\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{graphicx} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 23, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/23\hfil Global stability for delay SIR and SEIR] {Global stability for delay SIR and SEIR epidemic models with saturated incidence rates} \author[A. Abta A. Kaddar, H. Talibi Alaoui \hfil EJDE-2012/23\hfilneg] {Abdelhadi Abta, Abdelilah Kaddar, Hamad Talibi Alaoui} % in alphabetical order \address{Abdelhadi Abta \newline Chouaib Doukkali, Facult\'e des Sciences, D\'epartement de Math\'ematiques et Informatique B.P. 20, El Jadida, Morocco} \email{abtaabdelhadi@yahoo.fr} \address{Abdelilah Kaddar \newline Universit\'e Mohammed V- Souissi, Facult\'e des Sciences Juridiques, Economiques et Sociales - Sal\'e, Morocco} \email{a.kaddar@yahoo.fr} \address{Hamad Talibi Alaoui \newline Chouaib Doukkali, Facult\'e des Sciences, D\'epartement de Math\'ematiques et Informatique B.P. 20, El Jadida, Morocco} \email{talibi\_1@hotmail.fr} \thanks{Submitted October 31, 2011. Published February 7, 2012.} \subjclass[2000]{34D23, 37B25, 00A71} \keywords{SIR epidemic model; SEIR epidemic model; incidence rate; \hfill\break\indent delay differential equations; Lyapunov function; global stability} \begin{abstract} In this article we propose a comparison of a delayed SIR model and its corresponding SEIR model in terms of global stability. We consider a saturated incidence rate and we determine, using Lyapunov functionals, conditions by which the disease-free equilibrium and the endemic equilibrium are globally asymptotically stable. Also some numerical simulations are given to compare a global behaviour of a delayed SIR model and its corresponding SEIR model. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction}\label{s1} In this article, we propose the following delay SIR epidemic model with a saturated incidence rate (see, \cite{kaddar}): \begin{equation} \begin{gathered} \frac{dS}{dt}=A-\mu S(t)-\frac{\beta S(t)I(t)}{1+\alpha_1 S(t)+\alpha_2 I(t)}, \\ \frac{dI}{dt}=\frac{\beta e^{-\mu\tau} S(t-\tau)I(t-\tau)} {1+\alpha_1 S(t-\tau)+\alpha_2 I(t-\tau)} -(\mu+\alpha+\gamma) I(t). \end{gathered} \label{a1} \end{equation} The initial condition for the above system is \begin{equation}\label{sge3} S(\theta)=\varphi_1(\theta), \quad I(\theta)=\varphi_2(\theta), \quad \theta \in [-\tau,0] \end{equation} with $\varphi=(\varphi_1,\varphi_2) \in C^+\times C^+$, such that $\varphi_i(\theta)\geq 0$ ($-\tau \leq \theta \leq 0$, $i=1,2)$. Here $C$ denotes the Banach space $C([-\tau,0],\mathbb{R})$ of continuous functions mapping the interval $[-\tau, 0]$ into $\mathbb{R}$, equipped with the supremum norm. The nonnegative cone of $C$ is defined as $C^+ = C([-\tau,0],\mathbb{R}^+)$. where $S$ is the number of susceptible individuals, $I$ is the number of infectious individuals, $A$ is the recruitment rate of the population, $\mu$ is the natural death of the population, $\alpha$ is the death rate due to disease, $\beta$ is the transmission rate, $\alpha_1$ and $\alpha_2$ are the parameters that measure the inhibitory effect, $\gamma$ is the recovery rate of the infectious individuals, and $\tau$ is the incubation period. The corresponding SEIR model of system \eqref{a1} is described in \cite{kaddar} as \begin{equation} \begin{gathered} \frac{dS}{dt}=A-\mu S(t)-\frac{\beta S(t)I(t)}{1+\alpha_1 S(t)+\alpha_2 I(t)},\\ \frac{dE}{dt}=\frac{\beta S(t)I(t)}{1+\alpha_1 S(t)+\alpha_2 I(t)}-(\sigma +\mu )E(t),\\ \frac{dI}{dt}=\sigma E(t)-(\mu+\alpha +\gamma )I(t). \end{gathered} \label{a2} \end{equation} where $E$ is the number of exposed individuals, and $\sigma$ is the rate at which exposed individuals become infectious. Thus $\frac{1}{\sigma}$ is the mean latent period. In models \eqref{a1} and \eqref{a2} the formulation of the incidence rate $\frac{\beta S(t)I(t)}{1+\alpha_1 S(t)+\alpha_2 I(t)}$; i.e., the infection rate of susceptible individuals through their contacts with infectious (see, for example, \cite{Gao,Yorke}), includes the three forms: The first one is the bilinear incidence rate $\beta SI$, \cite{Gabriela,Zhou}. The second one is the saturated incidence rate of the form $\frac{\beta S(t)I(t)}{1+\alpha_1 S(t)}$ \cite{Anderson,Zhang2}. The third one is the saturated incidence rate of the form $\frac{\beta S(t)I(t)}{1+\alpha_2 I(t)}$ \cite{Jiang,Capasso,Xu}. In \cite{kaddar}, we considered a local properties of a delayed SIR model (system \eqref{a1}) and its corresponding SEIR model (system \eqref{a2}), and we observed that if $\mu\tau$ is close enough to $0$, then the two above models generate identical local asymptotic behavior. For, the model \eqref{a1} with $\tau=0 $ and $\mu=A$, Korobeinikov \cite{koro} proved that the endemic equilibrium is globally asymptotically stable. Huang and al \cite{Huang} studied the