\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 217, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/217\hfil Sixth-order m-point boundary-value problems] {Nodal solutions for sixth-order m-point boundary-value problems using \\ bifurcation methods} \author[Y. Ji, Y. Guo, Y. Yao, Y. Feng \hfil EJDE-2012/217\hfilneg] {Yude Ji, Yanping Guo, Yukun Yao, Yingjie Feng } \address{Yude Ji \newline Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China} \email{jiyude-1980@163.com} \address{Yanping Guo \newline Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China} \email{guoyanping65@sohu.com} \address{Yukun Yao \newline Hebei Medical University, Shijiazhuang, 050200, Hebei, China} \email{yaoyukun126@126.com} \address{Yingjie Feng \newline Hebei Vocational Technical College of Chemical and Medicine, Shijiazhuang, 050026, Hebei, China} \email{fengyingjie126@126.com} \thanks{Submitted June 20, 2012. Published November 29, 2012.} \subjclass[2000]{34B15} \keywords{Nonlinear boundary value problems; nodal solution; eigenvalues; \hfill\break\indent bifurcation methods} \begin{abstract} We consider the sixth-order $m$-point boundary-value problem \begin{gather*} u^{(6)}(t)=f\big(u(t), u''(t), u^{(4)}(t)\big),\quad t\in(0,1),\\ u(0)=0, \quad u(1)=\sum_{i=1}^{m-2}a_iu(\eta_i),\\ u''(0)=0, \quad u''(1)=\sum_{i=1}^{m-2}a_iu''(\eta_i),\\ u^{(4)}(0)=0, \quad u^{(4)}(1)=\sum_{i=1}^{m-2}a_iu^{(4)}(\eta_i), \end{gather*} where $f: \mathbb{R}\times \mathbb{R}\times \mathbb{R} \to \mathbb{R}$ is a sign-changing continuous function, $m\geq3$, $\eta_i\in(0,1)$, and $a_i>0$ for $i=1,2,\dots,m-2$ with $\sum_{i=1}^{m-2}a_i<1$. We first show that the spectral properties of the linearisation of this problem are similar to the well-known properties of the standard Sturm-Liouville problem with separated boundary conditions. These spectral properties are then used to prove a Rabinowitz-type global bifurcation theorem for a bifurcation problem related to the above problem. Finally, we obtain the existence of nodal solutions for the problem, under various conditions on the asymptotic behaviour of nonlinearity $f$ by using the global bifurcation theorem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Multi-point boundary value problems for ordinary differential equations arise in different areas of applied mathematics and physics. The existence of solutions for second order and high order multi-point boundary value problems has been studied by many authors and the methods used are the nonlinear alternative of Leray-Schauder, coincidence degree theory, fixed point theorems in cones and global bifurcation techniques; see \cite{Feng1997,Guo1,Gupta1998,JI1,Liu,Liu2009,Ma2008,Ma2001,Sun2008,Webb2001, Xu2004} and the references therein. We consider the sixth order $m$-point boundary value problem (BVP, for short) \begin{equation} \label{eq11} \begin{gathered} u^{(6)}(t)=f\big(u(t), u''(t), u^{(4)}(t)\big),\quad t\in(0,1),\\ u(0)=0, \quad u(1)=\sum_{i=1}^{m-2}a_iu(\eta_i),\\ u''(0)=0, \quad u''(1)=\sum_{i=1}^{m-2}a_iu''(\eta_i),\\ u^{(4)}(0)=0, \quad u^{(4)}(1)=\sum_{i=1}^{m-2}a_iu^{(4)}(\eta_i), \end{gathered} \end{equation} where $f: \mathbb{R}\times \mathbb{R}\times \mathbb{R} \to \mathbb{R}$ is a sign-changing continuous function, $m\geq3$, $\eta_i\in(0,1)$, and $a_i>0$ for $i=1,2,\dots,m-2$ with \begin{equation} \label{eq12} \sum_{i=1}^{m-2}a_i<1. \end{equation} Ma and O'Regan \cite{Ma20061} investigated the existence of nodal solutions of $m$-point boundary value problem \begin{equation} \label{eq13} \begin{gathered} u''(t)+f(u)=0,\quad t\in(0,1),\\ u(0)=0, \quad u(1)=\sum_{i=1}^{m-2}a_iu(\eta_i). \end{gathered} \end{equation} where $\eta_i\in \mathbb{Q}(i=1,2,\dots,m-2)$ with $0<\eta_1<\eta_2<\dots<\eta_{m-2}<1$, and $\alpha_i\in \mathbb{R}$ $(i=1,2,\dots,m-2)$ with $a_i>0$ and $\sum_{i=1}^{m-2}a_i\leq1$. They obtained some results on the spectrum of the linear operator corresponding to \eqref{eq13} and gave conditions on the ratio $f(s)/s$ at infinity and zero that guarantee the existence of nodal solutions. The proofs of main results are based on bifurcation techniques. Recently, An and Ma \cite{An2008} extended this result, they considered the nonlinear eigenvalue problems \begin{equation}\label{eq14} \begin{gathered} u''(t)+rf(u)=0,\quad 00$ for $i=1,2,\dots,m-2$ with $0<\sum_{i=1}^{m-2}a_i<1$, $r\in \mathbb{R}$; \item[(A1)] $f\in C^{1}(\mathbb{R}, \mathbb{R})$ and there exist two constants $s_2<0\max\{\frac{\lambda_k}{f_0},\frac{\lambda_k}{f_{\infty}}\}$. \end{remark} Liu and O'Regan \cite{Liu2009} studied the existence and multiplicity of nodal solutions for fourth order $m$-point BVPs: \begin{gather*} u^{(4)}(t)=f(u(t), u''(t)),\quad t\in(0,1),\\ u'(0)=0, \quad u(1)=\sum_{i=1}^{m-2}a_iu(\eta_i),\\ u'''(0)=0,\quad u''(1)=\sum_{i=1}^{m-2}a_iu''(\eta_i), \end{gather*} where $f: \mathbb{R}\times \mathbb{R} \to \mathbb{R}$ is a given sign-changing continuous function, $m\geq3$, $\eta_i\in(0,1)$, and $a_i>0$ for $i=1,2,\dots,m-2$ satisfies \eqref{eq12}. The main tool be