\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 206, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/206\hfil Simultaneous and non-simultaneous blow-up] {Simultaneous and non-simultaneous blow-up and uniform blow-up profiles for reaction-diffusion system} \author[Z. Ling, Z. Wang \hfil EJDE-2012/206\hfilneg] {Zhengqiu Ling, Zejia Wang} % in alphabetical order \address{Zhengqiu Ling \newline Institute of Mathematics and Information Science, Yulin Normal University, Yulin 537000, China} \email{lingzq00@tom.com} \address{Zejia Wang \newline College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China} \email{wangzj1979@gmail.com} \thanks{Submitted August 6, 2012. Published November 24, 2012.} \subjclass[2000]{35B33, 35B40, 35K55, 35K57} \keywords{Simultaneous and non-simultaneous blow-up; \hfill\break\indent uniform blow-up profile; reaction-diffusion system; nonlocal sources} \begin{abstract} This article concerns the blow-up solutions of a reaction-diffusion system with nonlocal sources, subject to the homogeneous Dirichlet boundary conditions. The criteria used to identify simultaneous and non-simultaneous blow-up of solutions by using the parameters $p$ and $q$ in the model are proposed. Also, the uniform blow-up profiles in the interior domain are established. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction and description of results} In this article, we investigate the following reaction-diffusion system with nonlocal sources \begin{gather} \label{1-1} u_t = \Delta u + \| u v \| ^p_\alpha , \quad (x, t) \in \Omega\times (0, T), \\ \label{1-2} v_t = \Delta v \ + \| u v \| ^q_\beta , \quad (x, t) \in \Omega\times (0, T)\\ \label{1-3} u(x,0)=u_0(x), \quad v(x,0)=v_0(x), \quad x \in \Omega,\\ \label{1-4} u(x,t)=0, \quad v(x,t)=0, \quad (x , t) \in \partial \Omega \times (0, T), \end{gather} where $ \Omega = B_R = \{ |x| < R \} \subset \mathbb{R}^N$ $(N\geq 1)$, $\alpha, \beta \geq 1$, $ p, q > 0$, and the continuous functions $u_0(x), v_0(x)$ are nonnegative, nontrivial, radially symmetric, decreasing with $|x|$, and vanish on $\partial B_R$, where $\| \cdot \|^\alpha_\alpha = \int _\Omega |\cdot|^\alpha \,\mathrm{d}x$. Nonlinear parabolic systems \eqref{1-1}-\eqref{1-4} can be used to describe some reaction diffusion phenomena, Such as heat propagations in a two-component combustible mixture \cite{1}, chemical reactions \cite{2}, interaction of two biological groups without self-limiting \cite{3}, etc., where $u$ and $v$ represent the temperatures of two different materials during a propagation, the thicknesses of two kinds of chemical reactants, the densities of two biological groups during a migration, etc. Using the methods of \cite{4,5,6} we know that \eqref{1-1}-\eqref{1-4} has a local nonnegative classical solution. Moreover, if $p, q \geq 1$, then the uniqueness holds. In recent years, many results on blow-up solutions have been obtained for the nonlinear parabolic system. We will recall several results in the following. As for the other related works on the global existence and blow-up of solutions of the nonlinear parabolic system, they can be found in \cite{7,8,9,10} and references therein. Li, Huang and Xie in \cite{11} and