global asymptotic stability of the delay SIR model \begin{equation} \begin{gathered} \frac{dS}{dt}=\mu-\mu S(t)-f(S(t),I(t-\tau)), \\ \frac{dI}{dt}=f(S(t),I(t-\tau)) -(\sigma+\mu) I(t). \end{gathered} \label{aa1} \end{equation} The fundamental difference of this model with our model \eqref{a1} is the presence of the fraction $e^{-\mu \tau}$ in the incidence rate in the second equation of \eqref{a1}. The Lyapunov functional proposed in \cite{Huang} in not valid for \eqref{a1}. For, the SEIR model, Sun and al \cite{sun,Korobeinikov2} proposed nonlinear incidence of the form $\beta I^pS^q$ and constructed an explicit Lyapunov function and established a global stability of this model. In this paper, by constricting the suitable Lyapunov functionals, we determine the global asymptotic stability of a delayed SIR model \eqref{a1} and its corresponding SEIR model \eqref{a2}. The rest of the paper is organized as follows. In Section 2, global stability of the delayed SIR epidemiological model \eqref{a1} is established. In Section 3, global stability of the SEIR epidemiological model \eqref{a2} is determined. In Section 4, numerical simulations and concluding remarks are provided. In the appendix, some results on the global stability are stated. \section{Global stability analysis of delayed SIR model}\label{s2} In this section, we discuss the global stability of a disease-free equilibrium and an endemic equilibrium of system \eqref{a1}. With the change of variables $i(t)=I(t+\tau)$ and $s(t)=S(t)$, the system \eqref{a1} becomes \begin{equation}\label{ab1} \begin{gathered} \frac{ds(t)}{dt}=A-\mu s-\frac{\beta s(t)i(t-\tau)}{1+\alpha_1 s(t)+\alpha_2 i(t-\tau)}\\ \frac{di(t)}{dt}=\frac{e^{-\mu \tau}\beta s(t)i(t-\tau)}{1+\alpha_1 s(t) +\alpha_2 i(t-\tau)}-(\mu+\alpha+\gamma)i(t). \end{gathered} \end{equation} In the rest of this paper, we set $\mu_1=\mu+\alpha$. Since $\frac{d}{dt}(s(t)+i(t))\leq A-\mu (s(t)+i(t))$, we have $\limsup (s(t)+i(t)) \leq \frac{A}{\mu}$. Hence we discuss system \eqref{ab1} in the closed set $$ \Omega=:\big\{(\varphi_1,\varphi_2)\in C^+\times C^+: \|\varphi_1+\varphi_2\|\leq A/\mu \big\} . $$ It is easy to show that $\Omega$ is positively invariant with respect to system \eqref{ab1}. System \eqref{ab1} always has a disease-free equilibrium $P_1=(A/\mu,0)$. Further, if $$ R_{01}:=\frac{A\beta e^{-\mu\tau} }{(\alpha_1 A+\mu)(\mu_1+\gamma)}>1, $$ system \eqref{ab1} admits a unique endemic equilibrium $P_1^*=(S^*,I^*)$, with \begin{gather*} S^{\ast}=\frac{A[(\mu_1+\gamma)+\alpha_2A e^{-\mu\tau}]}{(\mu_1 +\gamma)[\alpha_1 A(R_{01}-1)+\mu R_{01} ] +\mu\alpha_2A e^{-\mu\tau}}, \\ I^*=\frac{A(R_{01}-1)e^{-\mu\tau}(\alpha_1 A+\mu)}{(\mu_1 +\gamma)[\alpha_1 A(R_{01}-1)+\mu R_{01} ] +\mu\alpha_2A e^{-\mu\tau}}. \end{gather*} Next we consider the global asymptotic stability of the disease-free equilibrium $P_1$ and the endemic equilibrium $P_1^{*}$ of \eqref{ab1} by Lyapunov functionals, respectively. \begin{proposition} \label{prop2.1} If $R_{01} \leq 1$, then the disease-free equilibrium $P_1$ is globally asymptotically stable. \end{proposition} \begin{proof} Define a Lyapunov functional $V(t)=V_1(t)+i(t)+V_2(t)$, with \begin{gather*} V_1(t)=e^{-\mu\tau}\int_{\frac{A}{\mu}}^{s(t)} \Big(1-\frac{A(1+\alpha_1u)}{(\mu+\alpha_1A)u}\Big)du,\\ V_2(t)=(\mu_1+\gamma)\int_{0}^{\tau}i(t-u)du. \end{gather*} We will show that $\frac{dV(t)}{dt}\leq 0$ for all $t\geq 0$. We have \begin{align*} \frac{dV_1(t)}{dt} &=e^{-\mu\tau}\Big(1-\frac{A(1+\alpha_1s(t))}{(\mu+\alpha_1A)s(t)}\Big) \Big(A-\mu s(t)-\frac{\beta s(t)i(t-\tau)}{1+\alpha_1 s(t)+\alpha_2 i(t-\tau)}\Big)\\ &= e^{-\mu\tau}\Big(1-\frac{A(1+\alpha_1s(t))}{(\mu+\alpha_1A)s(t)}\Big) \big(A-\mu s(t)\big)\\ &\quad -e^{-\mu\tau}\Big(1-\frac{A(1+\alpha_1s(t))}{(\mu+\alpha_1A)s(t)}\Big) \Big(\frac{\beta s(t)i(t-\tau)}{1+\alpha_1 s(t)+\alpha_2 i(t-\tau)}\Big), \end{align*} and $$ \frac{dV_2(t)}{dt}=(\mu_1+\gamma)[i(t)-i(t-\tau)] $$ Therefore, \begin{align*} \frac{dV(t)}{dt} &= e^{-\mu\tau}\Big(1-\frac{A(1+\alpha_1s(t))}{(\mu+\alpha_1A)s(t)}\Big) \big(A-\mu s(t)\big)\\ &\quad -e^{-\mu\tau}\Big(1-\frac{A(1+\alpha_1s(t))}{(\mu+\alpha_1A)s(t)}\Big) \Big(\frac{\beta s(t)i(t-\tau)}{1+\alpha_1 s(t)+\alpha_2 i(t-\tau)}\Big)\\ &\quad +\frac{e^{-\mu\tau}\beta s(t)i(t-\tau)}{1+\alpha_1 s(t) +\alpha_2 i(t-\tau)}-(\mu_1+\gamma)i(t)+(\mu_1+\gamma)[i(t)-i(t-\tau)]\\ &=-\frac{e^{-\mu \tau}(A-\mu s(t))^2}{(\mu+\alpha_1A)s(t)} +(\mu_1+\gamma)\Big( \frac{R_{01} (1+\alpha_1 s(t))}{(1+\alpha_1 s(t) +\alpha_2 i(t-\tau))}-1 \Big)i(t-\tau) \end{align*} Since $\frac{1+\alpha_1 s(t)}{1+\alpha_1 s(t)+\alpha_2 i(t-\tau)}\leq1$ for all $t\geq0$, it follows that $$ \frac{dV(t)}{dt}\leq-\frac{e^{-\mu \tau}(A-\mu s(t))^2}{(\mu+\alpha_1A)s(t)} +(\mu_1+\gamma)\left(R_{01}-1 \right)i(t-\tau). $$ Therefore, $R_{01}\leq 1$ ensures that $\frac{dV(t)}{dt}\leq 0$ for all $t\geq 0$, where $\frac{dV(t)}{dt}=0$ holds if $s(t)=\frac{A}{\mu}$ and $i(t)=0$ . Hence, it follows from system \eqref{ab1} that $\{P_1\}$ is the largest invariant set in $\left\{(s(t),i(t))|\frac{dV(t)}{dt}=0\right\}$. From the Lyapunov-LaSalle asymptotic stability, we obtain that $P_1$ is globally asymptotically stable. This completes the proof. \end{proof} \begin{proposition} \label{prop2.2} If $R_{01} >1$, then the endemic equilibrium $P_1^*$ is globally asymptotically stable. \end{proposition} \begin{proof} To prove global stability of the endemic equilibrium, we define a Lyapunov functional $V(t)=V_1(t)+V_2(t)$, with $$ V_1(t)={e^{-\mu\tau}\int_{s^*}^{s(t)} \Big(1-\frac{s^*(1+\alpha_1 u+\alpha_2 i^*)}{u(1+\alpha_1 s^*+\alpha_2 i^*)}\Big)du +i(t)-i^*-i^*\ln\big(\frac{i(t)}{i^*}\big)}, $$ and $$ V_2(t)={\frac{e^{-\mu\tau}\beta s^* i^* }{1+\alpha_1s^*+\alpha_2 i^*}\int_{0}^{\tau} \Big[\frac{i(t-u)}{i^*}-1-\ln\big(\frac{i(t-u)}{i^*}\big) \Big]du.} $$ We here note that $$\frac{\partial V_1}{\partial s} =1-\frac{s^*(1+\alpha_1 s+\alpha_2 i^*)}{s(1+\alpha_1 s^*+\alpha_2 i^*)},\quad \frac{\partial V_1}{\partial i}=1-\frac{i^*}{i}, $$ which implies that the point $(s^*,i^*)$ is a stationary point of the function $V_1(t)$ and it is the unique stationary point and the global minimum of this function. Using the relations $$ {A=\mu s^*+\frac{\beta s^*i^*}{1+\alpha_1 s^*+\alpha_2 i^*}},\quad {\mu_1+\gamma=\frac{e^{-\mu\tau}\beta s^*}{1+\alpha_1 s^*+\alpha_2 i^*}}, $$ the time derivative of the function $V_1(t)$ along the positive solution of system \eqref{ab1} becomes \begin{equation} \label{l1} \begin{aligned} \frac{dV_1(t)}{dt} &= e^{-\mu\tau}\Big(1-\frac{s^*(1+\alpha_1 s(t)+\alpha_2 i^*)}{s(t) (1+\alpha_1 s^*+\alpha_2 i^*)}\Big) \Big(A-\mu s(t)-\frac{\beta s(t)i(t-\tau)}{1+\alpha_1 s(t)+\alpha_2i(t-\tau)}\Big) \\ &\quad+\big(1-\frac{i^*}{i(t)}\big) \Big(\frac{e^{-\mu\tau}\beta s(t)i(t-\tau)}{1+\alpha_1 s(t)+\alpha_2 i(t-\tau)} -(\mu_1+\gamma)i(t)\Big) \\ &=e^{-\mu\tau}\Big(1-\frac{s^*(1+\alpha_1 s(t)+\alpha_2 i^*)}{s(t)(1+\alpha_1 s^* +\alpha_2 i^*)}\Big)\\ &\quad\times \Big(\mu (s^*-s(t)) +\frac{\beta s^*i^*}{1+\alpha_1 s^*+\alpha_2 i^*} -\frac{\beta s(t)i(t-\tau)}{1+\alpha_1 s(t)+\alpha_2i(t-\tau)}\Big) \\ &\quad +e^{-\mu\tau}\big(1-\frac{i^*}{i(t)}\big) \Big(\frac{\beta s(t)i(t-\tau)}{1+\alpha_1 s(t)+\alpha_2 i(t-\tau)} -\frac{\beta s^*}{1+\alpha_1 s^*+\alpha_2 i^*}i(t)\Big), \end{aligned} \end{equation} and the time derivative of the function $V_2(t)$ becomes \begin{equation}\label{l2} \frac{dV_2(t)}{dt}=\frac{e^{-\mu\tau}\beta s^*i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[-\frac{i(t-\tau)}{i^*}+\frac{i(t)}{i^*}+\ln\big(\frac{i(t-\tau)}{i(t)}\big)\Big]. \end{equation} From \eqref{l1} and \eqref{l2}, we obtain \begin{align*} &\frac{dV(t)}{dt}\\ &= -\frac{e^{-\mu \tau}\mu(s(t)-s^*)^2(1+\alpha_2i^*)}{(1+\alpha_1s^*+\alpha_2i^*)} +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*}\\ &\quad\times\Big( 1-\frac{s^*(1+\alpha_1s(t)+\alpha_2 i^*)}{s(t)(1+\alpha_1s^* +\alpha_2 i^*)}\Big) \Big(1-\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2 i^*)}{s^*i^*(1+\alpha_1s(t) +\alpha_2 i(t-\tau))} \Big) \\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \big(1-\frac{i^*}{i(t)}\big) \Big(\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i^* (1+\alpha_1s(t)+\alpha_2i(t-\tau))}-\frac{i(t)}{i^*}\Big)\\ &\quad +\frac{e^{-\mu \tau}\beta s^*i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[ -\frac{i(t-\tau)}{i^*}+\frac{i(t)}{i^*} +\ln\big(\frac{i(t-\tau)}{i(t)}\big)\Big]\\ &= -\frac{e^{-\mu \tau}\mu(s(t)-s^*)^2(1+\alpha_2i^*)}{(1+\alpha_1s^*+\alpha_2i^*)} +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[2-\frac{s^*(1+\alpha_1s(t) +\alpha_2i^*)}{s(t)(1+\alpha_1s^*+\alpha_2i^*)}\\ &\quad + \frac{i(t-\tau)(1+\alpha_1s(t)+\alpha_2i^*)}{i^*(1+\alpha_1s(t)+\alpha_2i(t-\tau))} -\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i(t)(1+\alpha_1s(t) +\alpha_2i(t-\tau))} \\ &\quad -\frac{i(t-\tau)}{i^*}+\ln\big(\frac{i(t-\tau)}{i(t)}\big)\Big] \\ &= -\frac{e^{-\mu \tau}\mu(s(t)-s^*)^2(1+\alpha_2i^*)}{(1+\alpha_1s^*+\alpha_2i^*)}\\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[1-\frac{s^*(1+\alpha_1s(t)+\alpha_2i^*)}{s(t)(1+\alpha_1s^*+\alpha_2i^*)} +\ln\Big(\frac{s^*(1+\alpha_1s(t)+\alpha_2i^*)}{s(t)(1+\alpha_1s^*+\alpha_2i^*)}\Big) \Big]\\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[1-\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i(t)(1+\alpha_1s(t) +\alpha_2i(t-\tau))}\\ &\quad +\ln\Big(\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i(t) (1+\alpha_1s(t)+\alpha_2i(t-\tau))}\Big)\Big]\\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[1-\frac{1+\alpha_1s(t)+\alpha_2 i(t-\tau)}{1+\alpha_1s(t)+\alpha_2i^*} +\ln\Big(\frac{1+\alpha_1s(t)+\alpha_2 