\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 24, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/24\hfil Existence of solutions] {Existence of solutions for second-order impulsive boundary-value problems} \author[A. Boucherif, A. S. Al-Qahtani, B. Chanane \hfil EJDE-2012/24\hfilneg] {Abdelkader Boucherif, Ali S. Al-Qahtani, Bilal Chanane} \address{Abdelkader Boucherif \newline King Fahd University of Petroleum and Minerals\\ Department of Mathematics and Statistics\\ P.O. Box 5046, Dhahran 31261, Saudi Arabia} \email{aboucher@kfupm.edu.sa} \address{Ali S. Al-Qahtani \newline King Fahd University of Petroleum and Minerals\\ Department of Mathematics and Statistics\\ P.O. Box 5046, Dhahran 31261, Saudi Arabia} \email{alitalhan@hotmail.com} \address{Bilal Chanane \newline King Fahd University of Petroleum and Minerals\\ Department of Mathematics and Statistics\\ P.O. Box 5046, Dhahran 31261, Saudi Arabia} \email{chanane@kfupm.edu.sa} \thanks{Submitted September 12, 2011. Published February 7, 2012.} \subjclass[2000]{34B37, 34B15, 47N20} \keywords{Second order boundary value problems; impulse effects; \hfill\break\indent fixed point theorem} \begin{abstract} In this article we discuss the existence of solutions of second-order boundary-value problems subjected to impulsive effects. Our approach is based on fixed point theorems. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} Differential equations involving impulse effects arise naturally in the description of phenomena that are subjected to sudden changes in their states, such as population dynamics, biological systems, optimal control, chemotherapeutic treatment in medicine, mechanical systems with impact, financial systems. For typical examples see \cite{nieto, pandit}. For a general theory on impulsive differential equations the interested reader can consult the monographs \cite{bainov, lakshmi, samoilenko}, and the papers \cite{ahmad, erbe, lakmeche, lee, nieto1, rachunkova, rogov, tomecek} and the references therein. Our objective is to provide sufficient conditions on the data in order to ensure the existence of at least one solution of the problem \begin{equation} \begin{gathered} (p(t)x'(t))'+q(t)x(t)=F(t,x(t),x'(t)),\quad t\neq t_k,\; t\in [ 0,1], \\ \Delta x(t_k)=U_k(x(t_k),x'(t_k)), \\ \Delta x'(t_k)=V_k(x(t_k),x'(t_k)),\quad k=1,2,\dots ,m, \\ x(0)=x(1)=0, \end{gathered} \label{e1} \end{equation} where $x\in\mathbb{R}$ is the state variable; $F:\mathbb{R}_{+}\times\mathbb{R}^2\to \mathbb{R}$ is a piecewise continuous function; $U_k$ and $V_k$ represent the jump discontinuities of $x$ and $x'$, respectively, at $t=$ $t_k\in (0,1)$, called impulse moments, with $00$, for all $t\in J$. \item[(ii)] $q\in C(J:\mathbb{R}),q(t)\leq p_0\pi ^2$, for all $t\in J$, and $q(t)0. \end{equation*} \end{lemma} \begin{proof} The proof of this lemma is presented in \cite{bouch1}. We shall reproduce it here for the sake of completeness. Since $q(t)\leq p_0\pi ^2$ on a subset of $J$ of positive measure, we have \begin{equation*} p(t)(x'(t))^2-q(t)x^2(t)>p_0((x'(t))^2-\pi ^2x^2(t)). \end{equation*} This inequality yields \begin{equation*} \int_0^1\{p(t)(x'(t))^2-q(t)x^2(t)\}dt>p_0\int_0^1\{(x'(t))^2-\pi ^2x^2(t)\}dt. \end{equation*} We show that \begin{equation*} \mathcal{J}(x)=\int_0^1\{(x'(t))^2-\pi ^2x^2(t)\}dt\geq 0 \end{equation*} for all functions $x\in C^2(J:\mathbb{R})$ with $x(0)=x(1)=0$. The function $u$ that minimizes $\mathcal{J}(x)$ satisfies the Euler-Lagrange equation (see \cite{elsgolts}) \begin{equation*} u''+\pi ^2u=0, \end{equation*} and the boundary conditions $u(0)=u(1)=0$. Then $u(t)=\sin \pi t$ or $ u(t)=0, $ and $\mathcal{J}(u)=0$. Since $\mathcal{J}(x)\geq \mathcal{J}(u)$ it follows that $\mathcal{J}(x)\geq 0$, and so \begin{equation*} \int_0^1\{p(t)(x'(t))^2-q(t)x^2(t)\}dt>0. \end{equation*} This completes the proof of the lemma. \end{proof} \begin{lemma} \label{lem2} If {\rm (H0)} is satisfied, then the linear problem \begin{equation} \begin{gathered} (p(t)x'(t))'+q(t)x(t)=0 \\ x(0)=x(1)=0. \end{gathered} \label{e4} \end{equation} has only the trivial solution. \end{lemma} \begin{proof} Assume on the contrary that \eqref{e4} has a nontrivial solution $x_0$. Then \eqref{e4} implies $[(p(t)x_0'(t))'+q(t)x_0(t)] x_0(t)=0$ which yields \begin{align*} 0 &= \int_0^1[ (p(t)x_0'(t))'+q(t)x_0(t) ] x_0(t)\,dt \\ &= \int_0^1[ (p(t)x_0'(t))'] x_0(t) \,dt+\int_0^1q(t)x_0^2(t)\,dt \\ &= -\int_0^1[ p(t)x_0^{\prime 2}(t)-q(t)x_0^2(t)] \,dt<0. \end{align*} This is a contradiction. See Lemma \ref{lem1}. Therefore $x_0\equiv 0$ is the only solution of \eqref{e4}. \end{proof} It is well known that the unique solution of \eqref{e3} is given by \begin{equation*} x(t)=\int_0^1G(t,s)f(s)ds, \end{equation*} where $G(\cdot ,\cdot ):J\times J\to\mathbb{R}$ is the Green's function corresponding to \eqref{e4}. \begin{lemma} \label{lem3} The solution to \eqref{e2} is \begin{equation} \begin{split} x(t) &= \int_0^1G(t,s)f(s)ds-\sum_{k=1}^{m}\frac{\partial G(t,t_k)}{ \partial s}p(t_k)U_k(x(t_k),x'(t_k)) \\ &\quad+\sum_{k=1}^{m}G(t,t_k)p(t_k)V_k(x(t_k),x'(t_k)). \end{split} \label{e5} \end{equation} \end{lemma} \begin{proof} We shall use of superposition principle and write $x(t)=y(t)+z(t)+w(t)$, where $y(t)$ solves the problem \begin{equation} \begin{gathered} (p(t)y'(t))'+q(t)y(t)=f(t),\quad t\in J, \\ \Delta y(t_k)=0, \\ \Delta y'(t_k)=0,\quad k=1,2,\dots ,m, \\ y(0)=y(1)=0, \end{gathered} \label{e6} \end{equation} while $z(t)$ solves the problem \begin{equation} \begin{gathered} (p(t)z'(t))'+q(t)z(t)=0,\quad t\neq t_k,t\in J,\\ \Delta z(t_k)=U_k(x(t_k),x'(t_k)), \\ \Delta z'(t_k)=0,\quad k=1,2,\dots ,m, \\ z(0)=z(1)=0, \end{gathered} \label{e7} \end{equation} and $w(t)$ solves the problem \begin{equation} \begin{gathered} (p(t)w'(t))'+q(t)w(t)=0,\quad t\neq t_k,t\in J,\\ \Delta w(t_k)=0, \\ \Delta w'(t_k)=V_k(x(t_k),x'(t_k)),\quad k=1,2,\dots ,m, \\ w(0)=w(1)=0. \end{gathered} \label{e8} \end{equation} It is clear that \begin{equation*} y(t)=\int_0^1G(t,s)f(s)ds,\quad t\in I. \end{equation*} For $k=1,2,\dots ,m$, set \begin{gather*} z_k(t)=-\frac{\partial G(t,t_k)}{\partial s}p(t_k)U_k(x(t_k),x'(t_k)),\quad t\in J, \\ w_k(t)=G(t,t_k)p(t_k)V_k(x(t_k),x'(t_k)),\quad t\in J. \end{gather*} Using the properties of Green's function and its derivatives we can prove that the functions $z_k$ and $w_k,k=1,2,\dots ,m$, are the solutions of problems \eqref{e7} and \eqref{e8}, respectively. Consequently, $x=y+\sum_{k=1}^{m}z_k+\sum_{k=1}^{m}w_k$ is a solution of problem \eqref{e2}. \end{proof} \section{Nonlinear Problem} In this section we present our main results on the existence of solutions for nonlinear boundary-value problems for the second-order impulsive control system. Consider the problem \begin{equation} \begin{gathered} (p(t)x'(t))'+q(t)x(t)=F(t,x(t),x'(t)),\quad t\neq