}-d_1v_{n1xx}u_{n1xx}-k_1u_{n1xx}^2 - \frac{1}{3}a_1 ( u_{n1x}+\Phi_x) ^3u_{n1x}\Big) \,dt\,dx \\ &+\int_{I_1}\int_0^T( \overline{\nu} _1pu_{n1x}^2+\Psi _xu_{n1x}) \,dt\,dx \\ &\leq \int_{I_1}\int_0^T\Big( {u_{1t}^2} -d_1v_{1xx}u_{1xx}-k_1u_{1xx}^2 - \frac{1}{3}a_1 ( u_{1x}+\Phi_x) ^3u_{1x}\Big) \,dt\,dx \\ &\quad +\int_{I_1}\int_0^T( \overline{\nu} _1pu_{1x}^2+\Psi _xu_{1x}) \,dt\,dx. \end{align*} \end{lemma} \begin{proof} Let $\phi _{\delta }$ and $\psi _{\delta }$ be the functions described above. We denote by $Q_{\delta} = I_1\setminus [ \psi _{\delta }=1]$, and assume that \[ \operatorname{meas}( Q_{\delta }) <\delta, \] and that $\delta $ is small enough so that if $\eta >0$ is given then the following estimate is valid: \begin{equation} \frac{d_1}{2\delta }\int_{I_1}u_{01xx}^2( 1-\psi _{\delta }) dx<\eta. \label{521} \end{equation} This is easily obtained because of the assumption that $u_{01xx}\in L^{\infty }$ and by the construction, $1-\psi _{\delta }=0$ off a set of measure $2\delta ^2$. Also, let $\delta $ be small enough so that \begin{equation} \int_{I_1}\int_0^Tv_1^2( 1-\psi _{\delta }\phi _{\delta }) \,dt\,dx<\eta. \label{522} \end{equation} Next, consider the following integrals \begin{gather} J_{11}\equiv \int_{I_1}\int_0^Tv_{n1}^2( 1-\psi _{\delta }\phi _{\delta }) \,dt\,dx, \label{523} \\ J_{12}\equiv \int_{I_1}\int_0^T-d_1v_{n1xx}u_{n1xx}( 1-\psi _{\delta }\phi _{\delta }) \,dt\,dx, \label{524} \\ J_{13}\equiv\int_{I_1}\int_0^T-k_1u_{n1xx}^2( 1-\psi _{\delta }\phi _{\delta }) \,dt\,dx. \label{525} \end{gather} First, we note that it follows from \eqref{522} and the strong convergence result in \eqref{58}, that if $n$ is sufficiently large, then \begin{equation*} \int_{I_1}\int_0^Tv_{n1}^2( 1-\psi _{\delta }\phi _{\delta }) \,dt\,dx<\eta. \end{equation*} Below, we only consider such $n$. Next, we consider \eqref{525} and find \begin{equation*} \limsup_{n\to \infty }\int_{I_1}\int_0^T-k_1u_{n1xx}^2( 1-\psi _{\delta }\phi _{\delta }) \,dt\,dx<\eta \end{equation*} It remains to consider \eqref{524}, which is of the form \begin{equation*} -\frac{1}{2}d_1 \int_{I_1}\int_0^T\frac{d}{dt}( u_{n1xx}^2) ( 1-\psi _{\delta }\phi _{\delta }) \,dt\,dx. \end{equation*} We integrate this by parts and obtain \begin{align*} &-\frac{1}{2}d_1\int_{I_1}\Big( u_{n1xx}^2( 1-\psi _{\delta }\phi _{\delta }) |_0^T-\int_0^Tu_{n1xx}^2( -\psi _{\delta }\phi _{\delta }') dt\Big) dx \\ &=-\frac{1}{2}d_1 \Big(\int_{I_1}u_{n1xx}^2( T) dx- \int_{I_1}u_{01xx}^2 + \int_{I_1}\int_0^Tu_{n1xx}^2 \psi _{\delta }\phi _{\delta }'\Big)\,dt\,dx \\ &=-\frac{d_1}{2}\int_{I_1}u_{n1xx}^2( T) dx+\frac{d_1}{2} \int_{I_1}u_{01xx}^2dx \\ &\quad-\frac{d_1}{2\delta }\int_{I_1}\int_0^{\delta }u_{n1xx}^2\psi _{\delta }\,dt\,dx+\frac{d_1}{2\delta }\int_{I_1}\int_{T-\delta }^Tu_{n1xx}^2\psi _{\delta }\,dt\,dx \\ &\leq \frac{d_1}{2\delta }\int_{I_1}\int_{T-\delta }^T( u_{n1xx}^2-u_{n1xx}^2( T) ) \,dt\,dx +\frac{d_1}{2\delta }\int_{I_1}\int_0^{\delta }( u_{01xx}^2-u_{n1xx}^2\psi _{\delta }) \,dt\,dx \\ &=\frac{d_1}{2\delta }\int_{I_1}\int_{T-\delta }^T( u_{n1xx}^2-u_{n1xx}^2( T) ) \,dt\,dx +\frac{d_1}{2\delta }\int_{I_1}\int_0^{\delta }( u_{01xx}^2-u_{n1xx}^2) \psi _{\delta }\,dt\,dx \\ &\quad +\frac{d_1}{2\delta }\int_{I_1}\int_0^{\delta }u_{01xx}^2( 1-\psi _{\delta }) \,dt\,dx \end{align*} and \eqref{521} implies \begin{equation} \leq \frac{d_1}{2\delta }\int_{I_1}\int_{T-\delta }^T( u_{n1xx}^2-u_{n1xx}^2( T) ) \,dt\,dx +\frac{d_1}{2\delta }\int_{I_1}\int_0^{\delta }( u_{01xx}^2-u_{n1xx}^2) \psi _{\delta }\,dt\,dx+\eta l_{\ast }. \label{526} \end{equation} Now, the second term in \eqref{526} is dominated by \begin{align*} &\frac{d_1}{2\delta }\int_{I_1}\int_0^{\delta }| ( u_{01xx}^2-u_{n1xx}^2) | \,dt\,dx\\ &\leq \frac{d_1}{\delta } \int_{I_1}\int_0^{\delta }\int_0^t | v_{n1xx}u_{n1xx}| ds\,dt\,dx, \\ &\leq \frac{d_1}{\delta }\int_0^{\delta }\int_{I_1}\int_0^{\delta }| v_{n1xx}( x,s) u_{n1xx}( x,s) |\,ds\,dx\,dt \\ &\leq d_1( \int_{I_1}\int_0^{\delta }| v_{n1xx}( x,s) | ^2dsdx) ^{1/2}( \int_0^{\delta }\int_{I_1}| u_{n1xx}( x,s) | ^2\,dx\,ds) ^{1/2} \\ &\leq Cd_1\sqrt{\delta }\equiv C\sqrt{\delta}, \end{align*} thanks to estimate \eqref{417}. Similar considerations apply to the first term of \eqref{526}. Therefore, if $\delta $ is small enough, $J_{12}$ in \eqref{524} is no larger than $\eta ( 1+l_{\ast }) $. We assume below that $\delta $ is this small. Next, recall the strong convergence results on the lower order terms in \eqref{52}. It follows that \begin{align*} &\limsup_{n\to \infty }\int_{I_1}\int_0^T\Big({ u_{n1t}^2}-d_1v_{n1xx}u_{n1xx}-k_1u_{n1xx}^2 - \frac{1}{3}a_1 ( u_{n1x}+\Phi_x) ^3u_{n1x}\Big) \,dt\,dx \\ &+\int_{I_1}\int_0^T( \overline{\nu} _1pu_{n1x}^2+\Psi _xu_{n1x}) \,dt\,dx \\ &\leq \limsup_{n\to \infty } \int_{I_1}\int_0^T( u_{n1t}^2-d_1v_{n1xx}u_{n1xx}-k_1u_{n1xx}^2) \psi _{\delta }\phi _{\delta }\,dt\,dx \\ &\quad - \lim_{n\to \infty } \; \frac{1}{3}a_1 \int_{I_1}\int_0^T ( u_{n1x}+\Phi_x ) ^3u_{n1x}\, \,dt\,dx \\ &\quad +\lim_{n\to \infty }\int_{I_1}\int_0^T(\overline{ \nu} _1pu_{n1x}^2+\Psi _xu_{n1x}) \,dt\,dx \\ &\quad + \limsup_{n\to \infty } \int_{I_1}\int_0^T( u_{n1t}^2-d_1v_{n1xx}u_{n1xx}-k_1u_{n1xx}^2) ( 1-\psi _{\delta }\phi _{\delta }) \,dt\,dx. \end{align*} Now, by Lemma \ref{lemma53} and the above estimates on the integrals \eqref{523} - \eqref{525}, we find \begin{align*} &\limsup_{n\to \infty }\int_{I_1}\int_0^T\Big({ u_{n1t}^2}-d_1v_{n1xx}u_{n1xx}-k_1u_{n1xx}^2 - \frac{1}{3}a_1( u_{n1x}+\Phi_x) ^3u_{n1x}\Big) \,dt\,dx\\ &+\int_{I_1}\int_0^T( \overline{\nu} _1pu_{n1x}^2+\Psi _xu_{n1x}) \,dt\,dx \\ &\leq \int_{I_1}\int_0^T( u_{1t}^2-d_1v_{1xx}u_{1xx}-k_1u_{1xx}^2) \psi _{\delta }\phi _{\delta }\,dt\,dx \\ &\quad -\frac{1}{3}a_1 \int_{I_1}\int_0^T( ( u_{1x}+\Phi_x ) ^3u_{1x} ) \,dt\,dx \\ &\quad +\int_{I_1}\int_0^T( \overline{\nu} _1pu_{1x}^2+\Psi _xu_{1x}) \,dt\,dx+( 3+l_{\ast }) \eta \end{align*} since $u_{1t}^2-d_1v_{1xx}u_{1xx}-k_1u_{1xx}^2$ is in $L^{1}$, this implies that for $\delta $ possibly even smaller, \begin{align*} &\leq \int_{I_1}\int_0^T( u_{1t}^2-d_1v_{1xx}u_{1xx}-k_1u_{1xx}^2) \,dt\,dx -\frac{1}{3}a_1 \int_{I_1}\int_0^T( ( u_{1x}+\Phi_x ) ^3 u_{1x}) \,dt\,dx \\ &\quad +\int_{I_1}\int_0^T( \overline{\nu} _1pu_{1x}^2+\Psi _xu_{1x}) \,dt\,dx+( 4+l_{\ast }) \eta. \end{align*} Since $\eta $ is arbitrary, this establishes the lemma. \end{proof} The same arguments establish the following lemma. \begin{lemma} \label{lemma55} The following estimate holds, \begin{align*} &\limsup_{n\to \infty }\int_{I_2}\int_0^T( u_{n2t}^2-d_2v_{n2xx}u_{n2xx}-k_1u_{n2xx}^2-\frac{a_2}{3}( u_{n2x}) ^{4}) \,dt\,dx \\ &+\int_{I_2}\int_0^T\overline{\nu} _2pu_{n2x}^2\,dt\,dx \\ &\leq \int_{I_2}\int_0^T( u_{2t}^2-d_2v_{2xx}u_{2xx}-k_1u_{2xx}^2-\frac{a_2}{3}( u_{2x}) ^{4}) \,dt\,dx %\\& +\int_{I_2}\int_0^T\overline{\nu} _2pu_{2x}^2\,dt\,dx. \end{align*} \end{lemma} Lemmas \ref{lemma54} and \ref{lemma54} imply the following two inequalities. \begin{equation} \label{527} \begin{split} &\liminf_{n\to \infty }\int_{I_2}\int_0^T( -u_{n2t}^2+d_2v_{n2xx}u_{n2xx}+k_1u_{n2xx}^2+\frac{a_2}{3}( u_{n2x}) ^{4}) \,dt\,dx \\ &-\int_{I_2}\int_0^T\overline{\nu} _2pu_{n2x}^2\,dt\,dx \\ &\geq \int_{I_2}\int_0^T( -u_{2t}^2+d_2v_{2xx}u_{2xx}+k_1u_{2xx}^2+\frac{a_2}{3}( u_{2x}) ^{4}) \,dt\,dx \\ &\quad -\int_{I_2}\int_0^T\overline{\nu} _2pu_{2x}^2\,dt\,dx, \end{split} \end{equation} and \begin{equation} \begin{split} &\liminf_{n\to \infty }\int_{I_1}\int_0^T\Big({ -u_{n1t}^2}+d_1v_{n1xx}u_{n1xx}+k_1u_{n1xx}^2 + \frac{1}{3}a_1 ( u_{n1x}+\Phi_x ) ^3u_{n1x}\Big) \,dt\,dx \\ &-\int_{I_1}\int_0^T( \overline{\nu} _1pu_{n1x}^2+\Psi _xu_{n1x})\,dt\,dx \\ &\geq \int_{I_1}\int_0^T\Big(-{u_{1t}^2+} d_1v_{1xx}u_{1xx}+k_1u_{1xx}^2\ +\frac{a_1}{3}( u_{1x}+\Phi_x ) ^3u_{1x}) \,dt\,dx \\ &\quad -\int_{I_1}\int_0^T( \overline{\nu} _1pu_{1x}^2+\Psi _xu_{1x}) \,dt\,dx. \end{split} \label{528} \end{equation} Now, we define $\Lambda_{n}$ as \begin{equation} \label{529} \begin{split} &\Lambda _{n}(u_{n1}(l_{\ast },t)-u_{n2}(l_{\ast },t)) \\ &\equiv -n( u_{n1}(l_{\ast },t) -u_{n2}(l_{\ast },t) -g_1) _{+}+n( u_{n2}(l_{\ast },t) -u_{n1}(l_{\ast },t) -g_2) _{+}, \end{split} \end{equation} and