i(t-\tau)}{1+\alpha_1s(t)+\alpha_2i^*} \Big)\Big]\\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[-1+\frac{1+\alpha_1s(t)+\alpha_2 i(t-\tau)}{1+\alpha_1s(t)+\alpha_2i^*}\\ &\quad + \frac{i(t-\tau)(1+\alpha_1s(t)+\alpha_2i^*)}{i^*(1+\alpha_1s(t)+\alpha_2i(t-\tau))} -\frac{i(t-\tau)}{i^*}\Big] +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[\ln\Big( \frac{i(t-\tau)}{i(t)}\Big)\\ &\quad -\ln\Big(\frac{s^*(1+\alpha_1s(t)+\alpha_2i^*)}{s(t)(1+\alpha_1s^*+\alpha_2i^*)}\Big) -\ln\Big(\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i(t)(1+\alpha_1s(t) +\alpha_2i(t-\tau))}\Big) \\ &\quad -\ln\Big(\frac{1+\alpha_1s(t)+\alpha_2i(t-\tau)}{1+\alpha_1s(t) +\alpha_2i^*}\Big)\Big]. \end{align*} Therefore, \begin{align*} &\frac{dV(t)}{dt}\\ &= -\frac{e^{-\mu \tau}\mu(s(t)-s^*)^2(1+\alpha_2i^*)}{(1+\alpha_1s^*+\alpha_2i^*)} +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*}\\ &\quad\times \Big( 1-\frac{s^*(1+\alpha_1s(t)+\alpha_2 i^*)}{s(t)(1+\alpha_1s^* +\alpha_2 i^*)}\Big) \Big(1-\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2 i^*)}{s^*i^*(1+\alpha_1s(t) +\alpha_2 i(t-\tau))} \Big) \\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \big(1-\frac{i^*}{i(t)}\big)\Big(\frac{s(t)i(t-\tau)(1+\alpha_1s^* +\alpha_2i^*)}{s^*i^*(1+\alpha_1s(t)+\alpha_2i(t-\tau))}-\frac{i(t)}{i^*}\Big) \\ &\quad +\frac{e^{-\mu \tau}\beta s^*i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[ -\frac{i(t-\tau)}{i^*}+\frac{i(t)}{i^*} +\ln\big(\frac{i(t-\tau)}{i(t)}\big)\Big]\\ &= -\frac{e^{-\mu \tau}\mu(s(t)-s^*)^2(1+\alpha_2i^*)}{(1+\alpha_1s^*+\alpha_2i^*)} +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[2-\frac{s^*(1+\alpha_1s(t)+\alpha_2i^*)}{s(t)(1+\alpha_1s^*+\alpha_2i^*)}\\ &\quad + \frac{i(t-\tau)(1+\alpha_1s(t)+\alpha_2i^*)}{i^*(1+\alpha_1s(t) +\alpha_2i(t-\tau))}-\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i(t) (1+\alpha_1s(t)+\alpha_2i(t-\tau))} \\ &\quad -\frac{i(t-\tau)}{i^*}+\ln\big(\frac{i(t-\tau)}{i(t)}\big)\Big]\\ &= -\frac{e^{-\mu \tau}\mu(s(t)-s^*)^2(1+\alpha_2i^*)}{(1+\alpha_1s^*+\alpha_2i^*)}\\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[1-\frac{s^*(1+\alpha_1s(t)+\alpha_2i^*)}{s(t)(1+\alpha_1s^*+\alpha_2i^*)} +\ln\Big(\frac{s^*(1+\alpha_1s(t)+\alpha_2i^*)}{s(t)(1+\alpha_1s^*+\alpha_2i^*)} \Big)\Big]\\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[1-\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i(t)(1+\alpha_1s(t) +\alpha_2i(t-\tau))}\\ &\quad +\ln\Big(\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i(t) (1+\alpha_1s(t)+\alpha_2i(t-\tau))}\Big)\Big] \\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[1-\frac{1+\alpha_1s(t)+\alpha_2 i(t-\tau)}{1+\alpha_1s(t)+\alpha_2i^*} +\ln\Big(\frac{1+\alpha_1s(t)+\alpha_2 i(t-\tau)}{1+\alpha_1s(t)+\alpha_2i^*}\Big)\Big] \\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[-1+\frac{1+\alpha_1s(t)+\alpha_2 i(t-\tau)}{1+\alpha_1s(t)+\alpha_2i^*}+ \frac{i(t-\tau)(1+\alpha_1s(t)+\alpha_2i^*)}{i^*(1+\alpha_1s(t)+\alpha_2i(t-\tau))}\\ &\quad -\frac{i(t-\tau)}{i^*}\Big] +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[\ln\big( \frac{i(t-\tau)}{i(t)}\big) -\ln\Big(\frac{s^*(1+\alpha_1s(t)+\alpha_2i^*)}{s(t)(1+\alpha_1s^*+\alpha_2i^*)}\Big) \\ &\quad -\ln\Big(\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i(t)(1+\alpha_1s(t) +\alpha_2i(t-\tau))}\Big) -\ln\Big(\frac{1+\alpha_1s(t)+\alpha_2i(t-\tau)}{1+\alpha_1s(t) +\alpha_2i^*}\Big)\Big]. \end{align*} Since \begin{align*} \ln\big( \frac{i(t-\tau)}{i(t)}\big) &=\ln\Big(\frac{s^*(1+\alpha_1s(t)+\alpha_2i^*)}{s(t)(1+\alpha_1s^*+\alpha_2i^*)}\Big) +\ln\Big(\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i(t)(1+\alpha_1s(t) +\alpha_2i(t-\tau))}\Big) \\ &\quad +\ln\Big(\frac{1+\alpha_1s(t)+\alpha_2i(t-\tau)}{1+\alpha_1s(t)+\alpha_2i^*}\Big), \end{align*} and \begin{align*} &-1+\frac{1+\alpha_1s(t)+\alpha_2 i(t-\tau)}{1+\alpha_1s(t)+\alpha_2i^*}+ \frac{i(t-\tau)(1+\alpha_1s(t)+\alpha_2i^*)}{i^*(1+\alpha_1s(t)+\alpha_2i(t-\tau))} -\frac{i(t-\tau)}{i^*}\\ &=-\frac{\alpha_2(1+\alpha_1s(t))(i(t-\tau)-i^*)^2}{i^*(1+\alpha_1s(t) +\alpha_2i^*)(1+\alpha_1s(t)+\alpha_2i(t-\tau))}, \end{align*} we have \begin{equation}\label{sge4} \begin{aligned} &\frac{dV(t)}{dt}\\ &= -\frac{e^{-\mu \tau}\mu(s(t)-s^*)^2(1+\alpha_2i^*)}{(1+\alpha_1s^*+\alpha_2i^*)} +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*}\\ &\quad\times \Big[1-\frac{s^*(1+\alpha_1s(t)+\alpha_2i^*)}{s(t)(1+\alpha_1s^*+\alpha_2i^*)} +\ln\Big(\frac{s^*(1+\alpha_1s(t)+\alpha_2i^*)}{s(t)(1+\alpha_1s^*+\alpha_2i^*)} \Big)\Big] \\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[1-\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i(t)(1+\alpha_1s(t) +\alpha_2i(t-\tau))} \\ &\quad + \ln\Big(\frac{s(t)i(t-\tau)(1+\alpha_1s^*+\alpha_2i^*)}{s^*i(t)(1+\alpha_1s(t) +\alpha_2i(t-\tau))}\Big)\Big]\\ &\quad +\frac{e^{-\mu \tau}\beta s^* i^*}{1+\alpha_1s^*+\alpha_2i^*} \Big[1-\frac{1+\alpha_1s(t)+\alpha_2 