\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 205, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/205\hfil Existence of solutions] {Existence of solutions for quasilinear elliptic equations with nonlinear boundary conditions and indefinite weight} \author[G. Zhang, X. Liu, S. Liu \hfil EJDE-2012/205\hfilneg] {Guoqing Zhang, Xiangping Liu, Sanyang Liu} % in alphabetical order \address{Guoqing Zhang \newline College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China} \email{shzhangguoqing@126.com} \address{Xiangping Liu \newline College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China} \email{Liuxp83355650@yeah.net} \address{Sanyang Liu \newline Department of Applied Mathematics, Xidian University, Xi'an 710071, China} \email{liusanyang@126.com} \thanks{Submitted June 18, 2012. Published November 24, 2012.} \subjclass[2000]{35J60, 35P30} \keywords{Regularity; existence; nonlinear boundary conditions; \hfill\break\indent indefinite weight} \begin{abstract} In this article, we establish the existence and non-existence of solutions for quasilinear equations with nonlinear boundary conditions and indefinite weight. Our proofs are based on variational methods and their geometrical features. In addition, we prove that all the weak solutions are in $C^{1,\beta}(\overline{\Omega})$ for some $\beta\in(0,1)$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} In this article, we consider the problem \begin{equation}\label{eq1.1} \begin{gathered} \operatorname{div}(a(x)|Du|^{p-2}Du)=|u|^{p-2}u, \quad \text{in } \Omega,\\ a(x)|Du|^{p-2}\frac{\partial u}{\partial \nu}+|u|^{q-2}u+h(x) =\lambda V(x)|u|^{p-2}u, \quad\text{on } \partial\Omega, \end{gathered} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^N$, with a $C^{2,\alpha}$ boundary for some $\alpha\in(0,1)$, $1\frac{N-1}{p-1}$, and $h(x)\in L^{s}(\partial\Omega)$. \end{itemize} Elliptic problems with nonlinear boundary conditions arise in many and diverse contexts, such as differential geometry (e.g., in the scalar curvature problem and the Yamabe problem \cite{1}), Non-Newtonian fluid mechanics \cite{2}, and mathematical biology problem (e.g., a prototype of pattern formation in biology and the steady-state problem for a chemotactic aggregation model \cite{3}). In this paper, we consider the quasilinear problems with mixed nonlinear boundary condition and the indefinite character; i.e. $V(x)$ may change sign on $\partial\Omega$. Some existence and non-existence results are obtained. On the other hand, the regularity for elliptic problems with