\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 212, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/212\hfil Almost automorphic mild solutions] {Almost automorphic mild solutions of hyperbolic evolution equations with stepanov-like almost automorphic forcing term} \author[I. Mishra, D. Bahuguna \hfil EJDE-2012/212\hfilneg] {Indira Mishra, Dhirendra Bahuguna} % in alphabetical order \address{Indira Mishra \newline Department of Mathematics \& Statistics\\ Indian Institute of Technology-Kanpur, Kanpur - 208016, India} \email{indiram@iitk.ac.in} \address{Dhirendra Bahuguna \newline Department of Mathematics \& Statistics\\ Indian Institute of Technology-Kanpur, Kanpur - 208016, India} \email{dhiren@iitk.ac.in} \thanks{Submitted December 1, 2011. Published November 27, 2012.} \subjclass[2000]{34K06, 34A12, 37L05} \keywords{Almost automorphic; evolution equation; hyperbolic semigroups; \hfill\break\indent extrapolation spaces; interpolation spaces; neutral differential equation; mild solution} \begin{abstract} This article concerns the existence and uniqueness of almost automorphic solutions to the semilinear parabolic boundary differential equations \begin{gather*} x'(t)=A_mx(t)+f(t,x(t)), \quad t\in \mathbb{R}, \\ Lx(t)=\phi(t,x(t)), \quad t\in \mathbb{R}, \end{gather*} where $A:=A_m|_{\ker L}$ generates a hyperbolic analytic semigroup on a Banach space $X$, with Stepanov-like almost automorphic nonlinear term, defined on some extrapolated space $X_{\alpha-1}$, for $0<\alpha<1$ and $\phi$ takes values in the boundary space $\partial X$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} %\newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we prove existence and uniqueness results of almost automorphic solutions to the following semilinear parabolic boundary differential equations, with Stepanov-like almost automorphic nonlinear term using the techniques initiated by Diagana and N'Gu\`er\`ekata in \cite{dn}. \begin{equation} \label{SBDE} \begin{gathered} x'(t)=A_mx(t)+h(t,x(t)), \quad t\in \mathbb{R}, \\ Lx(t)=\phi(t,x(t)), \quad t\in \mathbb{R}, \end{gathered} \end{equation} where the first equation stands in the complex Banach space $X$, called the state space and the second equation lies in a boundary space $\partial X; (A_m, D(A_m))$ is a densely defined linear operator on $X$ and $L:D(A_m)\to \partial X$ is a bounded linear operator. Motivation for this paper come basically from the following three sources. The first one is a nice paper by Boulite et al \cite{bol}. They have established the existence and uniqueness of almost automorphic solutions to the semilinear boundary differential equation \eqref{SBDE} using extrapolation methods. The second source of motivation is a recent paper by Baroun et al \cite{brn}, where the authors have considered the same equation as \eqref{SBDE} and proved the existence of almost periodic (almost automorphic) solutions, when the nonlinear term $h$ is almost periodic (almost automorphic), whereas we prove the assertion by taking $h$ to be Stepanov-like almost automorphic function. The functions $h$ and $\phi$ are defined on some continuous interpolation space $X_\beta$, $0\le \beta<1$, with respect to the sectorial operator $A:=A_m|_{\ker L}$. To prove our results, we make use of the techniques initiated by Diagana and N'Gu\`er\`ekata \cite{dn}, which is also our third source of motivation. Likewise \cite{bol, brn} we solve the \eqref{SBDE} by transforming the semilinear boundary differential equation \eqref{SBDE} into an equivalent semilinear evolution equation, \begin{equation} x'(t)=A_{\alpha-1}x(t)+h(t,x(t))+(\lambda-A_{\alpha-1})L_\lambda\phi(t,x(t)), \quad t\in \mathbb{R}, \end{equation} where $A_{\alpha-1} \ 0\le\beta<\alpha<1$, is the continuous extension of $A:=A_m|_{ker L}$ to the extrapolated Banach space $X_{\alpha-1}$ of $X_\alpha$ with respect to $A$ and the semilinear term $h(t,x)+(\lambda-A_{\alpha-1})L_\lambda\phi(t,x):=f(t,x)$ is an $X_{\alpha-1}$ valued