Deng, Li and Xie in \cite{12} considered the following two systems, respectively, \[ u_t = \Delta u + \int_\Omega u^m (x,t) v^n (x,t) \,\mathrm{d}x, \quad v_t = \Delta v + \int_\Omega u^p (x,t) v^q (x,t) \,\mathrm{d}x, \] with $x \in\Omega$, $t>0$; and \[ u_t = \Delta u^m + a \|v\|^p_\alpha , \quad v_t = \Delta v^n + b \|u\|^q_\beta, \quad (x,t)\in \Omega \times (0,T). \] The authors showed some results on the global solutions, the blow-up solutions and the blow-up profiles. In 2002, Zheng, Zhao and Chen in \cite{13} studied the problem \begin{equation} u_t = \Delta u + f_1(u, v), \quad v_t = \Delta v + f_2(u, v), \quad (x,t)\in \Omega \times (0,T) \end{equation} with homogeneous Dirichlet boundary conditions, where $$ f_1(u,v)=e^{m u(x,t) + p v(x,t)}, \quad f_2(u,v)=e^{q u(x,t) + v(x,t)}. $$ The simultaneous blow-up rates are obtained for radially symmetric blow-up solutions in the exponent region $\{ 0\leq m1, q>1$ or $p q>(q-1)(p-1)$. In particular, the component $u ({\rm or }\ v) $ can blow up for the large initial data if $p>q-1 ( {\rm or}\ q>p-1$), see [9, 12]. So there may be non-simultaneous blow-up, that is to say that one component blows up while the other remains bounded. On the other hand, the simultaneous blow-up means that $$ \limsup_{t\to T}\|u(\cdot,t)\|_\infty = \limsup_{t\to T}\|v(\cdot,t)\|_\infty = + \infty. $$ Assume the initial data $u_0(x), v_0(x)$ satisfy \begin{gather}\label{2-1} \Delta u_0(x) + \|u_0 v_0 \|^p_\alpha - \varepsilon \varphi(x) u_0^p(0) v_0^p(0) \geq 0, \quad x \in B_R,\\ \label{2-2} \Delta v_0(x) + \|u_0 v_0 \|^q_\beta - \varepsilon \varphi(x) u_0^q(0) v_0^q(0) \geq 0, \quad x \in B_R \end{gather} for some a constant $\varepsilon \in (0, 1)$, where $\varphi(x)$ is the first eigenfunction of $$ -\Delta \varphi = \lambda \varphi ,\; x\in B_R; \quad \varphi =0, \; x\in \partial B_R, $$ normalized by $ \|\varphi\|_\infty =1, \ \varphi>0$ in $B_R$. In addition, by using the methods in \cite{16}, it is easy to check that $u_t, v_t \geq 0$ for $(x,t) \in B_R \times (0,T)$ by the comparison principle. Our results about the simultaneous and non-simultaneous blow-up criteria are as follows. \begin{theorem}\label{thm2-1} If $p+q>1$, then there exists initial data such that the non-simultaneous blow-up occurs in \eqref{1-1}--\eqref{1-4} if and only if $ \sigma < 0$ $($or $\theta < 0 )$ $($ for $v ($or $u)$ blowing up alone, respectively$)$. \end{theorem} \begin{theorem}\label{thm2-2} If $p+q>1$, then any blow-up in \eqref{1-1}--\eqref{1-4} is non-simultaneous if and only if $\sigma\geq 0$ with $\theta < 0$ $($ for $u$ blowing up alone $)$, or $\theta \geq 0$ with $\sigma < 0$ $($ for $v$ blowing up alone$)$. \end{theorem} \begin{corollary} \label{coro2-1} If $p+q>1$, then any blow-up in \eqref{1-1}--\eqref{1-4} is simultaneous if and only if $\sigma \geq 0$ and $\theta \geq 0$. \end{corollary} Similar to the study in\cite{11}, it is seen that \begin{corollary} \label{coro2-2} All solutions are global in \eqref{1-1}--\eqref{1-4} if and only if $\sigma<0$ and $\theta <0 ($i.e., $p+q<1)$. \end{corollary} In summary, the complete and optimal classification for simultaneous and non-simultaneous blow-up solutions of the problem \eqref{1-1}-\eqref{1-4} can