nonlinear boundary conditions have been studied. For the semilinear elliptic problem, Ebmeyer \cite{4} obtained that every weak solution belongs to $C^{\beta}(\Omega)(0<\beta<1)$. Using the result of Dibenedetto \cite{5}, Anane, Chakrone, Moradi \cite{6} obtained that the eigenfunction of the first eigenvalue is in $C^{1,\beta}(\overline{\Omega})(0<\beta<1)$ for the linear eigenvalue problem of the $p$-Laplacian. In this paper, for problem \eqref{eq1.1} with nonlinear boundary conditions and indefinite weight, we obtain that all weak solutions are in $L^{\infty}(\partial\Omega)\cap L^{\infty}(\Omega)$ and $C^{1,\beta}(\overline{\Omega})$ for some $\beta\in(0,1)$. This article is organized as follows: In Section 2, we state our main results. In section 3, we obtain some existence and non-existence results. Section 4 is devoted to proving the regularity of the solutions for the problem \eqref{eq1.1}. \section{Main results} Let $\Omega$ be a bounded smooth domain in $\mathbb{R}^N$, and $V(x)$ satisfies (H1). We denote the Sobolev space \begin{equation}\label{eq2.1} L^p(\partial\Omega;V)=\{u:\partial\Omega\to \mathbb{R}; \int_{\partial\Omega}V(x)|u|^pd\sigma<+\infty\}, \end{equation} and the norm $\|u\|_{L^p(\partial\Omega;V)}=(\int_{\partial\Omega}V(x)|u|^pd\sigma) ^{1/p}$. Consider the Sobolev trace embedding $W^{1,p}(\Omega)\hookrightarrow L^p(\partial\Omega;V)$, we obtain that the embedding is compact when $V(x)$ satisfies (H1) (see \cite{7}), where the norm in $W^{1,p}(\Omega)$ is defined as $$ \|u\|_{W^{1,p}(\Omega)}=\Big(\int_{\Omega}[|\nabla u|^p+|u|^p]dx\Big)^{1/p}. $$ As the function $a(x)$ satisfies $00$ such that \begin{equation}\label{eq2.2} \widetilde{C}\|v\|^p_{L^p(\partial\Omega;V)}\leq\|v\|^p_{a,\Omega}\quad \text{for any } v\in E. \end{equation} Now, we state the main results in this article. \begin{theorem} \label{thm1.1} If $p0$, then there exists $\lambda_0>0$ such that \begin{itemize} \item[(1)] if $\lambda<\lambda_0$, then \eqref{eq1.1} does not have any weak solutions, \item[(2)] if $\lambda>\lambda_0$, then \eqref{eq1.1} has at least one weak solution. \end{itemize} \end{theorem} We remark that there are functions $h$ such that $\int_{\partial\Omega}h\varphi\,d\sigma\geq0$ for all $\varphi\in E$ with $\varphi|_{\partial\Omega}>0$: For $p=2$ and $\Omega$ is a unit circle, let $x=e^{i\alpha}$, $x\in \partial\Omega$, and $$ h=\begin{cases} 1+\alpha^{2}, &0<\alpha\leq 2\pi,\\ -1, & \alpha=0. \end{cases} $$ \begin{theorem} \label{thm1.2} If $u$ is a weak solution of \eqref{eq1.1} and $q<\frac{p^{2}-2p+N}{N-p}$, then $u$ has the following properties: \begin{itemize} \item[(1)] $u\in L^{\infty}(\Omega)\cap L^{\infty}(\partial\Omega)$, \item[(2)] $u\in C^{1,\beta}(\overline{\Omega})$ for some $\beta\in (0,1)$, and $\|u\|_{C^{1,\beta}(\overline{\Omega})}\leq K$, where \begin{gather*} K=K\big(p,N,G,\|u\|_{L^{s'q_0}(\partial\Omega)}, \|V\|_{L^{s}(\partial\Omega)}\big),\\ G=\Big(\int_{\partial\Omega}|(|u|^{q-2}u+h)|^{s}d\sigma\Big)^{1/s}, \end{gather*} $s>\frac{N-1}{p-1}$, $s'q_0\in [s'p,p^{\star}]$, and $s'$ is the conjugate of $s$. \end{itemize} \end{theorem} \section{Proof of Theorem \ref{thm1.1}} For this proof we use direct methods in variational methods. (1) We prove only that \eqref{eq1.1} does not have any weak solutions for $\lambda$ small enough. Indeed, assume that $u\in E$ is a weak solution of \eqref{eq1.1}; then we have \begin{equation}\label{eq3.1} \begin{split} &\int_{\Omega}a(x)|Du|^{p-2}DuD\varphi\,dx +\int_{\Omega}|u|^{p-2}u\varphi\,dx +\int_{\partial\Omega}|u|^{q-2}u\varphi\,d\sigma +\int_{\partial\Omega}h\varphi\,d\sigma\\ &= \lambda\int_{\partial\Omega}V(x)|u|^{p-2}u\varphi\,d\sigma, \end{split} \end{equation} for any $\varphi\in E$. Taking $\varphi=u$ in \eqref{eq3.1}, we obtain \begin{equation}\label{eq3.2} \|u\|^p_{a,\Omega}+\|u\|^q_{L^q(\partial\Omega)} +\int_{\partial\Omega}hu\,d\sigma =\lambda\|u\|^p_{L^p(\partial\Omega;V)}. \end{equation} Clearly, for $p0$ is large enough. Indeed, $J_{\lambda}(0)=0$. Hence, we only need to prove that there exists $\lambda^{0}>0$, such that $$ \inf_{u'\in E}J_{\lambda}(u')<0 \quad\text{for all } \lambda>\lambda^{0}. $$ Consider the minimization problem \begin{equation}\label{eq3.7} \lambda^{0}:=\inf\{\frac{1}{p}\|\phi\|^p_{a,\Omega} +\frac{1}{q}\|\phi\|^q_{L^q(\partial\Omega)} +\int_{\partial\Omega}h\phi\,d\sigma:\phi\in E \text{ and } \|\phi\|^p_{L^p(\partial\Omega;V)}=p\}. \end{equation} Let $\{\kappa_n\}^{\infty}_{n=1}\in E$ be a minimizing sequence of \eqref{eq3.7}, which is obviously bounded in $E$. Hence, without loss of generality, we assume that it converges weakly to some $\kappa\in E$, with $\|\kappa\|^p_{L^p(\partial\Omega;V)}=p$. By the weak lower semicontinuity of $\|\cdot\|$, We can deduce that $$ \lambda^{0}=\frac{1}{p}\|\kappa\|^p_{a,\Omega} +\frac{1}{q}\|\kappa\|^q_{L^q(\partial\Omega)} +\int_{\partial\Omega}h\kappa\,d\sigma. $$ So $J_{\lambda}(\kappa)=\lambda^{0}-\lambda<0$ for any $\lambda>\lambda^{0}$. Now we denote \begin{gather*} \lambda_0 :=\sup\{\lambda>0:\text{ problem \eqref{eq1.1} does not have weak solutions}\},\\ \lambda_1 :=\inf\{\lambda>0:\text{ problem \eqref{eq1.1} admits a weak solution}\}. \end{gather*} Of course $\lambda_1\geq\lambda_0>0$. Lastly, we prove two facts: (i) problem \eqref{eq1.1} has a weak solution for any $\lambda>\lambda_1$; (ii) $\lambda_0=\lambda_1$. Now, we fix $\lambda>\lambda_1$, by the definition of $\lambda_1$, there exists $\mu\in(\lambda_1,\lambda)$, such that $J_{\mu}$ has a non-trivial critical point $u_{\mu}\in E$; i.e., $$ \|u_{\mu}\|_{a,\Omega}^p+\|u_{\mu}\|_{L^q(\partial\Omega)}^q +\int_{\partial\Omega}hu_{\mu}d\sigma=\mu\|u_{\mu}\|_{L^p(\partial\Omega;V)}^p, $$ Clearly, $u_{\mu}$ is a sub-solution of problem \eqref{eq1.1}. So next we need to find a super-solution of problem \eqref{eq1.1} which is greater than $u_{\mu}$. Consider the minimization problem $$ \inf\{\frac{1}{p}\|\phi\|^p_{a,\Omega} +\frac{1}{q}\|\phi\|^q_{L^q(\partial\Omega)} +\int_{\partial\Omega}h\phi\,d\sigma -\frac{\lambda}{p}\|\phi\|^p_{L^p(\partial\Omega;V)}: \phi\in E \text{ and } \phi\geq u_{\mu}\}. $$ From above argument, we can know that the minimization problem has a solution $u_{\lambda}\geq u_{\mu}$, which is also a weak solution of \eqref{eq1.1} provided $\lambda>\lambda_1$. So for the fixed $\lambda$, we have a sub-solution $u_{\mu}$ and a super-solution $u_{\lambda}$ with $u_{\lambda}\geq u_{\mu}$, using \cite[Theorem 2.4]{8}, we obtain a weak solution. Let us recall the definition of $\lambda_1$, we obtain that \eqref{eq1.1} does not have solutions for any $\lambda<\lambda_1$. Then by the define of $\lambda_0$, immediately we have $\lambda_1\leq\lambda_0$, so $\lambda_1=\lambda_0$. \section{Proof of Theorem \ref{thm1.2}} This is an adaptation of the proof in \cite{6}, and is presented here, for the reader's convenience. Let $g=-|u|^{q-2}u-h$, then by $q<\frac{p^{2}-2p+N}{N-p}$, we have $g\in L^{s}(\partial\Omega)$. \begin{lemma} \label{lem4.1} If $u\in E$ is a weak solution of \eqref{eq1.1}, then there exists a constant $C>0$, such that $$ (\|u\|^{q_n}_{L^{q_n}(\Omega)}+\|u\|^{s'q_n}_{L^{s'q_n} (\partial\Omega)})^{1/q_n}\leq C,\quad \text{for all } n>n_0, $$ where the sequence $\{q_n\}^{\infty}_{n=0}$ is defined as $$ s'q_0\in [s'p,p^{\star}],\quad p^{\star}=\frac{(N-1)p}{N-p},\quad q_{n+1}=\frac{q_0}{p}q_n. $$ Furthermore, $u\in L^{q_n}(\Omega)$ and $u\in L^{s'q_n}(\partial\Omega)$ for all $n\geq 0$, where $s'=s/(s-1)$. \end{lemma} \begin{proof} Assume that $u\in E$ is a weak solution of \eqref{eq1.1}. By $E\sim W^{1,p}(\Omega)$, $u$ is also in $W^{1,p}(\Omega)$. Since $s>\frac{N-1}{p-1}$, we have $10$, then take the test function $|\omega_{k}|^{\delta}\omega_{k}$ in \eqref{eq3.1}, we obtain \begin{equation}\label{eq4.1} \begin{split} \langle \operatorname{div}(a(x)|Du|^{p-2}Du), |\omega_{k}|^{\delta}\omega_{k}\rangle &=\int_{\Omega}|u|^{p-2}u|\omega_{k}|^{\delta}\omega_{k}dx\\ &\geq\int_{\Omega}|\omega_{k}|^{\delta +p}dx=\int_{\Omega}|\omega_{k}|^{q_n}dx, \end{split} \end{equation} and \begin{equation}\label{eq4.2} \begin{aligned} &\langle \operatorname{div}(a(x)|Du|^{p-2}Du), |\omega_{k}|^{\delta}\omega_{k}\rangle\\ & = -\int_{\Omega}a(x)|Du|^{p-2}DuD(|\omega_{k}|^{\delta}\omega_{k})dx+ \lambda\int_{\partial\Omega}(V(x)|u|^{p-2}u+g)|\omega_{k}|^{\delta} \omega_{k}d\sigma\\ & \leq\lambda\int_{\partial\Omega}|u|^{q_n}|V(x)|d\sigma +G\|\omega^{\delta+1}_{k}\|_{L^{s'}(\partial\Omega)} -B_n\|D(|\omega_{k}|^{\frac{\delta}{p}}\omega_{k})\|^p_{L^p(\Omega)}\\ & \leq\lambda\|u\|^{q_n}_{L^{s'q_n}(\partial\Omega)} \|V\|_{L^{s}(\partial\Omega)}+G\|\omega_{k}\|^{\delta+1}_{L^{(\delta+1 )s'}(\partial\Omega)} -B_n\|D(|\omega_{k}|^{\frac{\delta}{p}}\omega_{k})\|^p_{L^p(\Omega)}, \end{aligned} \end{equation} where $$ G=\Big(\int_{\partial\Omega}||u|^{q-2}u+h|^{s}d\sigma\Big)^{1/s},\quad B_n=a_0(\delta+1)(\frac{p}{q_n})^p. $$ Then by \eqref{eq4.1} and \eqref{eq4.2}, we have \begin{equation}\label{eq4.3} \begin{split} &\int_{\Omega}|\omega_{k}|^{q_n}dx\\ &\leq\lambda\|u\|^{q_n}_{L^{s'q_n}(\partial\Omega)}\|V\|_{L^{s}(\partial\Omega)} +G\|\omega_{k}\|^{\delta+1}_{L^{(\delta+1 )s'}(\partial\Omega)} -B_n\|D(|\omega_{k}|^{\frac{\delta}{p}}\omega_{k})\|^p_{L^p(\Omega)}. \end{split} \end{equation} Since $W^{1,p}(\Omega)\hookrightarrow L^{q_0}(\Omega)$, there exists $C_1=C_1(\Omega,p,q_0)>0$, such that \begin{equation}\label{eq4.4} \begin{aligned} \|D(|\omega_{k}|^{\frac{\delta}{p}}\omega_{k})\|^p_{L^p(\Omega)} & \geq C_1\||\omega_{k}|^{\frac{\delta+p}{p}}\|^p_{L^{q_0}(\Omega)}- \||\omega_{k}|^{\frac{\delta+p}{p}}\|^p_{L^p(\Omega)}\\ & \geq C_1\|\omega_{k}\|^{q_n}_{L^{q_{n+1}}(\Omega)} -\|\omega_{k}\|^{\delta+p}_{L^{\delta+p}(\Omega)}. \end{aligned} \end{equation} By \eqref{eq4.3} and \eqref{eq4.4}, we have \begin{equation}\label{eq4.5} \begin{split} &\|\omega_{k}\|^{q_n}_{L^{q_{n+1}}(\Omega)}\\ &\leq A_n(\lambda\|u\|^{q_n}_{L^{s'q_n}(\partial\Omega)} \|V\|_{L^{s}(\partial\Omega)}+ G\|\omega_{k}\|^{\delta+1}_{L^{(\delta+1)s'} (\partial\Omega)}+D_n\|\omega_{k}\|^{q_n}_{L^{q_n}(\Omega)}), \end{split} \end{equation} where $A_n=\frac{1}{B_nC_1}$ and $D_n=B_n-1$. By $\delta+10$ such that \begin{equation}\label{eq4.9} \begin{aligned} \|D(|\omega_{k}|^{\frac{\delta}{p}}\omega_{k})\|^p_{L^p(\Omega)} &\geq