the two operators \begin{gather*} P_{n}( \mathbf{u}_{n}) \equiv \pi _1^{\ast }\gamma ^{\ast }\Lambda _{n}( u_{n1}(l_{\ast },t) -u_{n2}(l_{\ast },t) ) -\pi _2^{\ast }\gamma ^{\ast }\Lambda _{n}( u_1(l_{\ast },t) -u_2(l_{\ast },t) ) , \\ P( \mathbf{u}) \equiv \pi _1^{\ast }\gamma ^{\ast }\partial \chi ( u_1(l_{\ast },t) -u_2(l_{\ast },t) ) -\pi _2^{\ast }\gamma ^{\ast }\partial \chi ( u_1(l_{\ast },t) -u_2(l_{\ast },t) ). \end{gather*} As was noted above, these operators are monotone because of the graph of $\Lambda _{n}$. Also, the solution of the problem with normal compliance satisfies \begin{equation} \mathbf{v} _{n}'+A\mathbf{v} _{n}+B\mathbf{u}_{n}+N( \cdot, \mathbf{u}_{n}) +P_{n}( \mathbf{u}_{n}) =\mathbf{f}, \label{530} \end{equation} together with $\mathbf{v} _{n}( 0) =\mathbf{v} _0$ and $\mathbf{u}_{n}( t) = \mathbf{u}_0+\int_0^t \mathbf{v} _{n}( s) ds$. It was shown above that \begin{equation*} -g_2\leq u_1(l_{\ast },t) -u_2(l_{\ast },t) \leq g_1. \end{equation*} Inequalities \eqref{527} - \eqref{528} can be written simply in terms of the operators as \begin{equation} \begin{aligned} &\liminf_{n\to \infty }\Big( -\int_0^T( \mathbf{v} _{n}, \mathbf{v} _{n}) _Hdt+\int_0^T\langle A\mathbf{v} _{n}, \mathbf{u}_{n}\rangle dt \\ &+\int_0^T\langle B\mathbf{u}_{n},\mathbf{u}_{n}\rangle dt +\int_0^T\langle N( \cdot, \mathbf{u}_{n}), \mathbf{u}_{n}\rangle dt\Big) \\ &\geq \Big( -\int_0^T( \mathbf{v} ,\mathbf{v} ) _Hdt+\int_0^T\langle A\mathbf{v} ,\mathbf{u}\rangle dt+\int_0^T\langle B\mathbf{u}, \mathbf{u}\rangle dt +\int_0^T\langle N( \cdot ,\mathbf{u}), \mathbf{u} \rangle dt\Big). \end{aligned} \label{531} \end{equation} Here, we used the notation $\langle\cdot, \cdot \rangle$ for the duality pairing between $V$ and $V'$. Now, let $\mathbf{w}, \mathbf{w}'\in \mathcal{V}$ such that $\mathbf{w}( T) =\mathbf{u}( T) $ and for each $t$, \begin{equation*} -g_2\leq w_1(l_{\ast },t) -w_2(l_{\ast },t) \leq g_1. \end{equation*} We apply \eqref{530} to $\mathbf{u}_{n}-\mathbf{w}$ and perform time integration on both sides. Thus, \begin{align*} &-\int_0^T( \mathbf{v}_{n},\mathbf{v}_{n}-\mathbf{w}^{'}) dt+ ( \mathbf{v}_0,\mathbf{w}( 0) -\mathbf{u}_0) _H +\int_0^T\langle A\mathbf{v}_{n},\mathbf{u}_{n}- \mathbf{w}\rangle ds \\ &+\int_0^T\langle B\mathbf{u}_{n},\mathbf{u}_{n}-\mathbf{w} \rangle ds+\int_0^T\langle N( \cdot ,\mathbf{u} _{n}) ,\mathbf{u}_{n}-\mathbf{w}\rangle dt +\int_0^T\langle P_{n}( \mathbf{u}_{n}) ,\mathbf{u}_{n}- \mathbf{w}\rangle dt\\ &=\int_0^T( \mathbf{f},\mathbf{u}_{n}-\mathbf{w}) _Hds. \end{align*} Since $P_{n}( \mathbf{w}) =0$, it follows that \begin{equation*} \int_0^T\langle P_{n}( \mathbf{u}_{n}) ,\mathbf{u}_{n}- \mathbf{w}\rangle dt=\int_0^T\langle P_{n}( \mathbf{u} _{n}) -P_{n}( \mathbf{w}) ,\mathbf{u}_{n}-\mathbf{w} \rangle dt\geq 0; \end{equation*} therefore, \begin{align*} &-\int_0^T( \mathbf{v} _{n},\mathbf{v} _{n}-\mathbf{w}') dt+( \mathbf{v} _0,\mathbf{w}( 0) -\mathbf{u} _0) _H+\int_0^T\langle A\mathbf{v} _{n},\mathbf{u}_{n}- \mathbf{w}\rangle ds \\ &+\int_0^T\langle B\mathbf{u}_{n},\mathbf{u}_{n}-\mathbf{w} \rangle ds+\int_0^T\langle N( \cdot ,\mathbf{u} _{n}) ,\mathbf{u}_{n}-\mathbf{w}\rangle dt \\ &\leq\int_0^T( \mathbf{f},\mathbf{u}_{n}-\mathbf{w}) _Hds. \end{align*} Passing to the $\liminf_{n\to \infty }$ of both sides, it follows from \eqref{531} that \begin{equation} \begin{split} &-\int_0^T( \mathbf{v} ,\mathbf{v} -\mathbf{w}') dt+( \mathbf{v} _0,\mathbf{w}( 0) -\mathbf{u}_0) _H+\int_0^T\langle A\mathbf{v} ,\mathbf{u}-\mathbf{w}\rangle ds \\ &+\int_0^T\langle B\mathbf{u},\mathbf{u}-\mathbf{w}\rangle ds+\int_0^T\langle N( \cdot ,\mathbf{u}) ,\mathbf{u}- \mathbf{w}\rangle dt \\ &\leq \int_0^T( \mathbf{f},\mathbf{u}-\mathbf{w}) _Hds. \end{split} \label{532} \end{equation} This concludes the proof of Theorem \ref{t32}, which we restate as: \begin{theorem} Assume that {\rm (A1)--(A5)} hold along with the regularity assumption on the initial data \begin{equation*} u_{0ixx}\in L^{\infty }( I_{i}) . \end{equation*} Then, there exists a pair $(\mathbf{u},\mathbf{v})$ such that \begin{equation*} \mathbf{u}( t) =\mathbf{u}_0+\int_0^t \mathbf{v}(s) ds, \end{equation*} $\mathbf{v}\in \mathcal{V}$, and $\mathbf{u}( t) \in \mathcal{\ K}$ such that whenever $\mathbf{w} ( t) \in \mathcal{K}$ with $\mathbf{w},\mathbf{w}'\in \mathcal{V}$, and $\mathbf{w}(T) =\mathbf{u}( T)$, then the variational inequality \eqref{532} holds. \end{theorem} \section{The inviscid case} \label{sec:novisc} In this section we study the case with the Signorini contact condition when there is no viscosity, so, as above, we replace the normal compliance stiffness coefficients $\lambda_1, \lambda_2$ and the viscosity coefficients $d_1, d_2$ with the modified coefficients \[ n \lambda_1,\quad n \lambda_2, \quad \frac{d_1}{n},\quad \frac{d_2}{n}, \] and consider a sequence of solutions, one for each positive integer $n$. Then, we obtain the necessary estimates and consider the limit when $n \to \infty$. The above discussion of the normal compliance case yields the following result. \begin{theorem}\label{t61} Assume that {\rm (A1)--(A5)} hold. Then, for each $n$ there exists a unique solution to the abstract problem \begin{equation} \begin{split} &\mathbf{v} '+\frac 1n A\mathbf{v} +B\mathbf{u}+N( \cdot ,\mathbf{u} ) +\pi _1^{\ast }\gamma ^{\ast } n \Lambda ( u_1( l_{\ast }) -u_2( l_{\ast }) ) \\ &-\pi _2^{\ast}\gamma ^{\ast } n \Lambda ( u_1( l_{\ast }) -u_2( l_{\ast }) ) =\mathbf{f}, \end{split}\label{61} \end{equation} together with $\mathbf{v} ( 0) =\mathbf{v} _0$, and $\mathbf{u}( t) = \mathbf{u}_0+\int_0^t \mathbf{v} ( s) ds$. This solution satisfies for a.e. $t\in (0, T)$ the estimate \begin{equation} \begin{split} &| \mathbf{v} ( t) | _H^2+ \frac1n \min(d_1, d_2) \int_0^t \| \mathbf{v} ( s) \| _{V}^2ds +\int_0^{l_{\ast}}u_{1x}( t) ^{4}dx\\ &+\int_{l_{\ast }}^{1}u_{2x}( t)^{4}dx+\| \mathbf{u}( t) \| _{V}^2 + nS ( u_1( t,l_{\ast }) -u_2( t,l_{\ast }) ) \\ &\leq C( p_0,\mathbf{v}_0, \mathbf{u}_0,C_0,k_1,k_2,T) \end{split}\label{62} \end{equation} where the constant $C$ depends on the indicated quantities but is independent of $n$ and $d_{i}$. \end{theorem} Estimate \eqref{62} yields the same type of convergence results that were obtained above, with the exception of \eqref{55}, which is lost but is replaced with a related convergence. Specifically, we have \begin{equation} \label{63} \begin{gathered} u_{inx}\to u_{ix}\quad \text{strongly in }C( [0,T];C( I_{i}) ), \\ u_{ni}\to u_{i}\quad \text{strongly in }C( [0,T];C( I_{i}) ), \\ \mathbf{u}_{n}\to \mathbf{u}\quad \text{weak}\ast \text{ in }L^{\infty}( 0,T;V) \\ \frac1{\sqrt{n}} \mathbf{v} _{nxx}\to 0 \text{ strongly in }\mathcal{H},\\ \mathbf{v} _{n}\to \mathbf{v}\quad \text{weak}\ast \text{ in }L^{\infty}( 0,T;H). \end{gathered} \end{equation} It follows from \eqref{62} and \eqref{63}, as above, that \begin{equation*} -g_2\leq ( u_1( t,l_{\ast }) -u_2( t,l_{\ast}) ) \leq g_1. \end{equation*} Therefore, $\mathbf{u}\in \mathcal{K}$ and so it satisfies the necessary constraint. Estimates \eqref{62} and \eqref{61} imply that, just as above, the function $v_{i}'$ is bounded in $L^2( 0,T;( H_0^2(I_{i}) ) ')$. Therefore, we can also assume that \begin{equation*} v_{ni}'\to v'\text{ in }L^2\Big( 0,T;( H_0^2( I_{i}) ) '\Big). \end{equation*} Now, the rest of the argument is similar to the above except for the issue involving the viscous term. The formula \eqref{524} now takes the form \begin{equation} -\frac{d_1}n \int_{I_1}\int_0^T v_{n1xx}u_{n1xx}( 1-\psi _{\delta }\phi _{\delta }) \,dt\,dx. \end{equation} Then, all the same considerations hold in the argument for approximation. Consider next the integral \begin{equation*} \frac 1n \int_{I_1}\int_0^T v_{n1xx}u_{n1xx}\,dt\,dx, \end{equation*} which converges to 0 because of the estimate \begin{align*} & \big| \frac 1n \int_{I_1}\int_0^T v_{n1xx}u_{n1xx}\,dt\,dx\big| \\ &\leq \Big( \frac 1{n^2}\int_{I_1}\int_0^T v_{nxx}^2\,dt\,dx\Big) ^{1/2}\Big( \int_{I_1}\int_0^Tu_{n1xx}^2\,dt\,dx\Big) ^{1/2} \\ &\leq \frac 1{\sqrt{n}}\Big( \int_{I_1}\int_0^T\frac 1n v_{nxx}^2\,dt\,dx\Big) ^{1/2}\Big( \int_{I_1}\int_0^Tu_{n1xx}^2\,dt\,dx\Big) ^{1/2}, \end{align*} which