i(t-\tau)}{1+\alpha_1s(t)+\alpha_2i^*}\\ &\quad +\ln\Big(\frac{1+\alpha_1s(t)+\alpha_2 i(t-\tau)}{1+\alpha_1s(t)+\alpha_2i^*} \Big)\Big]\\ &\quad -\frac{e^{-\mu \tau}\beta s^* i^* \alpha_2(1+\alpha_1s(t)) (i(t-\tau)-i^*)^2}{i^*(1+\alpha_1s^*+\alpha_2i^*)(1+\alpha_1s(t) +\alpha_2i^*)(1+\alpha_1s(t)+\alpha_2i(t-\tau))}. \end{aligned} \end{equation} It is easy to see that the first and the last terms in \eqref{sge4} are non-positive and since the function $g(x) = 1 - x + \ln(x)$ is always non-positive for any $x > 0$, and $g(x) = 0$ if and only if $x = 1$, then the second term, the third term and the fourth term in \eqref{sge4} are non-positive. Therefore, $\frac{dV(t)}{dt}\leq 0$ for all $t\geq0$, where the equality holds only at the equilibrium point $ (s^{*},i^{*})$. Hence, the functional $V$ satisfies all the conditions of Theorem \ref{thm5.2}. This proves that $P_1^*$ is globally asymptotically stable. \end{proof} \section{Global Stability analysis of SEIR model}\label{s3} In this section, we discuss the global stability of a disease-free equilibrium and an endemic equilibrium of system \eqref{a2}. Since $\frac{d}{dt}(S+E+I)\leq A-\mu (S+E+I)$, we have that $\limsup (S+E+I) \leq \frac{A}{\mu}$. Hence we discuss system \eqref{a2} in the closed set: $$ \Omega=:\big\{(S,E,I)\in (\mathbb{R}^+)^3| S+E+I\leq \frac{A}{\mu} \big\} . $$ It is easy to show that $\Omega$ is positively invariant with respect to system \eqref{a2}, which always has a disease-free equilibrium $P_2=(\frac{A}{\mu},0,0)$. Further, if $$ R_{02}:=\frac{A\beta \sigma}{(\sigma+\mu)(\mu_1+\gamma)(\alpha_1A+\mu)}>1, $$ then \eqref{a2} admits a unique endemic equilibrium $P^*_2=(S^*,I^*,E^*)$, with \begin{gather*} S^*=\frac{A[(\sigma+\mu)(\mu_1+\gamma)+\alpha_2\sigma A]}{\alpha_2\sigma \mu A +(\sigma+\mu)(\mu_1+\gamma)[(\alpha_1 A+\mu)(R_{02}-1)+\mu]}, \quad E^*=\frac{\mu_1+\gamma}{\sigma}I^*, \\ I^*=\frac{\sigma A(R_{02}- 1)(\alpha_1 A+\mu)}{\alpha_2\sigma \mu A+(\sigma+\mu)(\mu_1+\gamma)[(\alpha_1 A+\mu)(R_{02}-1)+\mu]}. \end{gather*} Now we consider the global asymptotic stability of the disease-free equilibrium $P_2$ and the endemic equilibrium $P_2^{*}$ by Lyapunov functionals, respectively. \begin{proposition} \label{prop3.1} If $R_{02} \leq 1$, then the disease-free equilibrium $P_2$ is globally asymptotically stable. \end{proposition} \begin{proof} Define a Lyapunov functional $V(S,E,I)=V_1(S,E,I)+V_2(S,E,I)$ with $$ V_1(t)={\int_{\frac{A}{\mu}}^{S(t)}\Big(1-\frac{A(1+\alpha_1u))}{(\mu+\alpha_1 A)u}\Big)du} $$ and $$ V_2(t)={E+\frac{\sigma+\mu}{\sigma}I.} $$ We will show that $\frac{dV(t)}{dt}\leq 0$ for all $t\geq 0$. We have \begin{align*} \frac{dV_1(t)}{dt} &= \Big(1-\frac{A(1+\alpha_1S(t))}{(\mu+\alpha_1A)S(t)}\Big) \Big(A-\mu S(t)-\frac{\beta S(t)I(t)}{1+\alpha_1 S(t)+\alpha_2 I(t)}\Big)\\ &= \Big(1-\frac{A(1+\alpha_1S(t))}{(\mu+\alpha_1A)S(t)}\Big)\left(A-\mu S(t)\right)\\ &\quad -\Big(1-\frac{A(1+\alpha_1S(t))}{(\mu+\alpha_1A)S(t)}\Big) \Big(\frac{\beta S(t)I(t)}{1+\alpha_1 S(t)+\alpha_2 I(t)}\Big), \end{align*} and $$ \frac{dV_2(t)}{dt}=\dot{E}+\frac{\sigma+\mu}{\sigma}\dot{I} =\frac{\beta S(t)I(t)}{1+\alpha_1 S(t)+\alpha_2 I(t)} -\frac{(\sigma+\mu)(\mu_1+\gamma)}{\sigma}I(t). $$ Therefore, \begin{align*} \frac{dV(t)}{dt} &= \Big(1-\frac{A(1+\alpha_1S(t))}{(\mu+\alpha_1A)S(t)}\Big) \left(A-\mu S(t)\right)\\ &\quad +\Big[\frac{\beta A}{(\mu+\alpha_1 A)} \frac{1+ \alpha_1 S(t)}{1+\alpha_1 S(t)+\alpha_2 I(t)} -\frac{(\sigma+\mu)(\mu_1+\gamma)}{\sigma}\Big]I(t)\\ &= \Big(1-\frac{A(1+\alpha_1S(t))}{(\mu+\alpha_1A)S(t)}\Big) \left(A-\mu S(t)\right)\\ &\quad +\frac{(\sigma+\mu)(\mu_1+\gamma)}{\sigma} \big[R_{02}\frac{1+ \alpha_1 S(t)}{1+\alpha_1 S(t)+\alpha_2 I(t)}-1\big]I(t). \end{align*} Hence $$ \frac{dV(t)}{dt}\leq-\frac{(A-\mu S(t))^2}{(\mu+\alpha_1A)S(t)} +\frac{(\sigma+\mu)(\mu_1+\gamma)}{\sigma}\left[R_{02}-1\right]I(t). $$ Therefore, $R_{02}\leq 1$ ensures that $\frac{dV(t)}{dt}\leq 0$ for all $t\geq 0$, where $\frac{dV(t)}{dt}=0$ holds if $S(t)=\frac{A}{\mu}$, $E(t)=0$ and $I(t)=0$. Hence, it follows from system \eqref{a2} that $\{P_1\}$ is the largest invariant set in $\left\{(S,E,I)|\frac{dV(t)}{dt}=0\right\}$. From the Lyapunov-LaSalle asymptotic stability, we obtain that $P_1$ is globally asymptotically stable. This completes the proof. \end{proof} \begin{proposition} \label{prop3.2} If $R_{02} >1$, then the disease free equilibrium $P_2^*$ is globally asymptotically stable. \end{proposition} \begin{proof} Define a Lyapunov functional $V(t)=V_1(t)+V_2(t)$ with $$ V_1(t)=\int_{S^*}^{S(t)} \Big(1-\frac{S^*(1+\alpha_1 u+\alpha_2 I^*)}{u(1+\alpha_1 S^*+\alpha_2 I^*)}\Big)du $$ and $$ V_2(t)={E(t)-E^*+E^*\ln\big(\frac{E(t)}{E^*}\big) +\frac{\sigma+\mu}{\sigma}\big[ I(t)-I^*+I^*\ln\big(\frac{I(t)}{I^*}\big)\big].