used is global results on bifurcation from infinity, while in \cite{Ma20062} is results on bifurcation coming from the trivial solutions. Motivated by \cite{An2008, Liu2009, Ma20062}, in this paper we consider the existence of nodal solutions (that is, sign-changing solutions with a specified number of zeros) of BVP \eqref{eq11}. To the best of our best knowledge, only \cite{ Liu2009, Wei2007} seems to have considered the existence of nontrivial or positive solutions of the nonlinear multi-point BVPs for fourth order differential equations. Of course an interesting question is, as for sixth order $m$-point BVPs, whether we can obtain some new results which are similar to \cite{An2008, Liu2009}. Using the global bifurcation techniques, we study the global behavior of the components of nodal solutions of BVP \eqref{eq11} and give a positive answer to the above question. However, when $m$-point boundary value condition of \eqref{eq11} is concerned, the discussion is more difficult since the problem is nonsymmetric and the corresponding operator is disconjugate. Although the paper \cite{Guo1} has also obtained sign-changing solutions of \eqref{eq11}, but no information is obtained regarding the number of zeros of the solution, and the method of proof is entirely different (relying on degree theory in cones). The article is organized as follows. Section 2 gives some preliminaries. The results we obtain are similar to the standard spectral theory of the linear, separated Sturm-Liouville problem, with a slight difference in the nodal counting method used, to deal with the multi-point boundary conditions. We also show that the standard counting method is inadequate in this situation, and that the condition \eqref{eq12} is optimal for the results in Section 2 to hold. This section deals entirely with the linear eigenvalue problem. In Section 3 we first consider a bifurcation problem related to \eqref{eq11}, and prove a Rabinowitz-type global bifurcation theorem for this problem. The proof uses the spectral properties of the linearisation obtained in Section 2. Finally, we use the global bifurcation theorem to obtain nodal solutions of \eqref{eq11}, under various hypotheses on the asymptotic behaviour of $f$. Specifically, we consider the cases where $f$ is asymptotically linear. To conclude this section we give some notation and state four lemmas, which will be used in Section 3. Following the notation of Rabinowitz, let $F: \mathbb{R}\times E\to E$ where $E$ is real Banach spaces and $F$ is continuous. Suppose the equation $F(U)=0$ possesses a simple curve of solutions $\mathscr{C}$ given by $\{U(t)|t\in[a, b]\}$. If for some $\tau\in(a, b)$, $F$ possesses zeroes not lying on $\mathscr{C}$ in every neighborhood of $U(\tau)$, then $U(\tau)$ is said to be a bifurcation point for $F$ with respect to the curve $\mathscr{C}$. A special family of such equations has the form \begin{equation} \label{eq01} u=G(\lambda, u). \end{equation} where $\lambda\in\mathbb{R},u\in E$, a real Banach space with norm $\|\cdot\|$ and $G: \mathbb{R}\times E\to E$ is compact and continuous. Equations of the form \eqref{eq01} are usually called nonlinear eigenvalue problems and arise in many contexts in mathematical physics. It is therefore of interest to investigate the structure of the set of their solutions. Bifurcation phenomena occur in many parts of physics and have been intensively studied. It is often the case in applications that $F(\lambda,u)=u-(\lambda Lu+H(\lambda, u))$ where $L: E\to E$ is a compact linear operator and $H: \mathbb{R}\times E\to E$ is compact(i.e., continuous and maps bounded sets into relatively compact sets) with $H(\lambda,u)=o(\|u\|)$ at $u=0$ uniformly on bounded $\lambda$ intervals. The zeros $\mathscr{R}=\{(\lambda,0):\lambda\in \mathbb{R}\}$ of $F$ are then called the line of trivial solutions of \begin{equation} \label{eq17} u=\lambda Lu+H(\lambda, u). \end{equation} If there exists $\mu\in\mathbb{R}$ and $0\neq v\in E$ such that $v=\mu Lv$, $\mu$ is said to be a real characteristic value of $L$. The set of real characteristic values of $L$ will be denoted by $r(L)$. The multiplicity of $\mu\in r(L)$ is \[ \dim\cup_{j=1}^{\infty}N((I-\mu L)^{j}), \] where $I$ is the identity map on $E$ and $N(A)$ denotes the null space of $A$. It is well known that if $\mu\in\mathbb{R}$, a necessary condition for $(\mu,0)$ to be a bifurcation point of \eqref{eq17} with respect to $\mathscr{R}$ is that $\mu\in r(L)$. If $\mu$ is a simple characteristic value of $L$, let $v$ denote the eigenvector of $L$ corresponding to $\mu$ normalized so $\|v\|=1$. By $\mathscr{S}$ we denote the closure of the set of nontrivial solutions of \eqref{eq17}. A component of $\mathscr{S}$ is a maximal closed connected subset. The following are global results for \eqref{eq17} on bifurcation from the trivial solutions (see, Rabinowitz \cite[Theorems 1.3, 1.25, 1.27]{Rabinowitz1971}). \begin{lemma}\label{lem13} If $\mu\in r(L)$ is of odd multiplicity, then $\mathscr{S}$ contains a component $\mathscr{C}_{\mu}$ which can be decomposed into two subcontinua $\mathscr{C}_{\mu}^{+}, \mathscr{C}_{\mu}^{-}$ such that each of $\mathscr{C}_{\mu}^{+}, \mathscr{C}_{\mu}^{-}$ either \begin{itemize} \item[(i)] meets infinity in $\mathscr{S}$, or \item[(ii)] meets $(\widehat{\mu}, 0)$ where $\mu\neq\widehat{\mu}\in\sigma(L)$, or \item[(iii)] contains a pair of points $(\lambda, u), (\lambda, -u), u\neq0$. \end{itemize} \end{lemma} \begin{lemma}\label{lem14} If $\mu\in r(L)$ is simple, then $\mathscr{S}$ contains a component $\mathscr{C}_{\mu}$ which can be decomposed into two subcontinua $\mathscr{C}_{\mu}^{+}, \mathscr{C}_{\mu}^{-}$ such that for some neighborhood $\mathscr{N}$ of $(\mu, 0)$, \[ (\lambda,u)\in \mathscr{C}_{\mu}^{+}(\mathscr{C}_{\mu}^{-})\cap \mathscr{N}, \quad(\lambda, u)\neq (\mu, 0) \] implies $(\lambda,u)=(\lambda, \alpha v+w)$ where $\alpha>0(\alpha< 0)$ and $|\lambda-\mu|=o(1), \|w\|=o(|\alpha|)$ at $\alpha=0$. \end{lemma} \begin{remark}\label{rem13} \rm We say a continuum $\mathscr{C}$ of $\mathscr{S}$ meets infinity if $\mathscr{C}$ is not bounded. \end{remark} \begin{remark}\label{rem14}\rm Lemmas \ref{lem13} is the first important result on the existence of a subcontinuum of solutions for nonlinear equations by degree theoretic method. When using Lemmas \ref{lem13} to study multiplicity of nodal solutions one needs to first study the spectrum structure of the linear operator $L$ corresponding to the nonlinear eigenvalue problem. Fortunately, the spectrum structure of linear operators corresponding to most known nonlinear boundary value problems have been studied systematically. However, for the case of multi-point boundary value problems, a complete study of the spectrum structure is not available yet. \end{remark} Rabinowitz showed in \cite[Theorems 1.6, Corollary 1.8]{Rabinowitz1973} that analogues of Lemmas \ref{lem13} and \ref{lem14} when one is dealing with $\infty$ rather than 0. Let $L$ be as above and $K: \mathbb{R}\times E\to E$ be continuous with $K(\lambda, u)=o(\|u\|)$ at $u=\infty$ uniformly on bounded $\lambda$ intervals. Consider the equation \begin{equation} \label{eq110} u=\lambda L u+K(\lambda,u) \end{equation} Let $\mathscr{T}$ denote the closure of the set of nontrivial solutions of \eqref{eq110}. The following are global results for \eqref{eq110} on bifurcation from infinity. \begin{lemma}\label{lem15} Suppose $L$ is compact and linear, $K(\lambda,u)$ is continuous on $\mathbb{R}\times E$, $K(\lambda,u)=o(\|u\|)$ at $u=\infty$ uniformly on bounded $\lambda$ intervals, and $\|u\|^2K(\lambda,\frac{u}{\|u\|^2})$ is compact. If $\mu\in r(L)$ is of odd multiplicity, then $\mathscr{T}$ possesses an unbounded component $\mathscr{D}_{\mu}$ which meets $(\mu, \infty)$. Moreover if $\Lambda\subset\mathbb{R}$ is an interval such that $\Lambda\cap r(L)=\{\mu\}$ and $\mathscr{M}$ is a neighborhood of $(\mu, \infty)$ whose projection on $\mathbb{R}$ lies in $\Lambda$ and whose projection on $E$ is bounded away from 0, then either \begin{itemize} \item[(i)] $\mathscr{D}_{\mu}\backslash\mathscr{M}$ is bounded in $\mathbb{R}\times E$ in which case $\mathscr{D}_{\mu}\backslash\mathscr{M}$ meets $\mathscr{R}=\{(\lambda,0)|\lambda\in \mathbb{R}\}$ or \item[(ii)] $\mathscr{D}_{\mu}\backslash\mathscr{M}$ is unbounded. \end{itemize} If (ii) occurs and $\mathscr{D}_{\mu}\backslash\mathscr{M}$ has a bounded projection on $\mathbb{R}$, then $\mathscr{D}_{\mu}\backslash\mathscr{M}$ meets $(\widehat{\mu}, \infty)$ where $\mu\neq\widehat{\mu}\in\sigma(L)$. \end{lemma} \begin{remark}\label{rem13b} \rm A continuum $\mathscr{D}_{\mu}\subset\mathscr{T}$ of solution of \eqref{eq110} meets $(\lambda_k, \infty)$ which means that there exists a sequence $\{(\lambda_n, u_n)\}\subset\mathscr{D}_{\mu}$ such that $\|u_n\|\to\infty$ and $\lambda_n\to\lambda_k$. \end{remark} \begin{lemma}\label{lem16} Suppose the assumptions of Lemma \ref{lem15} hold. If $\mu\in r(L)$ is simple, then $\mathscr{D}_{\mu}$ can be decomposed into two subcontinua $\mathscr{D}_{\mu}^{+}, \mathscr{D}_{\mu}^{-}$ and there exists a neighborhood $\mathscr{O}\subset\mathscr{M}$ of $(\mu, \infty)$ such that $(\lambda,u)\in \mathscr{D}_{\mu}^{+}(\mathscr{D}_{\mu}^{-})\cap\mathscr{O}$ and $(\lambda,u)\neq(\mu, \infty)$ implies $(\lambda,u)=(\lambda, \alpha v+w)$ where $\alpha>0(\alpha< 0)$ and $|\lambda-\mu|=o(1), \|w\|=o(|\alpha|)$ at $\alpha=\infty$. \end{lemma} \begin{remark}\label{rem17} \rm We say $(\mu, \infty)$ is a bifurcation point for \eqref{eq110} if every neighborhood of $(\mu, \infty)$ contains solutions of \eqref{eq110}; i.e., there exists a sequence $(\lambda_n, u_n)$ of solutions of \eqref{eq110} such that $\lambda_n\to\mu$ and $\|u_n\|\to\infty$. \end{remark} \section{Preliminaries}\label{s2} Let $X=C[0,1]$ with the norm $\|u\|=\max_{t\in[0,1]}|u(t)|$. Let \begin{gather*} Y=\{u\in C^{1}[0,1]|u(0)=0,u(1)=\sum_{i=1}^{m-2}a_iu(\eta_i)\},\\ Z=\{u\in C^2[0,1]|u(0)=0,u(1)=\sum_{i=1}^{m-2}a_iu(\eta_i)\} \end{gather*} with the norm \[ \|u\|_1=\max\{\|u\|,\|u'\|\},\quad \|u\|_2=\max\{\|u\|,\|u'\|,\|u''\|\}, \] respectively. Then $X, Y$ and $Z$ are Banach spaces. For any $C^{1}$ function $u$, if $u(t_0)=0$, then $t_0$ is a simple zero of $u$ if $u'(t_0)\neq0$. For any integer $k\in \mathbb{N}$ and any $\nu\in\{\pm\}$, as in \cite{Rynne}, define sets $S_k^{\nu}$, $T_k^{\nu}$ subsets of $C^2[0,1]$ consisting of of functions $u\in C^2[0,1]$ satisfying the following conditions: $S_k^{\nu}$: (i) $u(0)=0, \nu u'(0)>0$; (ii) $u$ has only simple zeros in $[0,1]$ and has exactly $k-1$ zeros in $(0,1)$; $T_k^{\nu}$: (i) $u(0)=0, \nu u'(0)>0$, and $u'(1)\neq0$; (ii) $u'$ has only simple zeros in $(0,1)$ and has exactly $k$ zeros in $(0,1)$; (iii) $u$ has a zero strictly between each two consecutive zeros of $u'$. \begin{remark}\label{rem21} \rm (i) If $u\in T_k^{\nu}$, then $u$ has exactly one zero between each two consecutive zeros of $u'$, and all zeros of $u$ are simple. Thus, $u$ has at least $k-1$ zeros in $(0,1)$, and at most $k$ zeros in $(0,1]$; i.e., $u\in S_k^{\nu}$ or $u\in S_{k+1}^{\nu}$. (ii) The sets $T_k^{\nu}$ are open in $Z$ and disjoint. (iii) Note $T_k^{-}=-T_k^{+}$ and let $T_k=T_k^{-}\cup T_k^{+}$. It is easy to see that the sets $T_k^{+}$ and $T_k^{-}$ are disjoint and open in $Z$. \end{remark} \begin{remark}\label{rem22}\rm One could regard the sets $S_k^{\nu}$ as counting zeros of $u$, while the sets $T_k^{\nu}$ count 'bumps'. The nodal properties of solutions of nonlinear Sturm-Liouville problems with separated boundary conditions are usually described in terms of sets similar to $S_k^{\nu}$ (with an additional condition at $x=1$ to incorporate the boundary condition there); see \cite{An2008,Guo1,JI1,Ma2008,Webb2001}. However, Rynne \cite{Rynne} stated that $T_k^{\nu}$ are in fact more appropriate than $S_k^{\nu}$ when the multi-point boundary condition \eqref{eq11} is considered. \end{remark} Let $\mathbb{E}=\mathbb{R}\times Y$ under the product topology. As in \cite{Rabinowitz1973}, we add the points $\{(\lambda,\infty)|\lambda\in \mathbb{R}\}$ to the space $\mathbb{E}$. Let $\Phi_k^{+}=\mathbb{R}\times T_k^{+}, \Phi_k^{-}=\mathbb{R}\times T_k^{-}$, and $\Phi_k=\mathbb{R}\times T_k$. We first convert \eqref{eq11} into another form. Notice that \begin{gather*} u''(t)+v(t)=0,\quad t\in(0,1),\\ u(0)=0, \quad u(1)=\sum_{i=1}^{m-2}a_iu(\eta_i). \end{gather*} Thus $u(t)$ can be written as \begin{eqnarray}\label{eq25} u(t)=Lv(t), \end{eqnarray} where the operator $L$ is defined by \begin{equation} \label{eq26} L v(t)=\int_0^{1}G(t,s)v(s)\,{\rm d}s, \forall v\in Y, \end{equation} where \begin{gather} \label{eq27} G(t,s)=g(t,s)+\frac{t}{1-\sum_{i=1}^{m-2} a_i\eta_i}\sum_{i=1}^{m-2} a_ig(\eta_i,s),\\ \label{eq28} g(t,s)=\begin{cases} s(1-t), &0\leq s\leq t\leq 1,\\ t(1-s), &0\leq t\leq s\leq 1. \end{cases} \end{gather} Let $v(t)=-u^{(4)}(t)$. Then we obtain the following equivalent form of \eqref{eq11} \begin{equation} \label{eq29} \begin{gathered} v''(t)+f((-L^2v)(t), (Lv)(t),-v(t))=0,\quad t\in(0,1),\\ v(0)=0,\quad v(1)=\sum_{i=1}^{m-2}a_iv(\eta_i). \end{gathered} \end{equation} For the rest of this paper we assume that the initial value problem \begin{equation}\label{eq210} \begin{gathered} v''(t)+f((-L^2v)(t), (Lv)(t),-v(t))=0,\quad t\in(0,1),\\ v(t_0)=0, \quad v'(t_0)=0, \end{gathered} \end{equation} has the unique trivial solution $v\equiv0$ on $[0,1]$ for any $t_0\in[0,1]$; in fact some suitable conditions such as a Lipschitz assumption or $f\in C^{1}$ guarantee this. Define two operators on $Y$ by \begin{gather}\label{eq211} (Av)(t):=(LFv)(t),\\ \label{eq212} (Fv)(t):=f((-L^2v)(t), (Lv)(t),-v(t)),\quad t\in[0, 1], \quad v\in Y. \end{gather} Then it is easy to see the following lemma holds. \begin{lemma}\label{lem23} The linear operator $L$ and operator $A$ are both completely continuous from $Y$ to $Y$ and \[ \|Lv\|_1\leq M\|v\|\leq M\|v\|_1,\quad \forall v\in Y, \] where \[ M=\max\Big\{1,\, \frac{1}{2}+\frac{\sum_{i=1}^{m-2}a_i}{6(1-\sum_{i=1}^{m-2}a_i \eta_i)}\Big\}. \] \end{lemma} Moreover, $u\in C^{6}[0, 1]$ is a solution of \eqref{eq11} if and only if $v=-u^{(4)}$ is a solution of the operator equation $v=Av$. In fact, if $u$ is a solution of \eqref{eq11}, then $v=-u^{(4)}$ is a solution of the operator equation $v=Av$. Conversely, if $v$ is a solution of the operator equation $v=Av$, then $u=-L^2v$ is a solution of \eqref{eq11} Let the function $\Gamma(s)$ be defined by \[ \Gamma(s)=\sin s- \sum_{i=1}^{m-2}a_i\sin \eta_is,~~ s\in \mathbb{R}^{+}. \] The following lemma can be found in \cite{Rynne}. \begin{lemma}\label{lem24} (i) For each $k\geq1$, $\Gamma(s)$ has exactly one zero $s_k\in I_k:=((k-\frac{1}{2})\pi, (k+\frac{1}{2})\pi)$, so \[ s_10, b>0$ and $a\neq b$ such that \begin{align*} &(\lambda^2+\mu_n)(\lambda^2-a)(\lambda^2-b)\\ &=\lambda^{6}-\frac{\mu_n^{3}}{d_1+d_2\mu_n+ d_3\mu_n^2}(-d_1+d_2\lambda^2-d_3\lambda^{4})=0. \end{align*} It is easy to see that the general solution of \eqref{eq221} is of the form \[ v(t)=C_1e^{\sqrt{a}t}+C_2e^{-\sqrt{a}t}+C_3e^{\sqrt{b}t} +C_4e^{-\sqrt{b}t}+C_5 \sin s_nt+C_6 \cos s_nt+K t\cos s_nt, \] for $t\in[0,1]$, where $C_1,C_2,C_3,C_4,C_5,C_6$ are six nonzero constants, and \[ K=\frac{\gamma s_n(d_1+d_2\mu_n+ d_3\mu_n^2)}{6d_1+4d_2\mu_n+2d_3\mu_n^2}. \] Applying the conditions $v(0)=0, v''(0)=0, v^{(4)}(0)=0$, we obtain $C_1+C_2=0, C_3+C_4=0, C_6=0$, Then \begin{gather*} v(t)=C_1(e^{\sqrt{a}t}-e^{-\sqrt{a}t}) +C_3(e^{\sqrt{b}t}-e^{-\sqrt{b}t})+C_5 \sin s_nt+K t\cos s_nt, \\ \begin{aligned} v''(t)&=C_1a(e^{\sqrt{a}t}-e^{-\sqrt{a}t}) +C_3b(e^{\sqrt{b}t}-e^{-\sqrt{b}t})-C_5 s_n^2\sin s_nt\\ &\quad +K (-s_n^2t\cos s_nt-2s_n\sin s_nt), \end{aligned} \\ \begin{aligned} v^{(4)}(t)&=C_1a^2(e^{\sqrt{a}t}-e^{-\sqrt{a}t}) +C_3b^2(e^{\sqrt{b}t}-e^{-\sqrt{b}t}) +C_5 s_n^{4}\sin s_nt\\ &\quad +K (s_n^{4}t\cos s_nt+4s_n^{3}\sin s_nt). \end{aligned} \end{gather*} Applying the conditions \begin{gather*} v(1)=\sum_{i=1}^{m-2}a_iv(\eta_i), \quad v''(1)=\sum_{i=1}^{m-2}a_iv''(\eta_i), \\ v^{(4)}(1)=\sum_{i=1}^{m-2}a_iv^{(4)}(\eta_i), \quad \sin s_n= \sum_{i=1}^{m-2}a_i\sin \eta_is_n, \end{gather*} we have \begin{equation} \label{eq222} \begin{gathered} C_1F+C_3G+KH=0,\\ C_1aF+C_3b G-s_n^2K H=0,\\ C_1a^2F+C_3b^2 G+s_n^{4}K H=0, \end{gathered} \end{equation} where \begin{gather*} F=e^{\sqrt{a}}-e^{-\sqrt{a}}-\sum_{i=1}^{m-2}a_i(e^{\sqrt{a}\eta_i} -e^{-\sqrt{a}\eta_i}),\\ G=e^{\sqrt{b}}-e^{-\sqrt{b}}-\sum_{i=1}^{m-2}a_i(e^{\sqrt{b}\eta_i} -e^{-\sqrt{b}\eta_i}),\\ H=\cos s_n-\sum_{i=1}^{m-2}a_i\eta_i\cos \eta_is_n. \end{gather*} If $H\neq0$, then the solution of \eqref{eq222} is $C_1=C_3=K=0$, which is a contradiction to $\gamma\neq0$, and \[ v(t)=C_5\sin s_nt\in \ker(I-\lambda_nL_d). \] So, \eqref{eq220} holds. Hence, \eqref{eq219} holds. If $H = 0$, then \[ \cos s_n=\sum_{i=1}^{m-2}a_i\eta_i\cos \eta_is_n. \] By the Schwarz inequality, we obtain \begin{align*} 1-\sin^2 s_n &=\Big(\sum_{i=1}^{m-2}a_i\eta_i\cos \eta_is_n\Big)^2\\ &\leq\Big(\sum_{i=1}^{m-2}\eta_i^2\Big)\big(\sum_{i=1}^{m-2}a_i^2\cos^2 \eta_is_n\Big)\\ &=\Big(\sum_{i=1}^{m-2}\eta_i^2\Big)\Big(\sum_{i=1}^{m-2}a_i^2\Big)- \Big(\sum_{i=1}^{m-2}\eta_i^2\Big)\Big(\sum_{i=1}^{m-2}a_i^2\sin^2 \eta_is_n\Big). \end{align*} Applying the condition $\sin s_n= \sum_{i=1}^{m-2}a_i\sin \eta_is_n$, we obtain \begin{align*} 1&\leq \Big(\sum_{i=1}^{m-2}\eta_i^2\Big)\Big(\sum_{i=1}^{m-2}a_i^2\Big) +\Big(\sum_{i=1}^{m-2}a_i\sin \eta_is_n\Big)^2- \Big(\sum_{i=1}^{m-2}\eta_i^2\Big)\Big(\sum_{i=1}^{m-2}a_i^2\sin^2 \eta_is_n\Big)\\ &=\Big(\sum_{i=1}^{m-2}\eta_i^2\Big)\Big(\sum_{i=1}^{m-2}a_i^2\Big) +\Big(1-\sum_{i=1}^{m-2}\eta_i^2\Big)\Big(\sum_{i=1}^{m-2}a_i^2\sin^2 \eta_is_n\Big)\\ &\quad +\sum_{i\neq j}a_ia_{j}\sin \eta_is_n\sin \eta_{j}s_n \\ &\leq\Big(\sum_{i=1}^{m-2}\eta_i^2\Big)\Big(\sum_{i=1}^{m-2}a_i^2\Big) +\Big(1-\sum_{i=1}^{m-2}\eta_i^2\Big)\Big(\sum_{i=1}^{m-2}a_i^2\Big)+\sum_{i\neq j}a_ia_{j}\\ &=\Big(\sum_{i=1}^{m-2}a_i\Big)^2. \end{align*} which is a contradiction to $\sum_{i=1}^{m-2}a_i<1$. Thus, \eqref{eq219} holds. It follows from \eqref{eq219} and \eqref{eq220} that the algebraic multiplicity of the eigenvalue $\mu_n$ is 1. \smallskip Case (ii): There exists a real number $a>0$ such that \[ (\lambda^2+\mu_n)(\lambda^2-a)^2=\lambda^{6}-\frac{\mu_n^{3}}{d_1+d_2\mu_n+ d_3\mu_n^2}(-d_1+d_2\lambda^2-d_3\lambda^{4})=0. \] It is easy to see that the general solution of \eqref{eq221} is of the form \[ v(t)=(C_1+C_2t)e^{\sqrt{a}t}+(C_3+C_4t)e^{-\sqrt{a}t}+C_5 \sin s_nt+C_6 \cos s_nt+K t\cos s_nt,\] for $t\in[0,1]$, where $C_1,C_2,C_3,C_4,C_5,C_6$ are six nonzero constants, and $ K=\frac{\gamma s_n(d_1+d_2\mu_n+ d_3\mu_n^2)}{6d_1+4d_2\mu_n+2d_3\mu_n^2}$. Applying the conditions $v(0)=0$, $v''(0)=0$, $v^{(4)}(0)=0$, we obtain $C_1+C_3=0$, $C_2-C_4=0$, $C_6=0$, Then \begin{gather*} v(t)=C_1(e^{\sqrt{a}t}-e^{-\sqrt{a}t})+C_2t(e^{\sqrt{a}t}+e^{-\sqrt{a}t}) +C_5 \sin s_nt+K t\cos s_nt,\\ \begin{aligned} v''(t)&= C_1a(e^{\sqrt{a}t}-e^{-\sqrt{a}t})+2C_2\sqrt{a}(e^{\sqrt{a}t} -e^{-\sqrt{a}t}) +C_2at(e^{\sqrt{a}t}+e^{-\sqrt{a}t})\\ &\quad -C_5 s_n^2\sin s_nt+K (-s_n^2t\cos s_nt-2s_n\sin s_nt), \end{aligned}\\ \begin{aligned} v^{(4)}(t)&=C_1a^2(e^{\sqrt{a}t}-e^{-\sqrt{a}t}) +4C_2a\sqrt{a}(e^{\sqrt{a}t}-e^{-\sqrt{a}t}) +C_2a^2t(e^{\sqrt{a}t}+e^{-\sqrt{a}t})\\ &\quad +C_5 s_n^{4}\sin s_nt+K (s_n^{4}t\cos s_nt+4s_n^{3}\sin s_nt). \end{aligned} \end{gather*} Applying the conditions \begin{gather*} v(1)=\sum_{i=1}^{m-2}a_iv(\eta_i), \quad v''(1)=\sum_{i=1}^{m-2}a_iv''(\eta_i),\\ v^{(4)}(1)=\sum_{i=1}^{m-2}a_iv^{(4)}(\eta_i), \quad \sin s_n= \sum_{i=1}^{m-2}a_i\sin \eta_is_n, \end{gather*} we have \begin{equation} \label{eq223} \begin{gathered} C_1F+C_2G+KH=0,\\ C_1aF+C_2(2\sqrt{a}F+a G)-s_n^2K H=0,\\ C_1a^2F+C_2(4a\sqrt{a}F+a^2 G)+s_n^{4}K H=0, \end{gathered} \end{equation} where \begin{gather*} F=e^{\sqrt{a}}-e^{-\sqrt{a}}-\sum_{i=1}^{m-2}a_i(e^{\sqrt{a}\eta_i} -e^{-\sqrt{a}\eta_i}),\\ G=e^{\sqrt{a}}+e^{-\sqrt{a}}-\sum_{i=1}^{m-2}a_i\eta_i(e^{\sqrt{a}\eta_i} +e^{-\sqrt{a}\eta_i}),\\ H=\cos s_n-\sum_{i=1}^{m-2}a_i\eta_i\cos \eta_is_n. \end{gather*} If $H\neq0$, then the solution of \eqref{eq223} is $C_1=C_2=K=0$, which is a contradiction to $\gamma\neq0$, and \[ v(t)=C_5\sin s_nt\in \ker(I-\lambda_nL_d). \] So, \eqref{eq220} holds. Hence, \eqref{eq219} holds. If $H = 0$, in this case, the proof is similar to Case (i), we omit it. \smallskip Case (iii): There exists a real number $a, b>0$ such that \begin{align*} &(\lambda^2+\mu_n)[\lambda^2-(a^2-b^2+2abi)] [\lambda^2-(a^2-b^2-2abi)]\\ &=\lambda^{6}-\frac{\mu_n^{3}}{d_1+d_2\mu_n+ d_3\mu_n^2}(-d_1+d_2\lambda^2-d_3\lambda^{4})=0. \end{align*} It is easy to see that the general solution of \eqref{eq221} is of the form \begin{align*} v(t)&=(C_1\cos bt+C_2\sin bt)e^{at}+(C_3\cos bt+C_4\sin bt)e^{-at}\\ &\quad +C_5 \sin s_nt+C_6 \cos s_nt+K t\cos s_nt, \quad t\in[0,1]. \end{align*} where $C_1,C_2,C_3,C_4,C_5,C_6$ are six nonzero constants, and \[ K=\frac{\gamma s_n(d_1+d_2\mu_n+ d_3\mu_n^2)}{6d_1+4d_2\mu_n+2d_3\mu_n^2}. \] Applying the conditions $v(0)=0$, $v''(0)=0$, $v^{(4)}(0)=0$, we obtain that $C_1+C_3=0$, $C_2-C_4=0$, $C_6=0$, Then \begin{gather*} v(t)=C_1\cos bt(e^{at}-e^{-at})+C_2\sin bt(e^{at}+e^{-at})+C_5 \sin s_nt+K t\cos s_nt, \\ \begin{aligned} v''(t)&=C_1(a^2-b^2)\cos bt(e^{at}-e^{-at})-2C_1ab \sin bt(e^{at}+e^{-at})\\ &\quad +2C_2ab \cos bt(e^{at}-e^{-at})+C_2(a^2-b^2)\sin bt(e^{at}+e^{-at})\\ &\quad -C_5 s_n^2\sin s_nt+K (-s_n^2t\cos s_nt-2s_n\sin s_nt), \end{aligned}\\ \begin{aligned} v^{(4)}(t) &=C_1(a^{4}+b^{4}-6a^2b^2)\cos bt(e^{at}-e^{-at})\\ &\quad +4C_1(ab^{3}-a^{3}b)\sin bt(e^{at}+e^{-at}) +4C_2(a^{3}b-ab^{3})\cos bt(e^{at}-e^{-at})\\ &\quad +C_2(a^{4} +b^{4}-6a^2b^2)\sin bt(e^{at}+e^{-at}) +C_5 s_n^{4}\sin s_nt\\ &\quad +K (s_n^{4}t\cos s_nt+4s_n^{3}\sin s_nt). \end{aligned} \end{gather*} Applying the conditions \begin{gather*} v(1)=\sum_{i=1}^{m-2}a_iv(\eta_i), \quad v''(1)=\sum_{i=1}^{m-2}a_iv''(\eta_i), \\ v^{(4)}(1)=\sum_{i=1}^{m-2}a_iv^{(4)}(\eta_i), \quad \sin s_n= \sum_{i=1}^{m-2}a_i\sin \eta_is_n, \end{gather*} we have \begin{equation} \label{eq224} \begin{gathered} C_1F+C_2G+KH=0,\\ C_1[(a^2-b^2)F-2abG]+C_2[2abF+(a^2-b^2)G]-s_n^2K H=0,\\ \begin{aligned} &C_1[(a^{4}+b^{4}-6a^2b^2)F+4(ab^{3}-a^{3}b)G] +C_2\big[4(a^{3}b-ab^{3})F \\ &+ (a^{4}+b^{4}-6a^2b^2)G\big]+s_n^{4}KH=0, \end{aligned} \end{gathered} \end{equation} where \begin{gather*} F=\cos b(e^{a}-e^{-a})-\sum_{i=1}^{m-2}a_i\cos b\eta_i(e^{a\eta_i}-e^{-a\eta_i}),\\ G=\sin b(e^{a}+e^{-a})-\sum_{i=1}^{m-2}a_i\sin b\eta_i(e^{a\eta_i}+e^{-a\eta_i}),\\ H=\cos s_n-\sum_{i=1}^{m-2}a_i\eta_i\cos \eta_is_n. \end{gather*} If $H\neq0$, then the solution of \eqref{eq224} is $C_1=C_2=K=0$, which is a contradiction to $\gamma\neq0$, and \[ v(t)=C_5\sin s_nt\in \ker(I-\lambda_nL_d). \] So, \eqref{eq220} holds. Hence, \eqref{eq219} holds. If $H = 0$, the proof is similar to Case (i), we omit it. To sum up, the generalized eigenvalues of $L_d$ are simple, and the proof of this lemma is complete. \end{proof} \section{Main Results} We now list the following hypotheses for convenience. \begin{itemize} \item[(H1)] There exists $a=(a_1, a_2, a_3)\in \mathbb{R}^{+}\times \mathbb{R}^{+}\times \mathbb{R}^{+}\backslash \{(0,0,0)\}$ such that \[ f(x,y,z)=-a_1x+a_2y-a_3z+o(|(x,y,z)|), \quad \text{as } |(x,y,z)|\to0, \] where $(x,y,z)\in \mathbb{R}\times \mathbb{R}\times \mathbb{R}$, and $|(x,y,z)|:=\max\{|x|, |y|, |z|\}$. \item[(H2)] There exists $b=(b_1, b_2, b_3)\in \mathbb{R}^{+}\times \mathbb{R}^{+}\times \mathbb{R}^{+}\backslash \{(0,0,0)\}$ such that \[ f(x,y,z)=-b_1x+b_2y-b_3z+o(|(x,y,z)|), ~\text{as}~ |(x,y,z)|\to\infty. \] \item[(H3)] There exists $R>0$ such that \[ |f(x,y,z)|<\frac{R}{M}, \quad \text{for }(x,y,z)\in\{(x,y,z):|x|\leq M^2R, |y|\leq MR, |z|\leq R\}, \] where $M$ is defined as in Lemma \ref{lem23}. \item[(H4)] There exist two constants $r_1<00$ and each $\nu=+$, or $-$, there exists a continua $\mathscr{C}_k^{\nu}$ of solutions of $\eqref{e3.1lamb})$ in $\Phi_k^{\nu}\cup\{(\lambda_k, 0)\}$, which meets $\{(\lambda_k, 0)\}$ and $\infty$ in $\mathscr{S}$. \end{lemma} Under condition (H2), \eqref{e3.1lamb} can be rewritten as \begin{equation} \label{eq37} v=\lambda L_{b}v+K_{b}(\lambda, v), \end{equation} here $K_{b}(\lambda, v)=\lambda A v-\lambda L_{b}v$, $ L_{b}$ is defined as in \eqref{eq216} (replacing $d$ with $b$). Here $h(x, y, z)=f(x, y, z)+b_1x-b_2y+b_3z$. Then from (H2) it follows that \[ \lim_{|(x,y,z)|\to\infty}\frac{h(x, y,z)}{|(x,y,z)|}=0. \] Define a function \[ \widehat{h}(r):=\max\{|h(x, y, z)|:|(x,y,z)|\leq r\}. \] Then $\widehat{h}(r)$ is nondecreasing and \begin{equation} \label{eq39} \lim_{r\to\infty}\frac{\widehat{h}(r)}{r}=0. \end{equation} Obviously, by \eqref{eq39} and Lemma \ref{lem23}, it can be seen that $K_{b}(\lambda, v)$ is $o(\|v\|_1)$ for $v$ near $\infty$ uniformly on bounded $\lambda$ intervals and $L_{b}$ is a compact linear map on $Y$. Similar to \eqref{eq35}, by Lemma \ref{lem25}, $L_{b}$ possesses an increasing sequence of simple eigenvalues \[ 0<\overline{\lambda}_1<\overline{\lambda}_2<\dots <\overline{\lambda}_k\to\infty,\quad \text{as }k\to +\infty, \] where \begin{equation} \label{eq310} \overline{\lambda}_k=\frac{\mu_k^{3}}{b_1+b_2\mu_k+b_3\mu_k^2}. \end{equation} Note $\phi_k(t)=\sin s_kt$ is an eigenfunction corresponding to $\overline{\lambda}_k$. Obviously, it is in $T_k^{+}$. \begin{lemma}\label{lem33} Assume that {\rm (H1)-(H2)} hold. Then for each integer $k>0$ and each $\nu=+, \text{or} -$, there exists a continua $\mathscr{D}_k^{\nu}$ of $\mathscr{T}$ in $\Phi_k^{\nu}\cup\{(\overline{\lambda}_k, \infty)\}$ coming from $\{(\overline{\lambda}_k, \infty)\}$, which meets $\{(\overline{\lambda}_k, 0)\}$ or has an unbounded projection on $\mathbb{R}$. \end{lemma} \begin{theorem}\label{the34} Assume that {\rm (H1)--(H2)} hold. Suppose there exists two integers $i_0\geq0$ and $k>0$ such that either \begin{equation} \label{eq311} \frac{\mu_{i_0+k}^{3}}{a_1+a_2\mu_{i_0+k}+a_3\mu_{i_0+k}^2} <1<\frac{\mu_{i_0+1}^{3}}{b_1+b_2\mu_{i_0+1}+b_3\mu_{i_0+1}^2} \end{equation} or \begin{equation} \label{eq312} \frac{\mu_{i_0+k}^{3}}{b_1+b_2\mu_{i_0+k}+b_3\mu_{i_0+k}^2} <1<\frac{\mu_{i_0+1}^{3}}{a_1+a_2\mu_{i_0+1}+a_3\mu_{i_0+1}^2} \end{equation} holds. Then \eqref{eq11} has at least $2k$ nontrivial solutions. \end{theorem} \begin{proof} First suppose that \eqref{eq311} holds. Using the notation of \eqref{eq36} and \eqref{eq310}, this means $\lambda_{i_0+k}<1<\overline{\lambda}_{i_0+1}$ and so from Lemma \ref{lem25} we know that \[ \lambda_{i_0+1}<\lambda_{i_0+2}<\dots<\lambda_{i_0+k}<1< \overline{\lambda}_{i_0+1}<\overline{\lambda}_{i_0+2}<\dots <\overline{\lambda}_{i_0+k}. \] Consider \eqref{eq34} as a bifurcation problem from the trivial solution. We need only show that \begin{equation} \label{eq315} \mathscr{C}_{i_0+j}^{\nu}\cap(\{1\}\times Y)\neq\emptyset, \quad j=1,2,\dots, k;\; \nu=+,\text{or}-. \end{equation} Suppose, on the contrary and without loss of generality, that \begin{equation} \label{eq316} \mathscr{C}_{i_0+i}^{+}\cap(\{1\}\times Y)=\emptyset, \quad \text{for some }i,\; 1\leq i\leq k. \end{equation} By Lemma \ref{lem32} we know that $\mathscr{C}_{i_0+i}^{+}$ joins $(\lambda_{i_0+i}, 0)$ to infinity in $\mathscr{S}$ and $(\lambda, v)=(0,0)$ is the unique solution of \eqref{e3.1lamb} (in which $\lambda=0$) in $\mathbb{E}$. This together with $\lambda_{i_0+i}<1$ guarantee that there exists a sequence $\{(\xi_{m},y_{m})\}\subset \mathscr{C}_{i_0+i}^{+}$ such that $\xi_{m}\in(0, 1)$ and $\|y_{m}\|_1\to\infty$ as $m\to\infty$. We may assume that $\xi_{m}\to\overline{\xi}\in[0,1]$ as $m\to\infty$. Let $x_{m}:=\frac{y_{m}}{\|y_{m}\|_1}, m\geq1$. From the fact that \[ y_{m}=\xi_{m}L_{b}y_{m}+K_{b}(\xi_{m},y_{m}), \] it follows that \begin{equation} \label{eq318} x_{m}=\xi_{m}L_{b}x_{m}+\frac{K_{b}(\xi_{m},y_{m})}{\|y_{m}\|_1}. \end{equation} Notice that $L_{b}: Y \to Y$ is completely continuous. We may assume that there exists $\omega\in Y$ with $\|\omega\|_1=1$ such that $\|x_{m}-\omega\|_1\to 0$ as $m\to\infty$. Letting $m\to\infty$ in \eqref{eq318} and noticing $\frac{K_{b}(\xi_{m},y_{m})}{\|y_{m}\|_1}\to 0$ as $m\to\infty$ one obtains \[ \omega=\overline{\xi}L_{b}\omega. \] Since $\omega\neq0$, then $\overline{\xi}\neq0$ is an eigenvalue of $L_{b}$; that is, $\overline{\xi}=\overline{\lambda}_{i_0+i}$, which contradicts $\overline{\lambda}_{i_0+i}>1$. Thus \eqref{eq316} is not true, which means \eqref{eq315} holds. Next suppose that \eqref{eq312} holds. This means \[ \overline{\lambda}_{i_0+1}<\overline{\lambda}_{i_0+2}<\dots <\overline{\lambda}_{i_0+k}<1< \lambda_{i_0+1}<\lambda_{i_0+2}<\dots<\lambda_{i_0+k}. \] Consider \eqref{eq37} as a bifurcation problem from infinity. As above we need only to prove that \begin{equation} \label{eq322} \mathscr{D}_{i_0+j}^{\nu}\cap(\{1\}\times Y)\neq\emptyset, \quad j=1,2,\dots, k;\; \nu=+,\text{or}-. \end{equation} From Lemma \ref{lem33}, we know that $\mathscr{D}_{i_0+j}^{\nu}$ comes from $\{(\overline{\lambda}_{i_0+j},\infty)\}$, meets $\{(\lambda_{i_0+j},0)\}$ or has an unbounded projection on $\mathbb{R}$. If it meets $\{(\lambda_{i_0+j},0)\}$, then the connectedness of $\mathscr{D}_{i_0+j}^{\nu}$ and $\lambda_{i_0+j}>1$ guarantees that \eqref{eq322} is satisfied. On the other hand, if $\mathscr{D}_{i_0+j}^{\nu}$ has an unbounded projection on $\mathbb{R}$, notice that $(\lambda, v)=(0,0)$ is the unique solution of \eqref{e3.1lamb} (in which $\lambda=0$) in $E$, so \eqref{eq322} also holds. \end{proof} \begin{theorem}\label{the35} Assume that {\rm (H1), (H2)} hold and one of {\rm (H3)} or {\rm (H4)} hold. Suppose there exists two integers $i_0$ and $j_0$ such that \begin{equation} \label{eq323} \frac{\mu_{i_0}^{3}}{a_1+a_2\mu_{i_0}+a_3\mu_{i_0}^2}<1, \frac{\mu_{j_0}^{3}}{b_1+b_2\mu_{j_0}+b_3\mu_{j_0}^2}<1. \end{equation} Then \eqref{eq11} has at least $2(i_0+j_0)$ nontrivial solutions. \end{theorem} \begin{proof} First suppose that (H3) holds. Then there exists $\varepsilon>0$ such that \begin{equation} \label{eq324} (1+\varepsilon)|f(x,y,z)|<\frac{R}{M}, (x,y,z)\in\{(x,y,z):|x|\leq M^2R, |y|\leq MR, |z|\leq R\}, \end{equation} Let $(\lambda, v)$ be a solution of \eqref{e3.1lamb} such that $0\leq\lambda<1+\varepsilon$ and $\|v\|_1\leq R$. Then by \eqref{eq211}, \eqref{eq212}, \eqref{e3.1lamb}, \eqref{eq324} and Lemma \ref{lem23} it is easy to see \begin{equation} \label{eq325} \begin{aligned} \|v\|_1&=\lambda\|A v\|_1=\lambda\|LF v\|\\ &\leq\lambda M\|Fv\| =M\max_{t\in[0,1]}|\lambda f((-L^2v)(t), (Lv)(t),-v(t))|\\ &r_2, \quad t\in[0,1] \] or \[ \min_{t\in[0,1]}v(t)0, \quad r_2-v(\tau_1)>0 \quad \text{if } 0\leq\tau_0<\tau_1<1; \\ r_2-v(\tau_1)>0 \quad \text{if } \tau_1=1. \end{gather*} This together with \eqref{eq340} and the maximum principle \cite{Protter1984} imply that $r_2-v(t)>0$ in $[\tau_0,\tau_1]$, which contradicts \eqref{eq336}. The proof in the case $\min\{v(t): t\in[0,1]\}=r_1$ is similar, so we omit it. \end{proof} \subsection*{Acknowledgments} Supported by grants 10971045 from the National Natural Science Foundation of China, A2011208012 from the Natural Science Foundation of Hebei Province, and XL201245 from the Foundation of Hebei University of Science and Technology. \begin{thebibliography}{10} \bibitem{An2008} Yulian An, Ruyun Ma; \emph{Global Behavior of the Components for the Second Order $m$-Point Boundary Value Problems}, Boundary Value Problems, Vol. 2009, Article ID 254593, 10 pages, 2008. \bibitem{Feng1997} W. Feng, J. R. L. Webb; \emph{Solvability of $m$-point boundary value problems with nonlinear growth}, Journal of Mathematical Analysis and Applications, vol. 212, no. 2, pp. 467-480, 1997. \bibitem{Guo1} Y. Guo, X. Liu, J. Qiu; \emph{Three positive solutions for higher order $m$-point boundary value problems}, J. Math. Anal. Appl., vol. 289, no. 2, pp. 545-553, 2004. \bibitem{Gupta1998} C. P. Gupta; \emph{A generalized multi-point boundary value problem for second order ordinary differential equations}, Applied Mathematics and Computation, vol. 89, no. 1-3, pp. 133-146, 1998. \bibitem{JI1} Y. Guo, Y. Ji and J. Zhang; \emph{Three positive solutions for a nonlinear $n$th order $m$-point boundary value problems}, Nonlinear Analysis, vol. 68, no. 11, pp. 3485-3492, 2008. \bibitem{JI2} Y. Ji, Y. Guo; \emph{The existence of countably many positive solutions for some nonlinear $n$th order $m$-point boundary value problems}, Journal of Computational and Applied Mathematics, vol. 232, no. 2, pp. 187-200, 2009. \bibitem{Liu} B. Liu; \emph{Solvability of multi-point boundary value problem at resonance (II)}, Applied Mathematics and Computation, vol. 136, no. 2-3, pp. 353-377, 2003. \bibitem{Liu2009} Yansheng Liu. Donal O'Regan; \emph{Multiplicity Results Using Bifurcation Techniques for a Class of Fourth-Order $m$-Point Boundary Value Problems}, Boundary Value Problems, Vol. 2009, Article ID 970135, 20 pages, 2009. \bibitem{Ma2008} R. Ma; \emph{Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems}, Applied Mathematics Letters, vol. 21, no. 7, pp. 754-760, 2008. \bibitem{Ma2001} R. Ma, N. Castaneda; \emph{Existence of solutions of nonlinear $m$-point boundary-value problems}, Journal of Mathematical Analysis and Applications, vol. 256, no. 2, pp. 556-567, 2001. \bibitem{Ma20061} R. Ma, D. O'Regan; \emph{Nodal solutions for second-order $m$-point boundary value problems with nonlinearities across several eigenvalues}, Nonlinear Analysis: Theory, Methods \& Applications, vol. 64, no. 7, pp. 1562-1577, 2006. \bibitem{Protter1984} M. H. Protter, H. F. Weinberger; \emph{Maximum Principles in Differential Equations}, Springer, New York, NY, USA, 1984. \bibitem{Sun2008} J. Sun, X. Xu, D. O'Regan; \emph{Nodal solutions for $m$-point boundary value problems using bifurcation methods}, Nonlinear Analysis: Theory, Methods \& Applications, vol. 68, no. 10, pp. 3034-3046, 2008. \bibitem{Webb2001} J. R. L. Webb; \emph{Positive solutions of some three point boundary value problems via fixed point index theory}, Nonlinear Analysis: Theory, Methods \& Applications, vol. 47, no. 7, pp. 4319-4332, 2001. \bibitem{Xu2004} X. Xu; \emph{Multiple sign-changing solutions for some $m$-point boundary-value problems}, Electronic Journal of Differential Equations, vol. 2004, no. 89, pp. 1-14, 2004. \bibitem{Ma20062} R. Ma; \emph{Nodal solutions for a second-order $m$-point boundary value problem}, Czechoslovak Mathematical Journal, vol. 56(131), no. 4, pp. 1243-1263, 2006. \bibitem{Wei2007} Z. Wei, C. Pang; \emph{Multiple sign-changing solutions for fourth order $m$-point boundary value problems}, Nonlinear Analysis: Theory, Methods \& Applications, vol. 66, no. 4, pp. 839-855, 2007. \bibitem{Rabinowitz1971} P. H. Rabinowitz; \emph{Some global results for nonlinear eigenvalue problems}, Journal of Functional Analysis, vol. 7, no. 3, pp. 487-513, 1971. \bibitem{Rabinowitz1973} P. H. Rabinowitz; \emph{On bifurcation from infinity}, Journal of Differential Equations, vol. 14, no. 3, pp. 462-475, 1973. \bibitem{Rynne} B. P. Rynne; \emph{Spectral properties and nodal solutions for second-order, $m$-point, boundary value problems}, Nonlinear Analysis: Theory, Methods \& Applications, vol. 67, no. 12, pp. 3318-3327, 2007. \end{thebibliography} \end{document}