C_2\||\omega_{k}|^{\frac{\delta+p}{\delta}}\|^p_{L^{s'}q_0(\partial\Omega)}- \||\omega_{k}|^{\frac{\delta+p}{p}}\|^p_{L^p(\Omega)}\\ & \geq C_2\|\omega_{k}\|^{q_n}_{L^{s'q_{n+1}}(\partial\Omega)} -\|\omega_{k}\|^{\delta+p}_{L^{\delta+p}(\Omega)} \end{aligned} \end{equation} Then by \eqref{eq4.8} and \eqref{eq4.9}, we obtain $$ B_n(C_2\|\omega_{k}\|^{q_n}_{L^{s'q_{n+1}}(\partial\Omega)} -\|\omega_{k}\|^{\delta+p}_{L^{\delta+p}(\Omega)}) \leq R\|u\|^{q_n}_{L^{s'q_n}(\partial\Omega)}- \int_{\Omega}|\omega_{k}|^{q_n}dx. $$ Then \begin{align*} \|\omega_{k}\|^{q_n}_{L^{s'q_{n+1}}(\partial\Omega)} &\leq B'_n(R\|u\|^{q_n}_{L^{s'q_n}(\partial\Omega)} +|D_n|\|\omega_{k}\|^{q_n}_{L^{q_n}(\Omega)})\\ & \leq B'_n\max(R,\ |D_n|)(\|u\|^{q_n}_{L^{s'q_n}(\partial\Omega)} +\|u\|^{q_n}_{L^{q_n}(\Omega)}), \end{align*} where $B'_n=1/(C_2B_n)$. Then \begin{equation}\label{eq4.10} \begin{aligned} \|u\|^{q_n}_{L^{s'q_{n+1}}(\partial\Omega)} &\leq \lim_{|k|\to +\infty}\inf(\|\omega_{k}\|^{q_n}_{L^{s'q_{n+1}} (\partial\Omega)})\\ & \leq B'_n\max(R,\ |D_n|)(\|u\|^{q_n}_{L^{s'q_n}(\partial\Omega)} +\|u\|^{q_n}_{L^{q_n}(\Omega)}). \end{aligned} \end{equation} Consequently, $u\in L^{s'q_{n+1}}(\partial\Omega)$ and $\|u\|_{L^{s'q_{n+1}}(\partial\Omega)}>\|u\|_{L^{s'q_n}(\partial\Omega)}\geq1$. Thus $$ u\in L^{q_n}(\Omega),\quad u\in L^{s'q_n}(\partial\Omega),\quad \|u\|_{L^{s'q_n}(\partial\Omega)}\geq 1,\quad \text{for all } n\geq0 $$ Lastly, we have to show that there exists $C>0$ such that $$ (\|u\|^{q_n}_{L^{q_n}(\Omega)}+\|u\|^{s'q_n}_{L^{s'q_n}(\partial\Omega)}) ^{1/q_n}\leq C,\quad\text{for all } n>n_0, $$ By \eqref{eq4.7} and \eqref{eq4.10}, we have $$ \|u\|^{q_{n+1}}_{L^{s'q_{n+1}}(\partial\Omega)} +\|u\|^{q_{n+1}}_{L^{q_{n+1}}(\Omega)} \leq T_n(\max(R,\ |D_n|)(\|u\|^{q_n}_{L^{s'q_n}(\partial\Omega)} + \|u\|^{q_n}_{L^{q_n}(\Omega)}))^{q_0/p}, $$ where $$ T_n=\Big((\frac{1}{C_1}+\frac{1}{C_2})\frac{1}{B_n}\Big)^{q_0/p}. $$ Obviously, $\lim_{n\to +\infty}B_n=0$, so we have $\lim_{n\to +\infty}|D_n|=1$; so there exists $n_0\in \mathbf{N}^{+}$, such that $|D_n|\leq2$ when $n>n_0$. Consequently, $$ \|u\|^{q_{n+1}}_{L^{s'q_{n+1}}(\partial\Omega)} +\|u\|^{q_{n+1}}_{L^{q_{n+1}}(\Omega)} \leq \overline{C}(q_n)^{q_0}(\|u\|^{q_n}_{L^{s'q_n}(\partial\Omega)}+ \|u\|^{q_n}_{L^{q_n}(\Omega)})^{\frac{q_0}{p}}, $$ where $$ \overline{C}=\frac{1}{p^{q_0}} \Big((\frac{1}{C_1}+\frac{1}{C_2})\max(R,\ 2)\Big)^{q_0/p}. $$ Setting $$ v_n=\big(\|u\|^{q_n}_{L^{s'q_n}(\partial\Omega)} +\|u\|^{q_n}_{L^{q_n}(\Omega)}\big)^{1/q_n}, $$ we have $v^{q_{n+1}}_{n+1}\leq \overline{C}(q_n)^{q_0}(v^{q_n}_n)^{q_0/p}$ for all $n\geq n_0$, and $$ \ln(v_{n+1})\leq \frac{B}{q_{n+1}}+p\frac{\ln(q_n)}{q_n}+\ln(v_n) \leq B\sum_{n_0+1\leq k\leq n+1}(\frac{1}{q_{k}}) +p\sum_{n_0\leq k\leq n}(\frac{\ln(q_{k})}{q_{k}}) +\ln(v_{n_0}), $$ for all $n\geq n_0$, where $B=\ln (\overline{C})$. By $0<\frac{p}{q_0}<1$, we have $$ \sum_{n_0+1\leq k\leq n+1}(\frac{1}{q_{k}})\leq\frac{q_0}{q_0-p}. $$ Since \begin{align*} \sum_{n_0\leq k\leq n}\frac{\ln(q_{k})}{q_{k}} & =\sum_{n_0\leq k\leq n}(\frac{\ln(q_0)}{q_0} +\frac{\ln(q_0)-\ln(p)}{q_0}k)(\frac{p}{q_0})^{k} :=\sum_{n_0\leq k\leq n}(\theta+\eta k)(\frac{p}{q_0})^{k}\\ &\leq\sum_{k\geq 0}(\theta+\eta k)(\frac{p}{q_0})^{k} =\frac{\theta q_0}{q_0-p}+\frac{\eta pq_0}{(q_0-p)^{2}}, \end{align*} we have $$ \ln(v_n)\leq \frac{q}{(q_0-p)}(B+\theta p) +\frac{\eta p^{2}q_0}{(q_0-p)^{2}}+\ln(v_{n_0}):=A,\quad \forall n\geq n_0. $$ Thus $$v_n=(\|u\|^{q_n}_{L^{s'q_n}(\partial\Omega)} +\|u\|^{q_n}_{L^{q_n}(\Omega)})\leq\exp^{A}:=C,\quad \forall n\geq n_0. $$ \end{proof} \begin{lemma} \label{lem4.2} Let $\partial\Omega$ be $C^{2,\alpha}(\partial\Omega)$ with $\alpha\in (0,1)$ and $u$ be in $E\cap L^{\infty}(\Omega)$ such that $\operatorname{div}(a(x)|Du|^{p-2}Du)\in L^{\infty}(\Omega)$, then $u\in C^{1,\beta}(\overline{\Omega})$ for some $\beta\in (0,1)$ and $$ \|u\|_{C^{1,\beta}(\overline{\Omega})} \leq K\big(N,\ p,\ \|u\|_{L^{\infty}(\Omega)}, \|\operatorname{div}(a(x)|Du|^{p-2}Du)\|_{L^{\infty}(\Omega)} \big). $$ \end{lemma} The above lemma is similar to \cite[Lemma 2.2]{4}, and is also a result in \cite{5}. \begin{proof}[Proof of Theorem \ref{thm1.2}] (1) By Lemma \ref{lem4.1} we know that $$ \|u\|_{L^{q_n}(\Omega)}\leq C, \quad \|u\|_{L^{s'q_n}(\partial\Omega)}\leq C,\quad \forall n\geq n_0. $$ then we obtain \begin{gather*} \|u\|_{L^{\infty}(\Omega)}\leq\lim_{n\to +\infty}\sup \|u\|_{L^{q_n}(\Omega)}\leq C, \\ \|u\|_{L^{\infty}(\partial\Omega)}\leq\lim_{n\to +\infty} \sup \|u\|_{L^{s'q_n}(\partial\Omega)}\leq C. \end{gather*} Hence, (1) of Theorem \ref{thm1.2} is proved. (2) By (1) of Theorem \ref{thm1.2}, we obtain that the solution $u$ is in $E\cap L^{\infty}(\Omega)$. Using $\|\operatorname{div}(a(x)|Du|^{p-2}Du)\|_{L^{\infty}(\Omega)} =\|u\|^{p-1}_{L^{\infty}(\Omega)}$, we have $\operatorname{div}(a(x)|Du|^{p-2}Du)=|u|^{p-2}u\in L^{\infty}(\Omega)$. So $u$ is in $C^{1,\beta}(\overline{\Omega})$ for some $\beta\in (0,1)$ and $\|u\|_{C^{1,\beta} (\overline{\Omega})}\leq K(N,\ p,\ \|u\|_{L^{\infty}(\Omega)})$. Indeed, we have $\|u\|_{L^{\infty}(\Omega)}\leq C$ for $1