function. As in \cite{bol, brn} we also assume Greiner's assumption introduced by Greiner \cite{gre}, which is stated in Section \ref{s4}. Under Greiner's assumption on $L$, the operator $L_\lambda:=(L|_{\ker(\lambda-A_m)})^{-1}$, called the Drichilet map of $A_m$, is a bounded linear map from $\partial X$ to $X$, where $X_{\alpha-1}$ is a larger Banach space than $X$. The extrapolation theory was introduced by Da Prato, Grisvard \cite{da} and Nagel \cite{ngel} and is used for various purposes. One can see Section \ref{s2} for the mentioned notion (cf. \cite{ngel,lun} for more details). These days people have increasing interest in showing almost automorphy of the solutions of the functional differential equations see for e.g. \cite{bol, brn, dn, td, gurek, im, gp}. We refer \cite{gurek}, for the more details on the topic. Our results generalize the existing ones in \cite{bol}, in the sense that the function $h$ is assumed to be Stepanov-like almost automorphic functions. \section{Preliminaries} \label{s2} In this section, we begin with fixing some notation and recalling the definitions and basic results on generators of interpolation and extrapolation spaces. Let $X$ be a complex Banach space and $(A,D(A))$ be a sectorial operator on $X$; that is, there exist the constants $\omega\in \mathbb{R}$, $\phi\in (\frac{\pi}{2},\pi)$ and $M>0$ such that \begin{gather*} \|R(\lambda,A-\omega)\|_{\mathcal{L}(X)}\le \frac{M}{|\lambda-\omega|}, \quad \forall \lambda\in \Sigma_{\omega,\phi}, \\ \text{where } \Sigma_{\omega,\phi}:=\{\lambda\in \mathbb{C}: \lambda\neq \omega, \, |\arg(\lambda-\omega)|\le \phi\}\subset \rho(A). \end{gather*} The real \textit{interpolation space} $X_\alpha$ for $\alpha\in (0,1)$, is a Banach space endowedwith the norm, \begin{equation} \|x\|_\alpha:=\sup_{\lambda>0}\|\lambda^\alpha(A-\omega)R(\lambda, A-\omega)x\|. \end{equation} Here we denote by, $X_0:=X$, $X_1:=D(A)$, $\|x\|_0=\|x\|$, and $\|x\|_1=\|(A-\omega)x\|$. The \textit{extrapolation space} $X_{-1}$ associated with $A$, is defined to be the completion of $(\widehat{X},\|\cdot\|_{-1})$, where $\widehat{X}:=\overline{D(A)}$, endowed with the norm $\|\cdot\|_{-1}$ given by $$ \|x\|_{-1}:=\|(\omega-A)^{-1}x\|, \quad x\in X. $$ In a similar fashion, we can define the space $X_{\alpha-1}:=(X_{-1})_\alpha=\overline{\widehat{X}}^{\|.\|_{\alpha-1}}$, with $\|x\|_{\alpha-1}=\sup_{\lambda>0}\|\lambda^\alpha R(\lambda,A_{-1}-\omega)x\|$. The restriction $A_{\alpha-1}: X_\alpha\to X_{\alpha-1}$ of $A_{-1}$ generates the analytic semigroup $(T_{\alpha-1}(t))_{t\ge 0}$ on $X_{\alpha-1}$ which is the extension of $T(t)$ to $X_{\alpha-1}$. Observe that $\omega-A_{\alpha-1}: X_\alpha\to X_{\alpha-1}$ is an isometric isomorphism. We have the following continuous embedding of the spaces, which will be frequently used here. \begin{gather*} D(A)\hookrightarrow X_\beta\hookrightarrow D((\omega-A)^\alpha)\hookrightarrow X_\alpha\hookrightarrow X,\\ X\hookrightarrow X_{\beta-1}\hookrightarrow D((\omega-A_{-1})^\alpha) \hookrightarrow X_{\alpha-1}\hookrightarrow X_{-1}, \end{gather*} for all $0<\alpha <\beta<1$. Now we state certain propositions for the proofs of which one can see \cite{brn}. \begin{proposition} \label{p2.1} Assume that $0<\alpha\le 1$ and $0\le \beta\le 1$. Then the following assertions hold for $00$ and $\tilde{\epsilon}>0$ such that $0<\alpha-\tilde{\epsilon}<1$ with constants possibly depending on $t_0$. \begin{itemize} \item[(i)] The operator $T(t)$ has continuous extensions $T_{\alpha-1}(t):X_{\alpha-1}\to X$ satisfying \begin{equation} \|T_{\alpha-1}(t)\|_{\mathcal{L}(X_{\alpha-1},X)} \le ct^{\alpha-1-\tilde{\epsilon}}, \label{2.2} \end{equation} \item[(ii)] For $x\in X_{\alpha-1}$ we have \begin{equation} \|T_{\alpha-1}(t)\|_\beta\le ct^{\alpha-\beta-1-\tilde{\epsilon}} \|x\|_{\alpha-1}. \label{2.3} \end{equation} \end{itemize} \end{proposition} \begin{remark} \rm We can remove $\tilde{\epsilon}$ in Proposition \ref{p2.1} by extending $T(t)$ to