} $$ Using the relations $A=\mu S^*+\frac{\beta S^*I^*}{1+\alpha_1 S^*+\alpha_2 I^*}, \frac{\beta S^*I^*}{1+\alpha_1 S^*+\alpha_2 I^*}=(\sigma+\mu)E^* $ and $\sigma E^*=(\mu_1+\gamma)I^*$, the time derivative of the function $V_1(t)$ along the positive solution of system \eqref{a2} becomes \begin{align*} &\frac{dV_1(t)}{dt}\\ &= \Big(1-\frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)}\Big) \Big(A-\mu S(t)-\frac{\beta S(t)I(t)}{1+\alpha_1 S(t)+\alpha_2I(t)}\Big)\\ &= \Big(1-\frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)}\Big) \Big(\mu (S^*-S(t))+\frac{\beta S^*I^*}{1+\alpha_1 S^*+\alpha_2 I^*}\\ &\quad -\frac{\beta S(t)I(t)}{1+\alpha_1 S(t)+\alpha_2I(t)}\Big)\\ &= \Big(1-\frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)}\Big) (\mu (S^*-S(t)))\\ &\quad +\Big(1-\frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)} \Big)\Big(\frac{\beta S^*I^*}{1+\alpha_1 S^*+\alpha_2 I^*} -\frac{\beta S(t)I(t)}{1+\alpha_1 S(t)+\alpha_2I(t)}\Big)\\ &= \Big(1-\frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)}\Big) (\mu (S^*-S(t)))\\ &\quad +(\sigma+\mu)E^*\Big(1-\frac{S^*(1+\alpha_1 S(t) +\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)}\Big) \Big(1-\frac{S(t)I(t)(1+\alpha_1 S^*+\alpha_2 I^*)}{S^*I^*(1+\alpha_1 S(t) +\alpha_2 I(t))}\Big). \end{align*} The time derivative of the function $V_2(t)$ becomes \begin{align*} \frac{dV_2(t)}{dt} &= \big(1-\frac{E^*}{E(t)} \big)\dot{E}(t)+\frac{\sigma+\mu}{\sigma} \big(1-\frac{I^*}{I(t)} \big)\dot{I}(t)\\ &= \big(1-\frac{E^*}{E(t)} \big)\Big(\frac{\beta S(t)I(t)}{1+\alpha_1 S(t) +\alpha_2 I(t)}-(\sigma+\mu)E(t)\Big)\\ &\quad +\frac{\sigma+\mu}{\sigma} \big(1-\frac{I^*}{I(t)} \big)(\sigma E(t)-(\mu_1+\gamma)I(t))\\ &= (\sigma+\mu)E^*\Big[\big(1-\frac{E^*}{E(t)} \big) \Big( \frac{S(t)I(t)(1+\alpha_1 S^*+\alpha_2 I^*)}{S^*I^*(1+\alpha_1 S(t) +\alpha_2 I(t))}-\frac{E(t)}{E^*} \Big)\\ &\quad + \big(1-\frac{I^*}{I(t)} \big) \big(\frac{E(t)}{E^*}-\frac{I(t)}{I^*} \big) \Big] \end{align*} Therefore, \begin{align*} &\frac{dV(t)}{dt}\\ &= \Big(1-\frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)}\Big) (\mu (S^*-S(t)))+(\sigma+\mu)E^*\\ &\quad\times \Big[3+\frac{I(t)(1+\alpha_1 S(t) +\alpha_2 I^*)}{I^*(1+\alpha_1 S(t)+\alpha_2 I(t))} - \frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*}\\ &\quad -\frac{E^*S(t)I(t)(1+\alpha_1 S^*+\alpha_2 I^*)}{E(t)S^*I^*(1+\alpha_1 S(t) +\alpha_2 I(t))}-\frac{I(t)}{I^*}-\frac{I^*E(t)}{I(t)E^*}\Big]\\ &= \left(1-\frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)}\right) (\mu (S^*-S(t))) \\ &\quad +(\sigma+\mu)E^*\Big[\Big(\frac{1+\alpha_1 S(t)+\alpha_2 I(t)}{1+\alpha_1 S(t) +\alpha_2 I^*}-\frac{I(t)}{I^*}-1+\frac{I(t)(1+\alpha_1 S(t) +\alpha_2 I^*)}{I^*(1+\alpha_1 S(t)+\alpha_2 I(t))}\Big)\\ &\quad +\Big(4-\frac{1+\alpha_1 S(t)+\alpha_2 I(t)}{1+\alpha_1 S(t)+\alpha_2 I^*} -\frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)}\\ &\quad -\frac{E^*S(t)I(t)(1+\alpha_1 S^*+\alpha_2 I^*)}{E(t)S^*I^*(1+\alpha_1 S(t) +\alpha_2 I(t))}-\frac{I^*E(t)}{I(t)E^*}\Big)\Big] \\ &= \Big(1-\frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)}\Big) (\mu (S^*-S(t))) \\ &\quad +(\sigma+\mu)E^*\Big[\Big(\frac{1+\alpha_1 S(t)+\alpha_2 I(t)}{1+\alpha_1 S(t) +\alpha_2 I^*}-1\Big) \Big(1-\frac{I(t)(1+\alpha_1 S(t)+\alpha_2 I^*)}{I^*(1+\alpha_1 S(t) +\alpha_2 I(t))}\Big) \\ &\quad +\Big(4-\frac{1+\alpha_1 S(t)+\alpha_2 I(t)}{1+\alpha_1 S(t)+\alpha_2 I^*} -\frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)}\\ &\quad -\frac{E^*S(t)I(t)(1+\alpha_1 S^*+\alpha_2 I^*)}{E(t)S^*I^*(1+\alpha_1 S(t) +\alpha_2 I(t))}-\frac{I^*E(t)}{I(t)E^*}\Big)\Big] \\ &= -\frac{(1+\alpha_2 I^*)(S(t)-S^*)^2}{S(t)(1+\alpha_1 S^*+\alpha_2 I^*)} -\frac{\alpha_2(1+\alpha_1S(t))(I(t)-I^*)^2(\sigma+\mu)E^*}{I^*(1+\alpha_1 S(t) +\alpha_2 I(t))(1+\alpha_1 S(t)+\alpha_2 I^*)}\\ &\quad +(\sigma+\mu)E^*\Big(4-\frac{1+\alpha_1 S(t)+\alpha_2 I(t)}{1 +\alpha_1 S(t)+\alpha_2 I^*}-\frac{S^*(1+\alpha_1 S(t)+\alpha_2 I^*)}{S(t)(1 +\alpha_1 S^*+\alpha_2 I^*)}\\ &\quad -\frac{E^*S(t)I(t)(1+\alpha_1 S^* +\alpha_2 I^*)}{E(t)S^*I^*(1+\alpha_1 S(t)+\alpha_2 I(t))}-\frac{I^*E(t)}{I(t)E^*}\Big). \end{align*} %\label{gs2} Here $\frac{-(1+\alpha_2 I^*)(S-S^*)^2}{S(1+\alpha_1 S^*+\alpha_2 I^*)}\leq 0$ and $\frac{-\alpha_2(1+\alpha_1S)(I-I^*)^2(\sigma+\mu)E^*}{I^*(1+\alpha_1 S+\alpha_2 I) (1+\alpha_1 S+\alpha_2 I^*)}\leq 0$ for all $t\geq0$. Since the arithmetic mean is greater than or equal to the geometric mean, $$ 4-\frac{1+\alpha_1 S+\alpha_2 I}{1+\alpha_1 S+\alpha_2 I^*} -\frac{S^*(1+\alpha_1 S+\alpha_2 I^*)}{S(1+\alpha_1 S^*+\alpha_2 I^*)} -\frac{E^*SI(1+\alpha_1 S^*+\alpha_2 I^*)}{ES^*I^*(1+\alpha_1 S+\alpha_2 I)} -\frac{I^*E}{IE^*}\leq0 $$ for all $t\geq0$. Therefore, $\frac{dV(t)}{dt}\leq0$ for all $t\geq0$, where the equality holds only at the equilibrium point $(S,E,I) = (S^{*},E^{*},I^{*})$. Thus $\{P_2^*\}$ is the largest invariant set in $\left\{(S,E,I)|\frac{dV(t)}{dt}=0\right\}$. Consequently, we