converges to 0 by the estimates derived above. It follows that \begin{align*} &\liminf_{n\to \infty }\Big( -\int_0^T( \mathbf{v} _{n}, \mathbf{v} _{n}) _Hdt+\int_0^T\langle \frac 1n A\mathbf{v} _{n}, \mathbf{u}_{n}\rangle dt \\ &+\int_0^T\langle B\mathbf{u}_{n},\mathbf{u}_{n}\rangle dt +\int_0^T\langle N( \cdot ,\mathbf{u}_{n}), \mathbf{u}_{n}\rangle dt\Big) \\ &\geq \Big( -\int_0^T( \mathbf{v} ,\mathbf{v} ) _Hdt+\int_0^T\langle B\mathbf{u},\mathbf{u}\rangle dt +\int_0^T\langle N( \cdot ,\mathbf{u}), \mathbf{u}\rangle dt\Big), \end{align*} so that the viscous term disappears. Then, the same argument as above yields the theorem for the inviscid case and with the Signorini contact condition. \begin{theorem}\label{t62} Assume that {\rm (A1)--(A5)} hold along with the regularity assumption on the initial data \begin{equation*} u_{0ixx}\in L^{\infty }( I_{i}). \end{equation*} Then, there exists a pair $\mathbf{u},\mathbf{v}\in \mathcal{V}$, $\mathbf{u}( t) =\mathbf{u}_0+\int_0^t \mathbf{v} (s) ds$, $\mathbf{u}( t) \in \mathcal{K}$ such that whenever $\mathbf{w} ( t) \in \mathcal{K}$ with $\mathbf{w}'\in \mathcal{V} $, $\mathbf{w}( T) =\mathbf{u}( T) $, it follows \begin{align*} &-\int_0^T( \mathbf{v} ,\mathbf{v} -\mathbf{w}') _Hdt +\int_0^T\langle B\mathbf{u},\mathbf{u}-\mathbf{w}\rangle ds+\int_0^T\langle N( \cdot ,\mathbf{u}) ,\mathbf{u}- \mathbf{w}\rangle dt \\ &\leq \int_0^T( \mathbf{f},\mathbf{u}- \mathbf{w}) _Hds -( \mathbf{v} _0,\mathbf{w}( 0) -\mathbf{u}_0) _H. \end{align*} \end{theorem} To obtain the existence result for the inviscid problem with normal compliance we replace the inequality with the following variational equation \begin{align*} &-\int_0^T( \mathbf{v} ,\mathbf{v} -\mathbf{w}') _Hdt +\int_0^T\langle B\mathbf{u},\mathbf{u}-\mathbf{w}\rangle ds+\int_0^T\langle N( \cdot ,\mathbf{u}) ,\mathbf{u}- \mathbf{w}\rangle dt \\ &+ \int_0^T\Lambda( u_1( t,l_{\ast }) -u_2( t,l_{\ast }) ) ( w_1( t,l_{\ast }) ) dt \\ &-\int_0^T\Lambda ( u_1( t,l_{\ast }) -u_2( t,l_{\ast }) ) ( w_2( t,l_{\ast }) ) dt \\ &= \int_0^T( \mathbf{f},\mathbf{u}- \mathbf{w}) _Hds -( \mathbf{v} _0,\mathbf{w}( 0) -\mathbf{u} _0) _H, \end{align*} and note that the requirement that $\mathbf{u}\in \mathcal{K}$ is not needed. This concludes the analysis part of this work. The rest of the paper deals with the numerical aspects of the model. \section{Computational method; numerical algorithm} \label{sec:algorithm} In this section we describe our numerical schemes for the model. Unlike the Euler--Bernoulli or the Timoshenko beams, the two Gao beams are nonlinear, which makes the approach more complex. We choose a fully discrete numerical method and use a uniform discretization of the time domain $[0, T]$ and a mixture of the Galerkin approximation and central difference formula to discretize the space domain $[0, 1]$. The central difference formula is combined with the finite element method (FEM) when we deal with the nonlinear Gao terms in the two equations. Convergence results of similar numerical schemes have been investigated in \cite{ahn:dfcgts}, using a modified truncated operator in the discrete case. We note that a different numerical algorithm for a Gao beam, but without contact, was presented in \cite{adbps:asndb}, where the fully explicit finite difference method (FDM) was used. Since the equation of a Gao beam contains second and fourth order derivatives, we use a nonconforming mixed finite element method. Indeed, nonconforming methods which have been studied in many papers and books (e.g., \cite{sl:mtfem,p:femep} and the references therein) provide more efficient and practical algorithms for the fourth order or even higher order PDEs. The mixed method that yields a saddle-point problem has been first proposed in \cite{pj:mfem} and its convergence analysis has been studied extensively, see, e.g., \cite{ijj:ammumdn, db:fe} and the references therein. We now describe our numerical schemes. The interval $[0,\, 1]$ is divided into $m$ subintervals $I_{i}=[x_{i},\, x_{i+1}]$, for $0\leq i\leq