operators from $D(\omega-A_{-1})^{\alpha\pm \tilde{\epsilon}}$ to $X$, with norms bounded by $t^{\alpha-1\pm\tilde{\epsilon}}$, where $0<\alpha\pm\tilde{\epsilon}<1$, and therefore by employing the reiteration theorem and the interpolation property, the inequality in the assertion (i) can be obtained without $\tilde{\epsilon}$. For a more general situation see \cite{man}. \end{remark} \begin{definition} \rm An analytic semigroup $(T(t))_{t\ge 0}$ is said to be hyperbolic if it satisfies the following three conditions. \begin{itemize} \item[(i)] there exist two subspaces $X_s$ (the stable space) and $X_u$ (the unstable space) of $X$ such that $X=X_s\oplus X_u$; \item[(ii)] $T(t)$ is defined on $X_u, \ T(t)X_u\subset X_u$, and $T(t)X_s\subset X_s$ for all $t\ge 0$; \item[(iii)] there exist constants $M, \delta>0$ such that \begin{equation} \|T(t)P_s\|\le Me^{-\delta t}, \; t\ge 0, \quad \|T(t)P_u\|\le Me^{\delta t}, \; t\le 0, \label{2.4} \end{equation} where $P_s$ and $P_u$ are the projections onto $X_s$ and $X_u$, respectively. \end{itemize} \end{definition} Recall that an analytic semigroup $(T(t))_{t\ge 0}$ is hyperbolic if and only if $\sigma(A)\cap i\mathbb{R}=\phi$, (cf. \cite[Prop. 1.15]{ngel}). In the next proposition, we show the hyperbolicity of the extrapolated semigroup $(T_{\alpha-1}(t))_{t\ge 0}$. Before stating the proposition, we assume that the part of $A$, $A|_{P_u}:P_u(X)\to P_u(X)$ is bounded, which implies $$ \|AP_u\|\le C, $$ where $C$ is some constant. \begin{proposition} Let $T(\cdot)$ be hyperbolic and $0<\alpha\le 1$. Then the operators $P_s$ and $P_u$ admit continuous extensions $P_{u,\alpha-1}:X_{\alpha-1}\to X$ and $P_{s,\alpha-1}:X_{\alpha-1}\to X_{\alpha-1}$ respectively. Moreover we have the following assertions. \begin{itemize} \item[(i)] $P_{u,\alpha-1}X_{\alpha-1}=P_uX$; \item[(ii)] $T_{\alpha-1}(t)P_{s,\alpha-1}=P_{s,\alpha-1}T_{\alpha-1}(t)$; \item[(iii)] $T_{\alpha-1}(t): P_{u,\alpha-1}(X_{\alpha-1})\to P_{u,\alpha-1}(X_{\alpha-1})$ is an invertible function with inverse $T_{\alpha-1}(-t)$; \item[(iv)] for $0<\alpha-\tilde{\epsilon}<1$, we have \begin{gather} \|T_{\alpha-1}(t)P_{s,\alpha-1}x\| \leq mt^{\alpha-1-\tilde{\epsilon}}e^{-\gamma t}\|x\|_{\alpha-1} \quad \text{for } x\in X_{\alpha-1} \text{ and } t\ge 0, \label{2.5}\\ \|T_{\alpha-1}(t)P_{u,\alpha-1}x\| \leq C e^{\delta t}\|x\|_{\alpha-1} \quad \text{for } x\in X_{\alpha-1} \text{ and } t\le 0, \label{2.6} \end{gather} \end{itemize} \end{proposition} \begin{proposition} \label{p2.6} For $x\in X_{\alpha-1}$ and $0\le \beta\le 1$, $0<\alpha<1$, we have the following assertions. \begin{itemize} \item[(i)] there is a constant $c(\alpha,\beta)$, such that \begin{equation} \|T_{\alpha-1}(t)P_{u,\alpha-1}x\|_\beta\le c(\alpha,\beta)e^{\delta t} \|x\|_{\alpha-1} \quad \text{for } t\le 0, \label{2.8} \end{equation} \item[(ii)] there is a constant $m(\alpha,\beta)$, such that for $t\ge 0$ and $0<\alpha-\tilde{\epsilon}<1$. \begin{equation} \|T_{\alpha-1}(t)P_{s,\alpha-1}x\|_\beta\le m(\alpha,\beta)e^{-\gamma t} t^{\alpha-\beta-\tilde{\epsilon}-1}\|x\|_{\alpha-1}. \label{2.9} \end{equation} \end{itemize} \end{proposition} \begin{definition} \rm A continuous function $f:\mathbb{R}\to X$, is called almost automorphic, if for every sequence $(\sigma_n)_{n\in \mathbb{N}}$ of real numbers, there is a subsequence $(s_n)_{n\in \mathbb{N}}\subset (\sigma_n)_{n\in \mathbb{N}}$ such that $$ \lim_{n,m\to \infty}f(t+s_n-s_m)=f(t), \quad\text{for each } t\in \mathbb{R}. $$ This is equivalent to $$ g(t)=\lim_{n\to \infty}f(t+s_n), \quad\text{and}\quad f(t)=\lim_{n\to \infty}g(t-s_n), $$ are well defined for each $t\in \mathbb{R}$. The function $g$ in the above definition measurable but not necessarily continuous. \end{definition} \begin{remark} \rm An almost automorphic function is continuous but may not be uniformly continuous, for e.g. let $p(t)=2+\cos (t)+\cos (\sqrt2 t)$ and $f:\mathbb{R}\to \mathbb{R}$ defined as $f:=\sin(1/p)$, then $f\in AA(X)$, but $f$ is not uniformly continuous on $\mathbb{R}$, so $f\notin AP(X)$. \end{remark} \begin{lemma} \label{l2.8} We have the following properties of almost automorphic functions: \begin{itemize} \item[(a)] For $f\in AA(X)$, the range $\mathcal{R}_f:=\{f(t) : t\in \mathbb{R}\}$ is precompact in $X$, so that $f$ is bounded. \item[(b)] For $f, g\in AA(X)$ then $f+g\in AA(X)$. \item[(c)] Assume that $f_n\in AA(X)$ and $f_n\to g$ uniformly on $\mathbb{R}$, then $g\in AA(X)$. \item[(d)] $AA(X)$, equipped with the sup norm given by \begin{equation} \|f\|=\sup_{t\in \mathbb{R}}\|f(t)\|, \end{equation} turns out to be a Banach space. \end{itemize} \end{lemma} \subsection{$S^p$-Almost automorphy} \begin{definition}\cite{pnk} \rm The Bochner transform $f^b(t,s)$, $t\in \mathbb{R}, \, s\in [0,1]$ of a function $f:\mathbb{R}\to X$ is defined by $f^b(t,s):=f(t+s)$. \end{definition} \begin{definition} \rm The Bochner transform $f^b(t,s,u)$, $t\in \mathbb{R}$, $s\in [0,1]$, $u\in X$ of a function $f(t,u)$ on $\mathbb{R}\times X$, with values in $X$, is defined by $$ f^b(t,s,u):=f(t+s,u) $$ for each $x\in X$. \end{definition} \begin{definition} \rm For $p\in (1,\infty)$, the space $BS^p(X)$ of all Stepanov bounded functions, with the exponent $p$, consists of all measurable functions $f:\mathbb{R}\to X$ such that $f^b$ belongs to $L^{\infty}(\mathbb{R};L^p((0,1),X))$. This is a Banach space with the norm \begin{equation} \|f\|_{S^p}:= \|f^b\|_{L^\infty(\mathbb{R},L^p)}=\sup_{t\in \mathbb{R}} \Big(\int_t^{t+1}\|f(\tau)\|^pd\tau\Big)^{1/p}. \end{equation} \end{definition} \begin{definition}\cite{gp} \rm The space $AS^p(X)$ of Stepanov almost automorphic functions (or $S^p$-almost automorphic) consists of all $f\in BS^p(X)$ such that $f^b\in AA(L^p(0,1;X))$. That is, a function $f\in L^p_{\rm loc}(\mathbb{R},X)$ is said to be $S^p$-almost automorphic if its Bochner transform $f^b:\mathbb{R}\to L^p(0,1;X)$ is almost automorphic in the sense that, for every sequence $(s'_n)_{n\in \mathbb{N}}$ of real numbers, there exists a subsequence $(s_n)_{n\in \mathbb{N}}$ and a function $g\in L^p_{\rm loc}(\mathbb{R},X)$ such that \begin{gather*} \Big[\int_t^{t+1}\|f(s_n+s)-g(s)\|^pds \Big]^{1/p}\to 0,\\ \Big[\int_t^{t+1}\|g(s-s_n)-f(s)\|^pds \Big]^{1/p}\to 0, \end{gather*} as $n\to \infty$ pointwise on $\mathbb{R}$. \end{definition} \begin{remark} \rm $AS^p(X_{\alpha-1})$ is the extrapolated space of $AS^p(X_\alpha)$ equipped with norm $\|\cdot\|_{S_{\alpha-1}^p}$, given by $$ \|f\|_{S_{\alpha-1}^p}:=\sup_{t\in \mathbb{R}}\Big(\int_t^{t+1}\|f(\tau)\| _{\alpha-1}^pd\tau\Big)^{1/p}. $$ \end{remark} \begin{remark} \rm It is clear that if $1\le p0$ such that $$ \|F(t,u)-F(t,v)\|\le L\|u-v\|_Y, $$ for all $t\in \mathbb{R}, (u,v) \in Y\times Y$. Then the function $\Gamma:\mathbb{R}\to X$ defined by $\Gamma(\cdot):=F(\cdot,\phi(\cdot))$ belongs to $AS^p(X)$. \end{theorem} \section{Main results} In this section we discuss the existence and uniqueness of almost automorphic solutions of the following semilinear evolution equation, \begin{equation} x'(t)=A_{\alpha-1}x(t)+f(t,x(t)), \quad t\in \mathbb{R}, \label{see} \end{equation} with the following assumptions; \begin{itemize} \item[(A1)] $A$ is the sectorial operator and the generator of a hyperbolic analytic semigroup $(T(t))_{t\ge 0}$. \item[(A2)] $f:\mathbb{R}\times X_\beta\to X_{\alpha-1}$, is Stepanov-like almost automorphic in $t$, for each $x\in X_\beta$. \item[(A3)] $f$ is uniformly Lipschitz with respect to the second argument, that is \begin{equation} \|f(t,x)-f(t,y)\|_{\alpha-1}\le k\|x-y\|_\beta, \label{3.2} \end{equation} for all $t\in \mathbb{R}, \ x,y\in X_\beta$, and some constant $k>0$. \end{itemize} \begin{definition}\rm A continuous function $x:\mathbb{R}\to X_\beta$, is said to be a mild solution of \eqref{see}, if it satisfies following variation of constants formula \begin{equation} x(t)=T(t-s)x(s)+\int_s^t T_{\alpha-1}(t-\sigma)f(\sigma,x(\sigma))d\sigma \end{equation} for all $t\ge s, \ t,s\in \mathbb{R}$. \end{definition} \begin{definition} \rm A function $u:\mathbb{R}\to X_\beta$, is said to be a bounded solution of \eqref{see} provided that \begin{equation} u(t)=\int_{-\infty}^t T_{\alpha-1}(t-\sigma)P_{s,\alpha-1}f(\sigma,u(\sigma)) d\sigma -\int_t^\infty T_{\alpha-1}(t-\sigma)P_{u,\alpha-1}f(\sigma,u(\sigma))d\sigma, \label{3.4} \end{equation} $t\in \mathbb{R}$. \end{definition} Throughout the rest of this paper, we assume $\mathcal{H} u(t):=H_1u(t)+H_2u(t)$, where \begin{gather*} H_1u(t):=\int_{-\infty}^tT_{\alpha-1}(t-\sigma) P_{s,\alpha-1}f(\sigma,u(\sigma))d\sigma,\\ H_2u(t):=\int _t^\infty T_{\alpha-1}(t-\sigma) P_{u,\alpha-1}f(\sigma,u(\sigma))d\sigma, \end{gather*} for all $t\in \mathbb{R}$. \begin{lemma} \label{l3.3} Assume that assumptions {\rm (A1)--(A3)} are satisfied. If \begin{equation} M(\alpha,\beta,q,\gamma) :=\sum_{n=1}^\infty\Big[\int_{n-1}^ne^{-\gamma q \sigma} \sigma^{-q(\beta+1+ \tilde{\epsilon}-\alpha)}d\sigma\Big]^{1/q} <\infty, \label{3.5} \end{equation} then the operator $\mathcal{H}$ maps $AA(X_\beta)\mapsto AA(X_\beta)$. \end{lemma} \begin{proof} Let $u$ be in $AA(X_\beta)$. Then $u\in AS^p(X_\beta)$ and by Lemma \ref{l2.8} the set $\overline{\{u(t) : t\in \mathbb{R}\}}$ is compact in $X_\beta$. Since $f$ is Lipschitz, then it follows from Theorem \ref{thm2.16} (also see \cite[Theorem 2.21]{td1}) that the function $\phi(t):=f(t,u(t))$ belongs to $AS^p(X_\beta)$. Now we show that $\mathcal{H}u\in AA(X_\beta)$. For that we first define a sequence of integral operators $\{\phi_n\}$ as follows \begin{equation} \phi_n(t):=\int_{n-1}^n T_{\alpha-1}(t-\sigma)P_{s,\alpha-1}g(\sigma)d\sigma, \quad t\in \mathbb{R} \text{ \ and \ } n=1,2,3\dots \end{equation} Putting $r=t-\sigma$, \begin{equation} \phi_n(t):=\int_{t-n}^{t-n+1} T_{\alpha-1}(r)P_{s,\alpha-1}g(t-r)dr. \end{equation} Let $0<\tilde{\epsilon}+\beta<\alpha$, $0<\alpha-\tilde{\epsilon}<1$ and using Proposition \ref{p2.6} we have \begin{align*} \|\phi_n(t)\|_\beta &\le \int_{t-n}^{t-n+1}m(\alpha,\beta) r^{\alpha-1-\beta-\tilde{\epsilon}} e^{-\gamma r}\|g(t-r)\|_{S^p_{\alpha-1}}dr\\ &\text{ now, $r\to (t-r)$,}\\ &\leq \int_{n-1}^{n}m(\alpha,\beta)(t-r)^{\alpha-1-\beta-\tilde{\epsilon}} e^{-\gamma (t-r)}\|g(r)\|_{S^p_{\alpha-1}}dr, \\ &\leq \int_{n-1}^n m(\alpha,\beta)\sigma^{\alpha-\beta-1-\tilde{\epsilon}} e^{-\gamma \sigma}\|g\|_{S^p_{\alpha-1}}d\sigma,\\ &\leq q(\alpha,\beta)\Big[\int_{n-1}^ne^{-\gamma q\sigma} \sigma^{q(\alpha-\beta-1-\tilde{\epsilon})}d\sigma\Big]^{1/q} \|g\|_{S_{\alpha-1}^p}. \end{align*} By Weierstrass theorem and \eqref{3.5}, it follows that the series $$ \Phi(t):=\sum_{n=1}^\infty \phi_n(t) $$ is uniformly convergent on $\mathbb{R}$. Moreover $\Phi\in C(\mathbb{R},X_\beta)$; \begin{equation} \|\Phi(t)\|_\beta\le \sum_{n=1}^\infty \|\phi_n(t)\|_\beta\le q(\alpha,\beta)M(\alpha,\beta,q,\gamma)\|\phi\|_{S_{\alpha-1}^p.} \end{equation} We show that for all $n=1,2,3$, $\phi_n\in AA(X_\beta)$. Since $g\in AS^p(X_{\alpha-1})$, which implies that for every sequence $(s'_n)_{n\in \mathbb{N}}$ of real numbers, there exist a subsequence $(s_n)_{n\in \mathbb{N}}$ and a function $g'$ such that \begin{equation} \int_t^{t+1}\|g(\sigma+s_n)-g'(\sigma)\|^p_{\alpha-1}d\sigma \to 0. \end{equation} Let us define another sequence of integral operators \begin{equation} \widehat{\phi_n}(t)=\int_{n-1}^n T_{\alpha-1}(t-\sigma)P_{s,\alpha-1}g'(\sigma)d\sigma \quad \text{for } n=1,2,3,\dots . \end{equation} Now we show for $n=1,2,3,\dots$ that $\phi_n\in AA(X_\beta)$. Since $g\in AS^p(X_{\alpha-1})$, for every sequence $(s'_n)_{n\in \mathbb{N}}$ of real numbers, there exists a subsequence $(s_n)_{n\in \mathbb{N}}$ and a function $g'$ such that \begin{equation} \int_t^{t+1}\|g(\sigma+s_n)-g'(\sigma)\|_{\alpha-1}^pd\sigma\to 0. \end{equation} Define for all $n=1,2,3,\dots $ another sequence of integral operators \begin{equation} \widehat{\phi_n}(t)=\int_{n-1}^n T_{\alpha-1}(t-\sigma) P_{s,\alpha-1}g'(\sigma)d\sigma, \end{equation} for