obtain, by the Lyapunov-LaSalle asymptotic stability theorem, that $P_2^*$ is globally asymptotically stable. This completes the proof. \end{proof} \section{Numerical Simulations and Concluding Remarks}\label{s4} In this section, we give a numerical simulation supporting the theoretical analysis given in section \ref{s2} and \ref{s3}. We take the parameters of the system \eqref{a1} as follows: \begin{gather*} A=0.04,\quad \alpha_1=0.01,\quad \alpha_2=0.01, \quad \mu=0.05, \\ \gamma=0.05,\quad \alpha=0.09, \quad \beta=2.5, \quad \tau=100. \end{gather*} Then $R_{01}=0.07$. Therefore, by Proposition \ref{prop2.1}, the free-disease equilibrium $P_1$ is globally asymptotically stable; see Figure \ref{fig1}. \begin{figure}[ht] \begin{center} \includegraphics[width=0.9\textwidth]{fig1} \end{center} \caption{Solutions ($S,I$) of the delay SIR model \eqref{a1} are globally asymptotically stable and converge to the free-disease equilibrium $P_1$} \label{fig1} \end{figure} Now we take the parameters of the system \eqref{a2} as follows: \begin{gather*} A=0.04,\quad \alpha_1=0.01,\quad \alpha_2=0.01, \quad \mu=0.05, \\ \gamma=0.05,\quad \alpha=0.09, \quad \beta=2.5, \quad \sigma=0.01. \end{gather*} Then $R_{02}=1.74$. Therefore, by Proposition \ref{prop3.2}, the endemic equilibrium $P_2^*$ is globally asymptotically stable; see Figure \ref{fig2}. \begin{figure}[ht] \begin{center} \includegraphics[width=0.9\textwidth]{fig2} \end{center} \caption{ Solutions ($S,E,I$) of the SEIR model \eqref{a2} are globally asymptotically stable and converge to the endemic equilibrium $P_2^*$} \label{fig2} \end{figure} In epidemiological research literatures, a latent or incubation period can be medelled by incorporating it as a delay effect (delayed SIR models) \cite{Cooke}, or by introducing an exposed class (SEIR models) \cite{Hethcote}. In this paper we consider the global stability for a delayed SIR model with saturated incidence rate (system \eqref{a1}) and for its corresponding SEIR model (system \eqref{a2}). In the section 2, by modifying Lyapunov functional techniques in Huang and al \cite{Huang}, we proved that if $R_{01}\leq1$, the disease-free equilibrium is globally asymptotically stable, and this is the only equilibrium. On the contrary, if $R_{01} > 1$, then an endemic equilibrium appears which is globally asymptotically stable. In the section 3, by proposing Lyapunov functional, we showed that if $R_{02}\leq1$, the disease-free equilibrium is globally asymptotically stable, and this is the only equilibrium. On the contrary, if $R_{02} > 1$, then an endemic equilibrium appears which is globally asymptotically stable. Finally, numerical simulations are given to support the theoretical analysis and to show that the delayed SIR model \eqref{a1} and its corresponding SEIR model \eqref{a2} can generate different global asymptotic behavior, for example if the incubation period $\tau = 100$ (thus $ \sigma =\frac{1}{\tau}= 0.01$), the system \eqref{a1} has only a disease free equilibrium $P_1$ which is globally asymptotically stable but the system \eqref{a2} has a disease free equilibrium $P_2$ which is unstable and an endemic equilibrium $P_2^{*}$ which is globally asymptotically stable (see Figure \ref{fig1} and Figure \ref{fig2}). In this case we ask the following question: Which model can be adopted for modeling the incubation period in the case of human immunodeficiency virus? \section{Appendix: The Lyapunov-LaSalle theorem} In the following, we present the method of Lyapunov functionals in the context of a delay differential equations, \begin{equation} \label{kad} \frac{dx}{dt}=f(x_t), \end{equation} where $f : C \to\mathbb{R}^{n}$ is completely continuous and solutions of \eqref{kad} are unique and continuously dependent on the initial data. We denote by $x(\phi)$ the solution of \eqref{kad} through $(0,\phi)$. For a continuous functional $V : C \to\mathbb{R}$, we define $$ \dot{V}=\limsup_{h\to0^{+}}\frac{1}{h}[V(x_h(\phi)-V(\phi)], $$ the derivative of $V$ along a solution of \eqref{kad}. To state the Lyapunov-LaSalle type theorem for \eqref{kad}, we need the following definition. \begin{definition}[{\cite[p. 30]{kuang}}] \rm We say $V : C \to\mathbb{R}$ is a Lyapunov functional on a set $G$ in $C$ for \eqref{kad} if it is continuous on $\overline{G}$ (the closure of $G$) and $\dot{V}\leq 0$ on $G$. We also define $E = \{\phi \in \overline{G} : \dot{V}(\phi)=0\}$, and $M$ is the largest set in $E $ which is invariant with respect to \eqref{kad}. \end{definition} The following result is the Lyapunov-LaSalle type theorem for \eqref{kad}. \begin{theorem}[{\cite[p. 30]{kuang}}] \label{thm5.2} If $V$ is a Lyapunov functional on $G$ and $x_t(\phi)$ is a bounded solution of \eqref{kad} that stays in $G$, then $\omega$-limit set $\omega(\phi)\subset M;$ that is, $x_t(\phi) \to