m-1$, with grid points \[ 0=x_00$ is likely to be large. As can be seen, over the time interval $[0,\, T]$, we use a hybrid of three numerical schemes: for the elasticity and viscosity the midpoint rule is applied and for the contact conditions the implicit Euler method is used, and for the nonlinear term in the equation of motion the central difference formula is applied. The fully discrete approximation of the displacement, $\mathbf{u}_{h_t,h_x}$ is a linear interpolant with \[ \mathbf{u}_{h_t,h_x}(\cdot,\, t_{k}) =\mathbf{u}_{h_x}^k, \quad \text{and} \quad \mathbf{u}_{h_t,h_x}(\cdot,\, t_{k+1}) =\mathbf{u}_{h_x}^{k+1}, \] and the fully discrete approximation of the velocity $\mathbf{v}_{h_t,h_x}$ is a constant interpolant with $\mathbf{v}_{h_t,h_x}(\cdot,\, t)=\mathbf{v}_{h_x}^{k+1}$ for $t\in(t_{k},\, t_{k+1}]$. We regard the nonlinear term $((\mathbf{u}_{h_t,h_x}^k)')^2$ as the square of a strong derivative, so we apply the central difference formula into it. Thus, at each time step $t_{k}=k\, h_t$, we deal with the following numerical differentiations, at $x=x_{i}$, \[ \Big((u_{1h_t,h_x}^k)'\Big)^2 =\Big(\frac{u_{1i+1}^k-u_{1i-1}^k} {2h_x}\Big)^2,\quad \Big((u_{2h_t,h_x}^k)'\Big)^2 =\Big(\frac{u_{2i+1}^k-u_{2i-1}^k}{2h_x}\Big)^2. \] Next, we set up the linear system associated with the nonlinear term. The coefficient matrix, at each time step $t=t_{k}$, has the form \begin{gather*} \mathbf{L}_1^k \equiv (L_1^k)_{ij} =\int_0^{l_{*}}\psi_{1,i}'(x)\psi_{1,j}'(x) \Big(a_1\Big(\frac{u_{1i+1}^k-u_{1i-1}^k}{2h_x}\Big)^2-\overline{\nu}\, p^k\big)dx, \\ \mathbf{L}_2^k \equiv (L_2^k)_{ij} =\int_{l_{*}}^{l}\psi_{1,i}'(x) \psi_{1,j}'(x) \Big(a_2\Big(\frac{(u_{2i+1}^k-u_{2i-1}^k)}{2h_x}\Big)^2 -\overline{\nu}\, p^k\Big)dx. \end{gather*} Thus, we obtain the tridiagonal finite element coefficient matrix. The main diagonal is assembled in the way that if $i=j$, $(L_1^k)_{ij}=\varsigma_{i-1}^k+\varsigma_{i}^k$ for $1\leq i\leq i_{*}$. The two subdiagonals are assembled as follows; if $j=i+1$ or $(L_1^k)_{ij}=-\varsigma_{i}^k$ for $1\leq i\leq i_{*}-1$ and if $i=j+1$ or $(L_1^k)_{ij}=-\varsigma_{i}^k$ for $1\leq j\leq i_{*}-1$. If $|i-j|>1$, $(L_1^k)_{ij}=0$. Here each element of the symmetric matrix $L_{ij}^k$ with $1\leq i,\, j\leq i_{*}$ is defined by \begin{align*} \varsigma_{i}^k &=\int_{x_{i}}^{x_{i+1}}\Big(a_1(\Big(frac{u_{1i+1}^k-u_{1i-1}^k}{2h_x}\Big)^2 -\overline{\nu}\, p^k\Big) dx \\ &=\frac{a_1(u_{1i+1}^k-u_{1i-1}^k)}{4h_x}^2-\overline{\nu}\, p^kh_x. \end{align*} Similarly, the coefficient matrix $\mathbf{L}_2^k$ can be assembled at each time step $t=t_{k}$. When we compute the next step solutions $(\mathbf{u}_{h_x}^{k+1},\,\mathbf{v}_{h_x}^{k+1})$ satisfying the fully discrete formulations \eqref{eq:fully1}--\eqref{eq:fully2}, we multiply both sides of \eqref{eq:fully1} by the basis functions $\psi_{1,i}(x)$ and apply integration by parts, thus, \begin{equation} \begin{pmatrix} \frac{1}{h_t}\sum_{j=1}^{i_{*}}(v_{1j}^{k+1}-v_{1j}^k) \int_0^{l_{*}}\psi_{1,j}(x)\psi_{1,i}(x)dx\\ \frac{1}{h_t}\sum_{j=i_{*}}^{m-1}(v_{2j}^{k+1}-v_{2j}^k) \int_{l_{*}}^{0}\psi_{1,j}(x)\psi_{1,i}(x)dx \end{pmatrix} =\begin{pmatrix} \mathbf{D}_1\\ \mathbf{D}_2 \end{pmatrix},\label{eq:fully3} \end{equation} where \begin{equation} \label{eq:d1} \begin{split} \mathbf{D}_1 & = -\frac{k_1}{2}\sum_{j=1}^{i_{*}}(\omega_{1j}^{k+1} +\omega_{1j}^k)\int_0^{l}\psi_{0,j}(x)\psi_{1,i}(x)dx \\ & \quad -\frac{d_1}{2}\sum_{j=1}^{i_{*}}(\varpi_{1i}^k+ \varpi_{1i}^k)\int_0^{l}\psi_{0,j}(x)\psi_{1,i}(x)dx+\boldsymbol{\sigma}_1^k \\ & \quad -\sum_{j=1}^{i_{*}}\Big(a_1\Big(\frac{u_{1j+1}^k-u_{1j-1}^k}{2h_x}\Big)^2 -\overline{\nu}\, p^k\Big)u_{1j}^k\int_0^{l}\psi_{1,j}'(x)\psi_{1,i}'(x)dx, \end{split} \end{equation} and \begin{equation} \label{eq:d2} \begin{split} \mathbf{D}_2 & = -\frac{k_2}{2}\sum_{j=i_{*}}^{m-1}(\omega_{2j}^{k+1} +\omega_{2j}^k)\int_0^{l}\psi_{0,j}(x)\psi_{1,i}(x)dx \\ &\quad -\frac{d_2}{2}\sum_{j=i_{*}}^{m-1}(\varpi_{2i}^k+\varpi_{2i}^k) \int_0^{l}\psi_{0,j}(x)\psi_{1,i}(x)dx-\boldsymbol{\sigma}_2^k \\ &\quad -\sum_{j=i_{*}}^{m-1}\Big(a_2\Big(\frac{u_{2j+1}^k-u_{2j-1}^k}{2h_x}\Big)^2 -\overline{\nu}\, p^k\Big)u_{2j}^k\int_0^{l}\psi_{1,j}'(x)\psi_{1,i}'(x)dx. \end{split} \end{equation} The substitutions $\boldsymbol{\omega}_{h_t,h_x}^k=(\mathbf{u}_{h_t,h_x}^k)''''$, and $(\boldsymbol{\varpi}_{h_t,h_x}^k)_t= (\mathbf{v}_{h_t,h_x}^k)''''$ in the equation \eqref{eq:substituion} allow us to obtain the following intermediate equations: \begin{equation} \sum_{j=1}^{i_{*}}\omega_{1j}^k\int_0^{l}\psi_{0,j}(x)\psi_{3,i}(x)dx= \sum_{j=1}^{i_{*}}u_{1j}^k\int_0^{l}\psi''_{3,j}(x)\psi''_{3,i}(x)dx, \label{eq:sub1} \end{equation} and \begin{equation} \sum_{j=1}^{i_{*}}\omega_{2j}^k\int_0^{l}\psi_{0,j}(x)\psi_{3,i}(x)dx =\sum_{j=1}^{i_{*}}u_{2j}^k\int_0^{l}\psi''_{3,j}(x)\psi''_{3,i}(x)dx.\label{eq:sub2} \end{equation} Since the volumes of the linear and the cubic B-splines near each node are equal, it follows that, for $1\leq j\leq m-1$, \begin{equation} \int_0^{l}\psi_{1,j}(x)\, dx=\int_0^{l}\psi_{3,j}(x)\, dx. \label{eq:volume} \end{equation} Thus, it follows from \eqref{eq:fully3}--\eqref{eq:volume} that the linear system corresponding to equation \eqref{eq:fully3} can be written as follows, \[ \begin{pmatrix} \frac{1}{h_t}\mathbf{M}_1(\mathbf{v}_1^{k+1}-\mathbf{v}_1^k)\\[2pt] \frac{1}{h_t}\mathbf{M}_2(\mathbf{v}_2^{k+1}-\mathbf{v}_2^k) \end{pmatrix} =\begin{pmatrix} \mathbf{D}_1\\ \mathbf{D}_2 \end{pmatrix}, \] where \begin{gather*} \mathbf{D}_1=-\frac{k_1}{2}\mathbf{K}_1(\mathbf{u}_1^{k+1} +\mathbf{u}_1^k)-\frac{d_1}{2}\mathbf{K}_1(\mathbf{v}_1^{k+1} +\mathbf{v}_1^k)-\mathbf{L}_1^k\mathbf{u}_1^k+\boldsymbol{\sigma}_1^k, \\ \mathbf{D}_2=-\frac{k_2}{2}\mathbf{K}_2(\mathbf{u}_2^{k+1} +\mathbf{u}_2^k)-\frac{d_2}{2}\mathbf{K}_2(\mathbf{v}_2^{k+1} +\mathbf{v}_2^k)-\mathbf{L}_1\mathbf{u}_2^k-\boldsymbol{\sigma}_2^k. \end{gather*} Here, \begin{gather*} \mathbf{u}_1^k=(u_{11}^k,u_{12}^k,\dots,u_{1i-1}^k,u_{1i_{*}}^k)^T,\quad \mathbf{u}_2^k=(u_{2i_{*}}^k,u_{2i_{*}+1}^k,\dots,u_{2m-2}^k,u_{2m-1}^k)^T, \\ \mathbf{v}_1^k=(v_{11}^k,v_{12}^k,\dots,v_{1i_{*}-1}^k,v_{1i_{*}}^k)^T,\quad \mathbf{v}_2^k=(v_{2i_{*}}^k,v_{2i_{*}+1}^k,\dots,v_{2m-2}^k,v_{2m-1}^k)^T, \\ \boldsymbol{\sigma}_1^k=(0,0,\dots,0,\sigma_{h_t,h_x}^k)^T,\quad \boldsymbol{\sigma}_2^k=(\sigma_{h_t,h_x}^k,0,\dots,0)^T. \end{gather*} The symmetric matrices $\mathbf{M}_1$, $\mathbf{M}_2$, $\mathbf{K}_1$, and $\mathbf{K}_2$ are defined by \begin{gather*} \mathbf{M}_1\equiv (M_1)_{ij}=\int_0^{l_{*}}\psi_{1,i}(x)\psi_{1,j}(x),\\ \mathbf{M}_2\equiv (M_2)_{ij}=\int_{l_{*}}^{l}\psi_{1,i}(x)\psi_{1,j}(x)\, dx,\\ \mathbf{K}_1\equiv(K_1)_{ij}=\int_0^{l_{*}}\psi_{3,i}''(x)\psi_{3,j}''(x)\, dx,\\ \mathbf{K}_2\equiv(K_2)_{ij}=\int_{l_{*}}^{l}\psi_{3,i}''(x)\psi_{3,j}''(x)\, dx, \end{gather*} and they are banded with three subdiagonals and superdiagonals. From the extra equation \eqref{eq:fully2}, we find \begin{equation*} \frac{1}{h_t}\sum_{j=1}^{i_{*}}(u_{1j}^{k+1}-u_{1j}^k) \int_0^{l}\psi_{1,j}(x)\psi_{1,i}(x)dx\\ =\frac{1}{2}\sum_{j=1}^{i_{*}}(v_{1j}^{k+1}+v_{1j}^k) \int_0^{l}\psi_{1,j}(x)\psi_{1,i}(x)dx, %\label{eq:extra1} \end{equation*} and \begin{equation*} \frac{1}{h_t}\sum_{j=i_{*}}^{m-1}(u_{2j}^{k+1}-u_{2j}^k) \int_0^{l}\psi_{1,j}(x)\psi_{1,i}(x)dx =\frac{1}{2}\sum_{j=i_{*}}^{m-1}(v_{2j}^{k+1}+v_{2j}^k) \int_0^{l}\psi_{1,j}(x)\psi_{1,i}(x)dx. %\label{eq:extra2} \end{equation*} Now, we can use \eqref{eq:fully2} to set up the linear system that marches the solution one time step, for $\iota=1,\,2$ \begin{equation} \begin{split} \mathbf{u}_{\iota}^{k+1} & = \Big(\frac{2}{h_t^2}\mathbf{M}_{\iota}+(\frac{k_{\iota}}{2} +\frac{d_{i}}{h_t})\mathbf{K}_{\iota}\Big)^{-1}\\ &\quad \times \Big(\Big(\frac{2}{h_t^2}\mathbf{M}_{\iota}-(\frac{k_{\iota}}{2} -\frac{d_{i}}{h_t})\mathbf{K}_{\iota}-\mathbf{L}_{\iota}^k\Big)\mathbf{u}_{\iota}^k +\frac{2}{h_t}\mathbf{M}_{\iota}\mathbf{v}_{\iota}^k+(-1)^{\iota+1} \boldsymbol{\sigma}_{\iota}^k\Big). \end{split} \label{eq:linear_sys} \end{equation} We note that this linear system does not yet satisfy the normal compliance contact condition \eqref{eq:NC}. So, we introduce