be described by Figure \ref{fig1} \begin{figure}[ht] \begin{center} \begin{picture}(240,90)(-20,-10) \put(-20,0){\vector(1,0){240}} \put(0,-10){\vector(0,1){90}} \put(42,-5){\line(5,3){120}} \put(-5,35){\line(5,3){60}} \put(-25,-10){(0, 0)} \put(48,-10){$1$ } \put(210,-10){$p$} \put(-12, 38){ $1$} \put(-10,75){$q$} \put(55,70){$ p=q-1$} \put(160,70){ $ q=p-1$ } \put(-4.5,42){\line(5,-4){60}} \put(21,21){$p+q=1$} \put(45,41){\shortstack{\shortstack{simultaneous \\blow-up}}} \put(95,14){\shortstack{$u$ blows up alone \\ (non-simultaneous blow-up)}} \put(1,62){\shortstack{$v$ blows up \\ alone}} \put(4,6){global} \end{picture} \end{center} \caption{Regions of simultaneous and non-simultaneous blow-up} \label{fig1} \end{figure} The key clues for the classification of simultaneous and non-simultaneous blow-up solutions are the signs of $p-(q-1)$, $q-(p-1)$ and $p+q-1$. The conditions $p>q-1$ and $p+q>1$ imply that $u$ may blow up by itself but cannot provide sufficient help to the blow-up of $v$ (with small $v_0$), while $q < p-1$ ensures that $v$ can provide effective help to the blow-up of $u$, but $v$ remains bounded. Before we give the proof of Theorem \ref{thm2-1}, we first introduce the following lemma. Let $\phi(x,t)$ satisfy $$ \phi_t = \Delta \phi, \; (x,t)\in B_R\times (0,T); \quad \phi =0, \; (x,t)\in \partial B_R \times (0,T) $$ with $$ \phi(x,0)=\varphi(x), \quad x \in B_R. $$ \begin{lemma} \label{lem2-1} Under conditions \eqref{2-1} and $\eqref{2-2}$, the solution $(u,v)$ of \eqref{1-1}--\eqref{1-4} satisfies \begin{gather} \label{2-3} u_t(x,t) \geq \varepsilon \phi(x,t) u^p(0,t) v^p(0,t) , \quad (x,t)\in B_R\times [0,T),\\ \label{2-4} v_t(x,t) \geq \varepsilon \phi(x,t) u^q(0,t) v^q(0,t), \quad (x,t)\in B_R\times [0,T). \end{gather} \end{lemma} \begin{proof} Since that the proofs of the inequalities \eqref{2-3} and \eqref{2-4} are similar, we prove only \eqref{2-3}. Let $$ J(x,t)= u_t(x,t)-\varepsilon \phi(x,t) u^p(0,t) v^p(0,t). $$ It is easy to check that for $\varepsilon$ small enough since $u_t, v_t \geq 0$, we obtain \begin{gather*} J_t - \Delta J = \big(\|uv\|^p_\alpha\big)_t - \varepsilon \phi \big( u^p(0,t)v^p(0,t)\big)_t \geq 0, \quad (x,t)\in B_R \times (0,T), \\ J(x,t)=0, \quad (x,t)\in \partial B_R \times (0,T), \\ J(x,0)=\Delta u_0(x) + \|u_0 v_0 \|^p_\alpha - \varepsilon \varphi(x) u_0^p(0) v_0^p(0) \geq 0, \quad x \in B_R. \end{gather*} Consequently, \eqref{2-3} is true by the comparison principle. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2-1}] Without loss of generality, we only prove that there exist suitable initial data such that $u$ blows up while $v$ remains bounded if and only if $\theta < 0$. Assume $\theta < 0$, namely, $p-1>q$ and $p>1$ by Figure \ref{fig1} and \eqref{1-7}. From \eqref{2-3}, we obtain that \begin{equation} \label{2-5} u_t(0,t) \geq \varepsilon \phi (0,T) u^p(0,t) v_0^p(0), \quad t \in [0,T). \end{equation} Integrating the above inequality \eqref{2-5} from $t$ to $T$, we have the estimate for $u$ as follows \begin{equation}\label{2-6} u(0,t) \leq \Big( \varepsilon (p-1) \phi(0,T) v_0^p(0) \Big)^{-1/(p-1)}(T-t)^{-1/(p-1)},\quad t\in [0,T). \end{equation} At the same time, since the initial data $(u_0, v_0)$ is radially symmetric and non-increasing, therefore the $(u, v)$ is also radial symmetrical and non-increasing; i.e., $u_r(r,t), v_r(r,t)\leq 0$ for $r\in [0, R)$. Thus, $u(x,t)$ and $v(x,t)$ always reach their maxima at $x=0$, which means that $$ \Delta u(0,t) \leq 0, \quad \Delta v(0,t)\leq 0. $$ Hence, from \eqref{1-1} and \eqref{1-2}, we know that there exist constants $C_1, C_2>0$ such that \begin{equation} \label{2-7} \begin{gathered} u_t (0, t) \leq \|uv\|_\alpha^p \leq C_1 u^p(0,t) v^p(0,t), \quad t\in [0,T) \\ v_t (0, t) \leq \|uv\|_\beta^q \leq C_2 u^q(0,t) v^q(0,t), \quad t\in [0,T). \end{gathered} \end{equation} Let $$ \Gamma(x,y,t,s)= \frac{1}{[4 \pi (t-s)]^{N/2}} \exp\big\{-\frac{|x-y|^2}{4(t-s)}\big\} $$ be the fundamental solution of the heat equation. Suppose that $(\tilde{u}_0, \tilde{v}_0)$ is a pair of initial data such that the solution of \eqref{1-1}--\eqref{1-4} blows up. Fix radially symmetrical $v_0 (\geq\tilde{v}_0 )$ in $B_R$ and take constant $M_1 > v_0(x)$. By the proof of \cite[Theorem 1.1]{17}, we know that if $u_0$ is large with $v_0$ fixed then $T$ becomes small. Therefore, let $u_0(\geq \tilde{u}_0)$ be large such that $T$ becomes small and satisfies $$ M_1 \geq v_0(0) + \frac{p-1}{p-1-q} \big( \varepsilon (p-1) \phi(0,T) v_0^p(0)\big)^{-\frac{q}{p-1}}T^{\frac{p-1-q}{p-1}}\|M_1\|^q_\beta, $$ where $\| M_1 \|_\beta^q = ( \int_\Omega M_1^\beta \,\mathrm{d}x )^{q/\beta}$. Consider the following auxiliary problem \begin{gather*} \bar{v}_t = \Delta \bar{v} + \big( \varepsilon (p-1) \phi(0,T) v_0^p(0)\big)^{-\frac{q}{p-1}}(T-t)^{-\frac{q}{p-1}} \|M_1\|^q_\beta, \quad (x,t)\in B_R \times (0,T),\\ \bar{v}(x,t)=0, \quad (x,t)\in \partial B_R \times (0,T),\\ \bar{v}(x,0) = v_0(x),\quad x\in B_R. \end{gather*} Since $p-1>q$, we obtain by Green's identity that $$ \bar{v} \leq v_0(0) + \frac{p-1}{p-1-q} \Big(\varepsilon (p-1) \phi(0,T) v_0^p(0) \Big) ^{-\frac{q}{p-1}} T ^{\frac{p-1-q}{p-1}} \|M_1\|^q_\beta \leq M_1, $$ and hence $\bar{v}$ satisfies $$ \bar{v}_t \geq \Delta \bar{v} + \big( \varepsilon (p-1) \phi(0,T) v_0^p(0) \big)^{-\frac{q}{p-1}}(T-t)^{-\frac{q}{p-1}} \|\bar{v}(x,t)\|^q_\beta. $$ On the other hand, $v$ satisfies $$ v_t \leq \Delta v + \big( \varepsilon (p-1) \phi(0,T) v_0^p(0) \big)^{-\frac{q}{p-1}}(T-t)^{-\frac{q}{p-1}} \|v(x,t)\|^q_\beta. $$ Therefore, by the comparison principle, we conclude $v \leq \bar{v}\leq M_1$. Now assume that $u$ blows up while $v$ remains bounded. By \eqref{2-7} we have \[ u_t(0,t) \leq C u^p(0,t), \quad \text{for } t \in [0,T). \] This implies $p>1$ and the estimate for $u$ that $$ u(0,t) \geq \big( C (p-1) \big)^{-1/(p-1)}(T-t)^{-1/(p-1)}. $$ Therefore, by using \eqref{2-4}, we have $$ v_t(0,t) \geq \varepsilon \phi(0,T)\big(C(p-1)\big)^{-\frac{q}{p-1}} v_0^q(0) (T-t)^{-\frac{q}{p-1}}. $$ By integrating, we obtain that \begin{equation} \label{2-9} v(0,t) \geq v_0(0) + \varepsilon \phi(0,T)\big(C(p-1)\big)^{-\frac{q}{p-1}} v_0^q(0) \int_0^t (T-s)^{-\frac{q}{p-1}} \,\mathrm{d}s. \end{equation} The boundedness of $v$ requires $p-1>q$ from \eqref{2-9}, that is $\theta<0$. Thus, the proof is complete. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2-2}] We only treat the case of $u$ blowing up and $v$ remains bounded. Assume $\sigma \geq 0$ with $\theta < 0$; that is $p \geq q-1, q < p-1$ and $p>1$ by Figure \ref{fig1} and \eqref{1-7}. From \eqref{2-3} and \eqref{2-7}, we have \begin{equation} \label{2-10} v^{p-q}(0,t) v_t(0,t) \leq \frac{C_2}{\varepsilon \phi(0,T)}u^{q-p}(0,t) u_t(0,t), \quad t\in[0,T). \end{equation} By Theorem \ref{thm2-1}, it is impossible for $v$ blowing up alone under $\sigma \geq 0$ with $\theta<0$. Then we show that $v$ is bounded. In fact, by integrating the inequality \eqref{2-10} from $0$ to $t$, we have $$ v^{p-q+1}(0,t) \leq C - C u^{-(p-q-1)}(0,t) $$ for some a $C>0$. Therefore, we can get the boundedness of $v(0,t)$. Now, assume that any blow-up must be the case for $u$ blowing up alone. This requires $\theta <0$ by Theorem \ref{thm2-1}. Again by Theorem \ref{thm2-1}, if in addition $\sigma<0$, there exists the initial data such that $v$ blows up alone. Therefore, it has to be satisfied that $\sigma \geq 0$. Then, the proof is complete. \end{proof} \section{Uniform Blow-up Profiles} In this section, we study the uniform blow-up profiles for system \eqref{1-1}--\eqref{1-4}. At first, the following result of Souplet for a single diffusion equation with nonlocal nonlinear sources \cite[Theorem 4.1]{18} will play a basic role in our discussion. \begin{lemma}\label{lem3-1} Let $u\in C^{2,1}(\bar{\Omega}\times (0,T^*))$ be a solution of the problem \begin{gather*} u_t = \Delta u + g(t), \quad (x,t)\in \Omega \times (0,T^*),\\ u(x,t)=0, \quad (x,t)\in \partial\Omega \times (0,T^*),\\ u(x,0)=u_0(x), \quad x\in\Omega, \end{gather*} where $g(t)$ is nonnegative and may depend on the solution $u$. Then \begin{equation} \label{3-1} \lim_{t \to T^*}\|u(\cdot,t)\|_\infty = +\infty \end{equation} if and only if $\int_0^t g(s) \,\mathrm{d}s = +\infty$. Furthermore, if $\eqref{3-1}$ is fulfilled, then $$ \lim_{t \to T^*}\frac{u(x,t)}{G(t)} = \lim_{t \to T^*}\frac{\|u(\cdot,t)\|_\infty}{G(t)} = 1 $$ uniformly on compact subsets of $\Omega$, where $G(t)=\int_0^t g(s)\,\mathrm{d}s$. \end{lemma} For convenience, we denote $$ f(t)=\| u v \|^p_\alpha, \quad g(t)=\|u v \|^q_\beta, \quad F(t)=\int_0^t f(s) \,\mathrm{d}s, \quad G(t)=\int_0^t g(s) \,\mathrm{d}s. $$ According to the Lemma \ref{lem3-1}, we have the following result. \begin{lemma} \label{lem3-2} Assume $u, v \in C^{2,1}(\bar{\Omega}\times [0,T))$ are the solutions of \eqref{1-1}--\eqref{1-4}. If $u$ and $v$ blow up simultaneously in the finite time $T^*$, then we have $$ \lim_{t \to T^*} \frac{u(x,t)}{F(t)}= 1, \quad \lim_{t \to T^*} \frac{v(x, t)}{G(t)}= 1 $$ uniformly on compact subsets of $\Omega$, and $$ \lim_{t \to T^*} F(t) = \lim_{t \to T^*} G(t) = \infty. $$ \end{lemma} We remark that if we assume that only $u$ (or $v$) blows up in finite time $T^*$, then the above conclusions about $u$ ( or $v$) and $F$ (or $G$) are also valid. Throughout this section the notation $f(t)\sim g(t)$ is used to describe such functions $f(t)$ and $g(t)$ satisfying $f(t)/g(t) \to 1$ as $t \to T^*$. When $u$ and $v$ blow up simultaneously, we have the following results about the uniform blow-up profiles for $u$ and $v$. \begin{theorem} \label{thm3-1} Let $(u,v)$ be a solution of \eqref{1-1}--\eqref{1-4} with