M $ as $t \to+\infty$. \end{theorem} \begin{thebibliography}{00} \bibitem{Anderson} R. M. Anderson, R. M. May; \emph{Regulation and stability of host-parasite population interactions: I. Regulatory processes}, The Journal of Animal Ecology, Vol. 47, no. 1, pp. 219-267, 1978. \bibitem{Capasso} V. Capasso, G. Serio; \emph{A generalization of Kermack-Mckendrick deterministic epidemic model}, Math. Biosci. Vol. 42, pp. 41-61, 1978. \bibitem{Chen} L. S. Chen, J. Chen; \emph{Nonlinear biologicl dynamics system}, Scientific Press, China, 1993. \bibitem{Cooke} K. L. Cooke; \emph{Stability analysis for a vector disease model}, Rocky Mountain Journal of mathematics, Vol. 9, no. 1, pp. 31-42, 1979. \bibitem{Cooke2} K. L. Cooke, Z. Grossman; \emph{Discrete delay, distributed delay and stability switches}. Journal of Mathematical Analysis and Applications, 1982, vol. 86, N. 2, pp. 592-627. \bibitem{Diekmann} O. Diekmann, J. A. P. Heesterbeek; \emph{Mathematical Epidemiology of infectious diseases}, John Wiley \& Son, Ltd, 2000. \bibitem{dieudonne} J. Dieudonne; \emph{Foundations of Modern Analysis}, Academic Press, New-York 1960. \bibitem{kuang} Y.Kuang; \emph{Delay Differentiel Equations With Applications in Population Dynamics}, Academic Press, INC., New York 1993. \bibitem{Gabriela} M. Gabriela, M. Gomes, L. J. White, G. F. Medley; \emph{The reinfection threshold}, Journal of Theoretical Biology, Vol. 236, pp. 111-113, 2005. \bibitem{Gao} S. Gao, L. Chen, J. J. Nieto, A. Torres; \emph{Analysis of a delayed epidemic model with pulse vaccination and saturation incidence}, Vaccine, Vol. 24, no. 35-36, pp. 6037-6045, 2006. \bibitem{Ha} J. K. Hale, S. M. Verduyn Lunel; \emph{Introduction to Functional Differential Equations}, Springer- Verlag, New York, 1993. \bibitem{Hethcote} H. W. Hethcote, H. W. Stech, P. Van den Driessche; \emph{Periodicity and stability in epidemic models: a survey}, in: S. N. Busenberg, K. L. Cooke (Eds.), Differential Equations and Applications in Ecology, Epidemics and Population Problems, Academic Press, New York, pp. 65-82, 1981. \bibitem{Huang} G. Huang, Y. Takeuchi; \emph{ Global Analysis on Delay Epidemiological Dynamic Models with Nonlinear Incidence}, Journal of Mathematical Biology, (2011) 63(1), p. 125-139. \bibitem{Jiang} Z. Jiang, J. Wei; \emph{Stability and bifurcation analysis in a delayed SIR model}, Chaos, Solitons and Fractals, Vol. 35, pp. 609-619, 2008. \bibitem{kaddar} A. Kaddar, A. Abta, H. Talibi Alaoui; \emph{A comparison of delayed SIR and SEIR epidemic models}, Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 2, 181-190. \bibitem{koro} A. Korobeinikov; \emph{ Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-linear Transmission}, Bulletin of Mathematical biology (2006) 30: 615-626 . \bibitem{Korobeinikov2} A. Korobeinikov, Philip K. Maini; \emph{ A Lyapunov Function and Global Propreties for SIR and SEIR Epidemiological Models With Nonlinear Incidence}, Mathamatical Biosciences and Engineering Volume 1, Number 1, June 2004 p. 57-60. \bibitem{Kyrychko} Y. Kyrychko, B. Blyuss; \emph{Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate}, Nonlinear Anal.: Real World Appl, Vol. 6, pp. 495-507, 2005. \bibitem{Li} G. Li, W. Wang, K. Wang, Z. Jin; \emph{Dynamic behavior of a parasite-host model with general incidence}, J. Math. Anal. Appl., pp. 631-643, 2007. \bibitem{sun} C. Sun, Y. Lin, S. Tang; \emph{ Global stability special an special SEIR epidemic model with nonlinear incidence rates}, Chaos, Solitions and Fractals 33 (2007) 290-297. \bibitem{Wang} W. Wang, S. Ruan; \emph{Bifurcation in epidemic model with constant removal rate infectives}, Journal of Mathematical Analysis and Applications, Vol. 291, pp. 775-793,2004. \bibitem{Wei} C. Wei, L. Chen; \emph{A delayed epidemic model with pulse vaccination}, Discrete Dynamics in Nature and Society, Vol. 2008, Article ID 746951, 2008. \bibitem{Xu} R. Xu, Z. Ma; \emph{Stability of a delayed SIRS epidemic model with a nonlinear incidence rate, Chaos, Solitons and Fractals}, Vol. 41, Iss. 5, pp. 2319-2325, 2009. \bibitem{Yorke} J. A. Yorke, W. P. London; \emph{Recurrent outbreak of measles, Chickenpox and mumps: II}, Am. J. Epidemiol., Vol. 98, pp. 469-482, 1981. \bibitem{Zhang} J.-Z. Zhang, Z. Jin, Q.-X. Liu, Z.-Y. Zhang; \emph{Analysis of a delayed SIR model with nonlinear incidence rate}, Discrete Dynamics in Nature and Society, Vol. 2008, Article ID 66153, 2008. \bibitem{Zhang2} F. Zhang, Z. Z. Li, F. Zhang; \emph{Global stability of an SIR epidemic model with constant infectious period}, Applied Mathematics and Computation, Vol. 199, pp. 285-291, 2008. \bibitem{Zhou} Y. Zhou, H. Liu; \emph{Stability of periodic solutions for an SIS model with pulse vaccination}, Mathematical and Computer Modelling, Vol. 38, pp. 299-308, 2003. \end{thebibliography} \end{document}