additional notation to deal with the condition and that will allow us to compute the next step solutions $\mathbf{u}_{\iota}^{k+1}$ which satisfy \eqref{eq:NC} and \eqref{eq:linear_sys}. Consider a matrix $\mathbf{A}\in\mathbb{R}^{i_{*}\times(m-1- i_{*})}$. Then the notation of block matrices is as follows. If $1\leq i_1\leq i_2\leq i_{*}$ and $1\leq j_1\leq j_2\leq m-1- i_{*}$, i.e., we extract $i_1$th row to $i_2$th row and $j_1$th column to $j_2$th column, the block matrix is denoted by $A(i_1:i_2,\, j_1:j_2)\in\mathbb{R}^{(i_2-i_1-1) \times(j_2- j_1-1)}$. We use the following substitutions in the linear system \eqref{eq:linear_sys} to simply the matrices involved, \begin{gather*} \mathbf{B}_{\iota} = \frac{2}{h_t^2}\mathbf{M}_{\iota}+(\frac{k{\iota}}{2} +\frac{d_{\iota}}{h_t})\mathbf{K}_{\iota},\\ \mathbf{Q}_{\iota}^k = \frac{2}{h_t^2}\mathbf{M}_{\iota}-(\frac{k_{\iota}}{2} -\frac{d_{\iota}}{h_t})\mathbf{K}_{\iota}-\mathbf{L}_{\iota}^k. \end{gather*} Note that the matrix $\mathbf{Q}_{\iota}^k$ changes at each time step $t=t_{k}$. Next, algebraic manipulations allow us to obtain the normal compliance in terms of only $u_{1i_{*}}^{k+1}$ and $u_{2i_{*}}^{k+1}$, indeed, we can write \begin{gather} q_1u_{1i_{*}}^{k+1}-b_1^k = \lambda (u_{1i_{*}}^{k+1} -u_{2i_{*}}^{k+1}-g_1)_{+},\label{eq:w1^l+1}\\ q_2u_{2i_{*}}^{k+1}-b_2^k = \lambda (u_{2i_{*}}^{k+1} -u_{1i_{*}}^{k+1}-g_2)_{+},\label{eq:u2^l+1} \end{gather} where \begin{align*} q_1 & = (B_1)_{i_{*}i_{*}}-B_1(i_{*},\,1:i_{*}-1)[B_1 (1:i_{*}-1,\,1:i_{*}-1)]^{-1}\\ &\quad \times B_1(1:i_{*}-1,\, i_{*}),\\ b_1^k & = -B_1(i_{*}\,,1:i_{*}-1)\times[B_1(1:i_{*}-1,\,1:i_{*}-1 )]^{-1}\\ & \quad \times(Q_1^k(1:i_{*}-1,\,1:i_{*})\mathbf{u}_1^k+\frac{2}{h_t} M_1(1:i_{*}-1,\,1:i_{*})\mathbf{v}_1^k)\\ & \quad +Q_1^k(i_{*},\,1:i_{*})\mathbf{u}_1^k+\frac{2}{h_t}M_1 (i_{*}\,,1:i_{*})\mathbf{v}_1^k,\\ q_2 & = (B_2)_{i_{*}i_{*}}-B_2(i_{*},\, i_{*}+1:m-1)\\ &\quad \times [B_1(i_{*}+1:m-1,\, i_{*}+1:m-1)]^{-1} B_1(i_{*}+1:m-1,\, i_{*}),\\ b_2^k & = -B_2(i_{*}\,,i_{*}:m-1)\times[B_1(i_{*}:m-1,\, i_{*}:m-1)]^{-1}\\ &\quad \times \Big(Q_2^k(i_{*}:m-1,\, i_{*}:m-1)\mathbf{u}_2^k+\frac{2} {h_t}M_2(i_{*}:m-1,\, i_{*}:m-1)\mathbf{v}_1^k\Big)\\ &\quad + Q_2^k(i_{*},\, i_{*}:m-1)\mathbf{u}_2^k+\frac{2}{h_t} M_2(i_{*}\,,i_{*}:m-1)\mathbf{v}_2^k. \end{align*} Once $u_{1i_{*}}^{k+1}$ and $u_{2i_{*}}^{k+1}$ have been computed from \eqref{eq:w1^l+1} and \eqref{eq:u2^l+1}, the next step solutions $\mathbf{u}_1^{k+1}$ and $\mathbf{u}_2^{k+1}$ can be computed. Excluding the last component of $\mathbf{u}_1^{k+1}$ and the first component of $\mathbf{u}_2^{k+1}$, we let \begin{gather*} \mathbf{x}_1^{k+1}=(u_{11}^{k+1},u_{12}^{k+1},\dots, u_{1i_{*}-2}^{k+1},u_{1i_{*}-1}^{k+1}) \in\mathbb{R}^{i_{*}-1}, \\ \mathbf{x}_2^{k+1}=(u_{2i_{*}+1}^{k+1},\dots,u_{2i_{*}+2}^{k+1},\dots, u_{2m-1}^{k+1}, u_{2m-2}^{k+1})\in\mathbb{R}^{m-i_{*}}. \end{gather*} Then \begin{gather} \begin{aligned} \mathbf{x}_1^{k+1} & = [B_1(1;i_{*}-1,1;i_{*}-1)]^{-1}\Big(Q_1^k (1;i_{*}-1,1;i_{*})\mathbf{u}_1^k \\ & \quad +\frac{2}{h_t}M_1(1;i_{*}-1,1;i_{*})\mathbf{v}_1^k -Q_1^k(1;i_{*}-1,i_{*})u_{1i_{*}}^{k+1}\Big), \end{aligned}\label{eq:sol_next1} \\ \begin{aligned} \mathbf{x}_2^{k+1} & = [B_1(i_{*};m,i_{*};m)]^{-1}\Big(Q_2^k (i_{*}+1;m,i_{*};m)\mathbf{u}_2^k \\ & \quad +\frac{2}{h_t}M_2(i_{*}+1;m,i_{*};m)\mathbf{v}_2^k-Q_2^k (i_{*}+1;m,i_{*})u_{2i_{*}}^{k+1}\Big). \end{aligned}\label{eq:sol_next2} \end{gather} At the final step, the actual approximation of $u_1$ is computed. The discussion above can be summarized as the following algorithm. \begin{algorithm}\label{alg:alg-1}\rm Assume that initial data $\mathbf{u}_1^{0}$ and $\mathbf{u}_2^{0}$ are given and $\lambda>0$ is sufficiently large. \noindent\textbf{for} $k=1:T/h_t$ the previous solution $(\mathbf{u}_1^{k-1},\,\mathbf{u}_2^{k-1})^T$ is known Compute $(\mathbf{u}_1^k,\,\mathbf{u}_2^k)^T$ using the linear system \eqref{eq:linear_sys} Compute $(u_{1i_{*}}^{k+1},\, u_{2i_{*}}^{k+1})$ using \eqref{eq:w1^l+1} and \eqref{eq:u2^l+1} \noindent\textbf{if } $ u_{1i_{*}}^k-u_{2i_{*}+1}^k