simultaneous blow-up time $T^*$. Then the following limits hold uniformly on any compact subset of $\Omega$: $(1)$ If $\sigma >0$ and $\theta>0$, then \begin{gather}\label{3-2} \lim_{t\to T^*} u(x,t) (T^*-t)^\sigma = \Big( \frac{|\Omega|^{p/\alpha}}{\sigma}(|\Omega|^{\frac{q}{\beta}-\frac{p}{\alpha}}\frac{\sigma} {\theta})^{p/(p+1-q)}\Big)^{-\sigma}, \\ \label{3-3} \lim_{t\to T^*} v(x,t) (T^*-t)^\theta = \Big( \frac{|\Omega|^{q/\beta}}{\theta}(|\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}} \frac{\theta}{\sigma})^{q/(q+1-p)}\Big)^{-\theta}. \end{gather} $(2)$ If $\sigma = 0$, then \begin{gather}\label{3-4} \lim_{t\to T^*} u^2(x,t)|\ln (T^* -t)|^{-1} = \frac{2}{p}|\Omega|^{\frac{p}{\alpha} - \frac{q}{\beta}}, \\ \label{3-5} \lim_{t\to T^*} v^p(x,t)\big(\ln v(x,t)\big)^{\frac{q}{2}}(T^*-t)=\frac{1}{p}|\Omega|^{-q/\beta}\big(2 |\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}}\big)^{-q/2}. \end{gather} $(3)$ If $\theta=0$, then we have \begin{gather} \label{3-6} \lim_{t\to T^*} u^q(x,t)\big(\ln u(x,t)\big)^{\frac{p}{2}}(T^*-t) = \frac{1}{q}|\Omega|^{-p/\alpha}\big( 2 |\Omega| ^{\frac{q}{\beta} - \frac{p}{\alpha}}\big)^{-p/2}, \\ \label{3-7} \lim_{t\to T^*} v^2(x,t)|\ln (T^*-t)|^{-1}= \frac{2}{q}|\Omega|^{\frac{q}{\beta}-\frac{p}{\alpha}}. \end{gather} \end{theorem} \begin{proof} From Lemma \ref{lem3-2}, we know that $u(x,t) \sim F(t)$ and $v(x,t) \sim G(t)$, then \begin{gather*} \lim_{t \to T^* } \frac{u^\alpha(x,t)}{F^\alpha(t)} = \lim_{t \to T^* } \frac{v^\alpha(x,t)}{G^\alpha(t)} = 1, \\ \lim_{t \to T^* } \frac{u^\beta(x,t)}{F^\beta(t)} = \lim_{t \to T^* } \frac{v^\beta(x,t)}{G^\beta(t)} = 1. \end{gather*} By the Lebesgue dominated convergence theorem, we find that \begin{gather} \label{3-8} F' (t) = f(t) = \|uv\|^p_\alpha \sim |\Omega|^{p/\alpha} F^p(t) G^p(t), \\ \label{3-9} G' (t) = g(t) = \|uv\|^q_\beta \sim |\Omega|^{q/\beta} F^q(t) G^q(t). \end{gather} Hence, \begin{equation} \label{3-10} F^{q-p} \,\mathrm{d} F \sim |\Omega|^{\frac{p}{\alpha} -\frac{q}{\beta}} G^{p-q} \,\mathrm{d}G. \end{equation} (1) Note that the conditions $\sigma>0$ and $\theta>0$ imply that $p+1>q, q+1>p$ since $p+q>1$. Integrating \eqref{3-10} from $0$ to $t$, we obtain \begin{equation} \label{3-11} F^{q+1-p}(t) \sim |\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}} \frac{q+1-p}{p+1-q} G^{p+1-q}(t) = |\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}} \frac{\theta}{\sigma}G^{p+1-q}(t). \end{equation} Combining \eqref{3-9} and \eqref{3-11}, we can obtain \begin{equation} \label{3-12} G' (t) \sim |\Omega|^{q/\beta} \big( |\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}} \frac{\theta}{\sigma} \big) ^{\frac{q}{q+1-p}} G^{\frac{2q}{q+1-p}}(t). \end{equation} Since $$ 1 - \frac{2q}{q+1-p} = -\frac{p+q-1}{q+1-p} = - \frac{1}{\theta}<0 $$ and $\lim_{t \to T^*} G(t) = \infty$, by integrating \eqref{3-12}, we obtain \begin{equation} \label{3-13} G(t) \sim \Big( \frac{|\Omega|^{q/\beta}}{\theta} \big( |\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}} \frac{\theta}{\sigma} \big) ^{\frac{q}{q+1-p}}\Big)^{-\theta} (T^* -t) ^{-\theta}. \end{equation} From \eqref{3-13} and Lemma \ref{lem3-2}, we have $$ \lim_{t \to t^*} v(x,t)(T^*-t)^\theta = \Big( \frac{|\Omega|^{q/\beta}}{\theta} \big( |\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}} \frac{\theta}{\sigma} \big) ^{\frac{q}{q+1-p}}\Big)^{-\theta}, $$ which holds uniformly on the compact subsets of $\Omega$. Combining \eqref{3-8} and \eqref{3-11}, and applying the similar proofs of $F$ and $u$, we obtain that $$ \lim_{t\to T^*} u(x,t) (T^*-t)^\sigma = \Big( \frac{|\Omega|^{p/\alpha}}{\sigma}\big(|\Omega|^{\frac{q}{\beta}-\frac{p}{\alpha}}\frac{\sigma} {\theta}\big)^{\frac{p}{p+1-q}}\Big)^{-\sigma} $$ holds uniformly on the compact subsets of $\Omega$. (2) When $\sigma=0$, or $p+1=q$, noticing \eqref{3-9} and \eqref{3-10}, we see that \begin{equation} \label{3-14} G' (t) \sim |\Omega|^{q/\beta}\big(2 |\Omega|^{\frac{p}{\alpha} -\frac{q}{\beta}}\big)^{q/2} G^q(t) \big( \ln G(t)\big) ^{q/2}. \end{equation} Note that $\lim_{t \to T^*} G(t) = \infty$, integrating \eqref{3-14} from $t(>0)$ to $T^*$ asserts \begin{equation} \label{3-15} \int_{G(t)}^\infty \frac{1}{s^q (\ln s)^{q/2}} \,\mathrm{d}s \sim |\Omega|^{q/\beta}\big(2 |\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}}\big)^{q/2} (T^* -t). \end{equation} Furthermore, $$ \lim_{t \to T^*} \frac{\int_{G(t)}^\infty s^{-q} (\ln s)^{-q/2}\,\mathrm{d}s}{G^{1-q}(t)\big(\ln G(t)\big)^{-q/2}} = \lim_{G \to \infty} \frac{\int_{G}^\infty s^{-q} (\ln s)^{-q/2}\,\mathrm{d}s}{G^{1-q}\big(\ln G\big)^{-q/2}} = \frac{1}{q-1}=\frac{1}{p}. $$ That is to say that \begin{equation}\label{3-16} p \int_{G(t)}^\infty s^{-q} (\ln s)^{-q/2} \,\mathrm{d}s \sim G^{1-q}(t) ( \ln G(t) ) ^{-q/2} = G^{-p}(t) ( \ln G(t) ) ^{-q/2}. \end{equation} By \eqref{3-15} and \eqref{3-16}, it indicates \begin{equation} \label{3-17} G^{-p}(t)( \ln G(t) ) ^{-q/2} \sim p |\Omega|^{q/\beta} \big(2 |\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}}\big)^{q/2} (T^*-t). \end{equation} Since $\lim_{t \to T^*} v(x,t)=\infty$ uniformly on the compact subset of $\Omega$ and $\lim_{t \to T^*} G(t) = \infty$, we may claim that the following equivalent is valid uniformly on the compact subset of $\Omega$, $$ v(x,t) \sim G(t) \; \Rightarrow\; \ln v(x,t) \sim \ln G(t). $$ And thus by \eqref{3-17}, we reach the conclusion $$ v^{-p}(x,t)( \ln v(x,t) ) ^{-q/2} \sim p |\Omega|^{q/\beta} \big(2 |\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}}\big)^{q/2} (T^*-t). $$ Then uniformly on the compact subsets of $\Omega$, it yields $$ \lim_{t \to T^*} v^p(x,t) (\ln v(x,t))^{q/2}(T^*-t) = \frac{1}{p}|\Omega|^{-q/\beta}\big( 2 |\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}}\big)^{-q/2}. $$ Since $$ \ln G(t) \sim \frac{1}{2} |\Omega|^{\frac{q}{\beta}-\frac{p}{\alpha}} F^2 (t), $$ it follows from \eqref{3-8} and \eqref{3-17} that \begin{equation} \label{3-18} F' (t) F^{-p}(t) \sim |\Omega|^{p/\alpha} G^p(t) \sim \frac{F^{-q}(t)}{p(T^*-t)}|\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}}. \end{equation} In view of \eqref{3-18}, we have $$ \frac{1}{2} F^2 (t) \sim \frac{1}{p}|\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}} |\ln(T^*-t)|. $$ Therefore, by Lemma \ref{lem3-2}, we obtain $$ u^2(x,t) \sim \frac{2}{p}|\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}} |\ln(T^*-t)|; $$ that is to say $$ \lim_{t \to T^*} u^2(x,t) |\ln (T^* -t)|^{-1} = \frac{2}{p}|\Omega|^{\frac{p}{\alpha}-\frac{q}{\beta}} $$ holds uniformly on the compact subsets of $\Omega$. (3) When $\theta =0$, the proof is similar to that of the case (2). Then, the proof is completed. \end{proof} \subsection*{Acknowledgements} This work was supported by the NNSF of China. The authors want to thank the anonymous referees for their helpful suggestions. \begin{thebibliography}{00} \bibitem{8} H. W. Chen; \emph{Global existence and blow-up for a nonlinear reaction-diffusion system}, J. Math. Anal. Appl., 212 (1997), 481-492. \bibitem{12} W. B. Deng, Y. X. Li, C. H. Xie; \emph{Blow-up and global existence for a nonlocal degenerate parabolic system}, J. Math. Anal. Appl., 277 (2003), 199-217. \bibitem{1} E. Escobedo, M. A. Herrero; \emph{Boundedness and blow-up for a semilinear reaction-diffusion system}, J. Diff. Equations, 89(1) (1991), 176-202. \bibitem{6} M. Escobedo, M.A. Herrero; \emph{A semilinear parabolic system in a bounded domain}, Ann. Mate. Pura Appl., CLXV(IV) (1993), 315-336. \bibitem{9} M. Escobedo, H. A. Levine; \emph{Critical blow-up and global existence numbers for a weakly coupled system of reaction-diffusion equations}, Arch. Rational Mech. Anal., 129 (1995), 47-100. \bibitem{2} P. Glansdorff, I. Prigogine; \emph{Thermodynamic Theory of Structure, Stability and Fluctuation}, Wiley-interscience, London, 1971. \bibitem{4} O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Uralceva; \emph{Linear and Quasi-linear Equations of Parabolic Type}, Amer. Math. Soc., Rhode Island, 1968. \bibitem{11} F. C. Li, S. X. Huang, C. H. Xie; \emph{Global existence and blow-up of solutions to a nonlocal reaction-diffusion system}, Discrete Contin Dyn. Syst., 9(6) (2003), 1519-1532. \bibitem{15} H. L. Li, M. X. Wang; \emph{Blow-up properties for parabolic systems with localized nonlinear sources}, Appl. Math. Lett., 17 (2004), 771-778. \bibitem{3} H. Meinhardt; \emph{Models of Biological Pattern Formation}, Academic Press, London, 1982. \bibitem{17} F. Quir\'os, J. D. Rossi; \emph{Non-simultaneous blow-up in a semilinear parabolic system}, Z. angew. Math. Phys., 52 (2001), 342-346. \bibitem{5} P. Souplet; \emph{Blow up in nonlocal reaction-diffusion equations}, SIMA J. Math. Anal., 29(6) (1998), 1301-1334. \bibitem{18} P. Souplet; \emph{Uniform Blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source}, J. Diff. Equations, 153 (1999), 374-406. \bibitem{10} L. W. Wang; \emph{The blow-up for weakly coupled reaction-diffusion system}, Proc. Amer. Math. Soc., 129 (2000), 89-95. \bibitem{7} M. X. Wang; \emph{Global existence and finite time blow-up for a reaction-diffusion system}, Z. Angew. Math. Phys., 51 (2000), 160-167. \bibitem{16} M. X. Wang; \emph{Blow-up rate estimates for semilinear parabolic systems}, J. Diff. Equations, 170(2001)317-324. \bibitem{14} L. Z. Zhao, S. N. Zheng; \emph{Critical exponents and asymptotic estimates of solutions to parabolic systems with localized nonlinear sources}, J. Math. Anal. Appl., 292 (2004), 621-635. \bibitem{13} S. N. Zheng, L. Z. Zhao, F. Chen; \emph{Blow-up rates in a parabolic system of ignition model}, Nonlinear Anal. 51 (2002), 663-672. \end{thebibliography} \end{document}