all $t\in \mathbb{R}$. Consider \begin{align*} &\phi_n(t+s_{n_k})-\widehat{\phi_n}(t)\\ &=\int_{n-1}^n T_{\alpha-1}(t+s_{n_k}-\sigma) P_{s,\alpha-1}g(\sigma)d\sigma-\int_{n-1}^n T_{\alpha-1}(t-\sigma) P_{s,\alpha-1}g'(\sigma)d\sigma,\\ &=\int_{n-1}^n T_{\alpha-1}(t-\sigma) P_{s,\alpha-1}g(\sigma+s_{n_k})d\sigma -\int_{n-1}^n T_{\alpha-1}(t-\sigma) P_{s,\alpha-1}g'(\sigma)d\sigma,\\ &=\int_{n-1}^nT_{\alpha-1}(t-\sigma)P_{s,\alpha-1} \big[g(\sigma+s_{n_k})-g'(\sigma)\big]d\sigma. \end{align*} Using Proposition \ref{p2.6}, we have \begin{align*} &\|\phi_n(t+s_{n_k})-\widehat{\phi_n}(t)\|_\beta\\ &\le \int_{n-1}^n m(\alpha,\beta)e^{-\gamma(t-\sigma)} (t-\sigma)^{-(\beta-\alpha+\tilde{\epsilon}+1)} \|g(\sigma+s_{n_k})-g'(\sigma)\|_{S^p_{\alpha-1}}d\sigma\\ &\to 0, \quad \text{as } k\to \infty, \; t\in \mathbb{R}, \quad (\text{since } g\in AS^p(X_{\alpha-1})). \end{align*} This implies that $\widehat{\phi_n}(t)=\lim_{k\to \infty}\phi_n(t+s_{n_k})$, $n=1,2,3,\dots$ and $t\in \mathbb{R}$. In a similar way, one can show that $\phi_n(t)=\lim_{k\to \infty} \widehat\phi_n(t-s_{n_k})$, for all $t\in \mathbb{R}$ and $n=1,2,3,\dots$. Therefore for each $n=1,2,3,\dots$, the sequence $\phi_n\in AA(X_{\beta})$. \end{proof} Now we state the main result of this Section. \begin{theorem} \label{mthm} Let $0\le \beta<\alpha$, $\tilde{\epsilon}>0$ such that $0<\alpha-\tilde{\epsilon}<1$ and $0<\beta+\tilde{\epsilon}<\alpha$, moreover assume that the constant \[ K:=k.m(\alpha,\beta)\gamma^{\beta-\alpha+\tilde{\epsilon}} \Gamma(\alpha-\beta-\tilde{\epsilon})+c(\alpha,\beta)\delta^{-1}<1 \] and equation \eqref{3.5} hold. Then under assumptions {\rm (A1)--(A3)} and for $f\in AS^p(\mathbb{R}\times X_\beta, X_{\alpha-1})$, equation \eqref{see} has unique almost automorphic solution $u\in AA(X_\beta)$, satisfying the following variation of constants formula. \[ u(t)=\int_{-\infty}^t T_{\alpha-1}(t-\sigma)P_{s,\alpha-1}f(\sigma,u(\sigma))d\sigma -\int_t^\infty T_{\alpha-1}(t-\sigma)P_{u,\alpha-1}f(\sigma,u(\sigma))d\sigma, \] $t\in \mathbb{R}$. \end{theorem} \begin{proof} We first show that $\mathcal{H}$ is a contraction. Let $v, w\in AA(X_\beta)$ and consider the following \begin{align*} &\|H_1v(t)-H_1w(t)\|_\beta\\ &\le \int_{-\infty}^t m(\alpha,\beta) (t-s)^{\alpha-\beta-1-\tilde{\epsilon}}e^{-\gamma(t-s)} \|f(s,v(s))-f(s,w(s))\|_{\alpha-1}ds\\ &\le\int_{-\infty}^tkm(\alpha,\beta)(t-s)^{\alpha-\beta-1- \tilde{\epsilon}}e^{-\gamma(t-s)}\|v(s)-w(s)\|_\beta ds\\ &\le k.m(\alpha,\beta)\gamma^{\beta-\alpha+\tilde{\epsilon}} \Gamma(\alpha-\beta-\tilde{\epsilon})\|v-w\|_\beta, \end{align*} where $\Gamma(\alpha):=\int_0^\infty t^{\alpha-1} e^{-t}dt$. Similarly we have \begin{align*} \|H_2v(t)-H_2w(t)\|_\beta &\leq \int_t^\infty c(\alpha,\beta) e^{-\delta(t-s)}\|v(s)-w(s)\|_\beta ds\\ &\leq c(\alpha,\beta)\delta^{-1}\|v-w\|_\beta. \end{align*} Consequently, \begin{align*} \|\mathcal{H}v(t)-\mathcal{H}v(t)\|_\beta &\leq \Big(k.m(\alpha,\beta)\gamma^{\beta-\alpha+\tilde{\epsilon}} \Gamma(\alpha-\beta-\tilde{\epsilon})+c(\alpha,\beta)\delta^{-1}\Big) \|v-w\|_\beta\\ &< \|v-w\|_\beta. \end{align*} Hence by the well-known Banach contraction principle, $\mathcal{H}$ has unique fixed point $u$ in $AA(X_\beta)$ satisfying $\mathcal{H}u=u$ (cf. Lemma \ref{l3.3} for almost automorphy of solution). \end{proof} \section{Semilinear boundary differential equations} \label{s4} Consider the semilinear boundary differential equation \begin{equation}\label{SBDE2} \begin{gathered} x'(t)=A_mx(t)+h(t,x(t)), \quad t\in \mathbb{R}, \\ Lx(t)=\phi(t,x(t)), \quad t\in \mathbb{R}, \end{gathered} \end{equation} where $(A_m,D(A_m))$ is a densely defined linear operator on a Banach space $X$ and $L: D(A_m)\to \partial X$, the boundary Banach space and the functions $h:\mathbb{R}\times X_m\to \partial X$ and $\phi:\mathbb{R}\times X_m\to \partial X$ are continuous. Likewise \cite{bol, brn} here we assume the assumptions introduced by Greiner \cite{gre} which are given as follows \begin{itemize} \item[(H1)] There exists a new norm $|\cdot|$ which makes the domain $D(A_m)$ complete and then denoted by $X_m$. The space $X_m$ is continuously embedded in $X$ and $A_m\in \mathcal{L}(X_m,X)$. \item[(H2)] The restriction operator $A:=A_m|_{ker(L)}$ is a sectorial operator such that $\sigma(A)\cap i\mathbb{R}=\phi$. \item[(H3)] The operator $L: X_m\to \partial X$ is bounded and surjective. \item[(H4)] $X_m\hookrightarrow X_\alpha$ for some $0<\alpha<1$. \item[(H5)] $h:\mathbb{R}\times X_\beta\to X$ and $\phi: \mathbb{R}\times X_\beta\to \partial X$ are continuous for $0\le \beta<\alpha$. \end{itemize} A function $x:\mathbb{R}\to X_\beta$ is a mild solution of \eqref{SBDE} if we have the following \begin{itemize} \item[(i)] $\int_s^t x(\tau)d\tau\in X_m$, \item[(ii)] $x(t)-x(s)=A_m\int_s^t x(\tau)d\tau +\int_s^t h(\tau,x(\tau))d\tau$, \item[(iii)] $L\int_s^tx(\tau)d\tau=\int_s^t\phi(\tau,x(\tau))d\tau$, \end{itemize} for all $t\ge s, \ t,s \in \mathbb{R}$. Now we transform \eqref{SBDE} to the equivalent semilinear evolution equation \begin{equation} x'(t)=A_{\alpha-1}x(t)+h(t,x(t))-A_{\alpha-1}L_0\phi(t,x(t)), \quad t\in \mathbb{R}, \label{4.1} \end{equation} where $L_0:=(L|_{}Ker(A_m))^{-1}$. \begin{theorem} \label{mthm2} Assume that functions $\phi\in AS^p(\mathbb{R}\times X_\beta,\partial X)$ and $h\in AS^p(\mathbb{R}\times X_\beta, X)$, are globally Lipschitzian with small lipschitz constants. Then under the assumptions (H1)-(H5), the semilinear boundary differential equation \eqref{SBDE} has a unique mild solution $x\in AA(X_\beta)$, satisfying the following formula for all $t\in \mathbb{R}$. \begin{equation} \label{4.2} \begin{aligned} x(t)&= \int_{-\infty}^t T(t-s)P_sh(s,x(s))ds -\int_t^\infty T(t-s)P_uh(s,x(s))ds \\ &\quad -A\Big[\int_{-\infty}^t T(t-s)P_sL_0\phi(s,x(s))ds -\int_t^\infty T(t-s)P_uL_0\phi(s,x(s))ds\Big]. \end{aligned} \end{equation} \end{theorem} \begin{proof} It is clear that $A_{\alpha-1}L_0$ is a bounded operator from $\partial X\to X_{\alpha-1}$. Since $\phi\in AS^p(\mathbb{R}\times X_\beta, \partial X)$ and $h\in AS^p(\mathbb{R}\times X_\beta,X)$ and from the injection $X\hookrightarrow X_{\alpha-1}$, the function $f(t,x):=h(t,x)-A_{\alpha-1}L_0\phi(t,x) \in AS^p(\mathbb{R}\times X_\beta,X_{\alpha-1})$. This function is also globally Lipschitzian with a small constant. Hence by Theorem \ref{mthm}, there is a unique mild solution $x\in AA(X_\beta)$ of \eqref{4.1}, satisfying \[ x(t)=\int_{-\infty}^t P_{s,\alpha-1}T_{\alpha-1}(t-s)f(s,x(s))ds- \int_t^\infty P_{u,\alpha-1}T_{\alpha-1}(t-s)f(s,x(s))ds, \] from which we deduce the variation of constants formula \eqref{4.2} and $x\in AA(X_\beta)$ is the unique mild solution. \end{proof} \begin{example} \rm Consider the partial differential equation \begin{equation} \label{4.3} \begin{gathered} \frac{\partial}{\partial t}u(t,x)=\Delta u(t,x)+au(t,x), \quad t\in \mathbb{R}, \; x\in \Omega \\ \frac{\partial}{\partial n}u(t,x)=\Gamma(t,m(x)u(t,x)), \quad t\in \mathbb{R}, \; x\in \partial \Omega. \end{gathered} \end{equation} Where $a\in \mathbb{R}_+$ and $m$ is a $\mathbb{C}^1$ function and $\Omega\subset \mathbb{R}^n$ is a bounded open subset of $\mathbb{R}^n$ with smooth boundary $\partial \Omega$. Here we use the following notation/conventions: $X=L^2(\Omega)$, $X_m=H^2(\Omega)$ and the boundary space $\partial X=H^{1/2}(\partial \Omega)$. The operators $A_m: X_m\to X$, given by $A_m \varphi=\Delta \varphi+a\phi$ and $L: X_m\to \partial X$, given by $L\varphi:=\frac{\partial\varphi}{\partial n}$. The operator $L$ is bounded and surjective, follows from Sections \cite[4.3.3, 4.6.1]{tri}. It is also known that the operator $A:=A_m|_{\ker L}$ generates an analytic semigroup, moreover we also have $X_m\hookrightarrow X_\alpha$ for $\alpha<3/4$ (cf. \cite[Sections 4.3.3, 4.6.1]{tri}). The eigenvalues of Neumann Laplacian $A$ is a decreasing sequence $(\lambda_n)$ with $\lambda_0=0$, $\lambda_1<0$, taking $a=-\lambda_1/2$, we have $\sigma(A)\cap i\mathbb{R}=\phi$. Hence the analytic semigroup generated by $A$ is hyperbolic. $$ \phi(t,\varphi)(x)=\Gamma(t,m(x)\varphi(x))=\frac{kb(t)}{1+|m(x)\varphi(x)|}, \quad t\in \mathbb{R}, \; x\in \partial\Omega $$ where $b(t)$ is $S^p$ Stepanov-like almost automorphic function and $b(\cdot)$ has relatively compact range. It can be easily seen that $\phi$ is continuous on $\mathbb{R}\times H^{2\beta'}(\Omega)$ for some $\frac{1}{2}<\beta<\beta'<\frac{3}{4}$, which is embedded in $\mathbb{R}\times X_\beta$ (cf. \cite{tri}). Using the definitions of fractional Sobolev spaces, one can easily show that $\phi(t,\varphi)(.)\in H^{1/2}(\partial\Omega)$ for all $\varphi\in H^{2\beta'}\hookrightarrow H^1(\Omega)$. Moreover $\phi$ is globally Lipschitzian for each $\varphi\in X_\beta$. Now for a small constant $k$, all assumptions of Theorem \ref{mthm2} are satisfied. Hence \eqref{4.3} admits a unique almost automorphic mild solution $u$ with values in $X_\beta$. \end{example} \subsection*{Acknowledgements} Authors are thankful to the anonymous referee for his/her useful comments/suggestions, which really helped us to improve our old manuscript. The first author would like to thank UGC-India for providing the financial support for this work. The second author acknowledges the financial suupport from the Department of Science and Technology, New Delhi, under project No. SR/S4/MS:796/12. \begin{thebibliography}{00} \bibitem{bol} S. Boulite, L. Maniar, G. M. N'Guerekata; \emph{Almost automorphic solutions for semilinear boundary differential equations}, Proc. Amer. Math. Soc. 134 (2006) 3613-3624. \bibitem{brn} M. Baroun, L. Maniar, G. M. N'Guerekata; \emph{Almost periodic and almost automorphic solutions to semilinear parabolic boundary differential equations}, Nonlinear Analysis 69(2008) 2114-2124. \bibitem{da} G. Da Prato, P. Grisvard; \emph{On extrapolation spaces}, Rend. Acad. Naz. Lincei. 72 (1982) 330-332. \bibitem{dn} T. Diagana, G. M. N'Gu\`er\`ekata; \emph{Stepanov-like almost automorphic functions and applications to some semilinear equations}, Applicable Anal. 86 (2007), No. 6, pp. 723-733. \bibitem{td1} T. Diagana, Evolution Equations in Generalized Stepanov Pseudo-Almost Automorphic Spaces. Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 49, pp. 1-19. \bibitem{td} T. Diagana; \emph{Existence of almost automorphic solutions to some classes of nonautonomous higher-order differential equations}, Electron. J. Qual. Theory Differ. Equ., 2010, No. 22, 1-26. \bibitem{ngel} K. J. Engel, R. Nagel; \emph{One Parameter Semigroups for Linear Evolution Equations}, in: Graduate Texts in Mathematics, Springer-Verlag, 1974. \bibitem{gre} G. Greiner; \emph{Purturbing the boundary conditions of a generator}, Houstan J. Math. 13 (1987) 213-229. \bibitem{gurek} G. M. N'Guerekata; \emph{Almost automorphic functions and Almost Periodic Functions in Abstract Spaces}, Kluwer Academic/Plenum Publishers, New York, London, Moscow, 2001. \bibitem{im} Indira Mishra, D. Bahuguna; \emph{Existence of almost automorphic solutions of neutral differential equations}, Journal of Nonlinear Evolution Equations and Applications, Vol. 2012, No. 2, pp. 17-28. \bibitem{lun} A. Lunardi; \emph{Analytic Semigroups and Optimal Regularity in Parabolic Problems}, Birkhauser, Basel, Boston, Berlin, 1995. \bibitem{man} L. Maniar, R. Schnaubelt; \emph{The fredholm alternative for the parabolic evolution equations with inhomogeneous boundary conditions}, J. Differential Equations, 235 (1) (2007) 308-339. \bibitem{gp} G. M. N'Guerekata, A. Pankov; \emph{Stepanov-like almost automorphic functions and monotone evolution equations}, Nonlinear Anal. 68 (2008), No. 9, pp. 2658-2667. \bibitem{pnk} A. Pankov; \emph{Bounded and almost periodic solutions of nonlinear operator differential equations}, Kluwer, Dordrecht, 1990. \bibitem{tri} H. Triebel; \emph{Interpolation Theory, Function Spaces, Differential Operators}, North-Holland, Amsterdam, 1978. \end{thebibliography} \end{document}