t_k,t\in J, \\ \Delta x(t_k)=U_k(x(t_k),x'(t_k)), \\ \Delta x'(t_k)=V_k(x(t_k),x'(t_k)),\quad k=1,2,\dots ,m, \\ x(0)=x(1)=0, \end{gathered} \label{e9} \end{equation} where $x\in \mathbb{R}$ is the state variable; $F:\mathbb{R}_{+}\times\mathbb{R}^2\to\mathbb{R}$ is a piecewise continuous function; $U_k$ and $V_k$ are impulsive functions representing the jump discontinuities of $x$ and $x'$ at $t\in\{t_1,t_2,\dots ,t_m\}$. The nonlinear system \begin{equation} \begin{gathered} (p(t)\acute{x}(t)\acute{)}+q(t)x(t)=F(t,x(t),x'(t)) \\ x(0)=x(1)=0, \end{gathered} \label{e10} \end{equation} is equivalent to the nonlinear integral equation \begin{equation*} x(t)=\int_0^1G(t,s)F(s,x(s),x'(s))ds,\quad \text{for all }t\in J \end{equation*} It follows from Lemma \ref{lem3} that any solution of \eqref{e9} satisfies \begin{equation} \begin{split} x(t) &= \int_0^1G(t,s)F(s,x(s),x'(s))ds-\sum_{k=1}^{m}W(t,t_k)p(t_k)U_k(x(t_k),x'(t_k))\\ &\quad +\sum_{k=1}^{m}G(t,t_k)p(t_k)V_k(x(t_k),x'(t_k)). \end{split}\label{e11} \end{equation} where $W(t,t_k)=\frac{\partial G(t,t_k)}{\partial s}$. Let \begin{gather*} K=\max \{| G(t,s)| :( t,s) \in J\times J\},\quad L=\max \{| W(t,s)| :( t,s) \in J\times J\}, \\ M=\sup \{| \frac{\partial G(t,s)}{\partial t}| :( t,s) \in J\times J\},\quad N=\sup \{| \frac{\partial W(t,s)}{\partial t}| :( t,s) \in J\times J\},\\ P=\max \{K,L,M,N\}. \end{gather*} For the next theorem we use the following assumptions: \begin{itemize} \item[(H1)] $F(\cdot ,\cdot ,\cdot )$ is continuous on $J'$ and satisfies the Lipschitz condition \begin{equation*} | F(t,x_1,y_1)-F(t,x_2,y_2)| \leq \beta (| x_1-y_1| +| x_2-y_2| ). \end{equation*} \item[(H2)] $U_k$ and $V_k$ are continuous and satisfy the Lipschitz conditions \begin{gather*} | U_k(x_1,y_1)-U_k(x_2,y_2)| \leq c_k(| x_1-y_1| +| x_2-y_2| ), \\ | V_k(x_1,y_1)-V_k(x_2,y_2)| \leq d_k(| x_1-y_1| +| x_2-y_2| ), \end{gather*} \item[(H3)] $2P( \beta+R\sum_{k=1}^{m}c_k+R\sum_{k=1}^{m}d_k) <1$ . \end{itemize} \begin{theorem} \label{thm1} Under assumptions {\rm (H0)--(H3)}, problem \eqref{e9} has a unique solution. \end{theorem} \begin{proof} Define an operator $\omega :PC^1(J)\to PC^1(J)$ by \begin{align*} \omega (x)(t) &= \int_0^1G(t,s)F(s,x(s),x'(s))ds-\sum_{k=1}^{m}W(t,t_k)p(t_k)U_k(x(t_k),x'(t_k))\\ &\quad+\sum_{k=1}^{m}G(t,t_k)p(t_k)V_k(x(t_k),x'(t_k)). \end{align*} It is clear that any solution of \eqref{e9} is a fixed point of $\omega $ and conversely any fixed point of $\omega $ is a solution of \eqref{e9}. We shall show that $\omega $ is a contraction. Let $x,y\in PC(J)$, then \begin{align*} \| \omega (x)-\omega (y)\| _0 &\leq \sup_{t\in J}\big\{\int_0^1| G(t,s)| | F(s,x(s),x'(s))-F(s,y(s),y'(s))| ds \\ &\quad + \sum_{k=1}^{m}| W(t,t_k)| p(t_k)| U_k(x(t_k),x'(t_k))-U_k(y(t_k),y'(t_k))| \\ &\quad + \sum_{k=1}^{m}| G(t,t_k)| p(t_k)| V_k(x(t_k),x'(t_k))-V_k(y(t_k),y'(t_k))| \big\} \\ &\leq \sup_{t\in J}\Big\{\int_0^1| G(t,s)| (\beta ( \| x-y\| _0+\| x'-y'\| _0) )ds \\ &\quad + R\sum_{k=1}^{m}| W(t,t_k)| c_k( \| x-y\| _0+\| x'-y'\| _0) \\ &\quad + R\sum_{k=1}^{m}| G(t,t_k)| d_k( \|x-y\| _0+\| x'-y'\|_0) \Big\}. \end{align*} Now, by using (H1) and (H2), we have \begin{equation} \| \omega (x)-\omega (y)\| _0\leq \beta K\| x-y\| _1+RL\sum_{k=1}^{m}c_k\| x-y\| _1+RK\sum_{k=1}^{m}d_k\| x-y\| _1. \label{e12} \end{equation} We have \begin{align*} \frac{d}{dt}\omega (x)(t) &= \int_0^1\frac{\partial G(t,s)}{\partial t} F(s,x(s),x'(s))ds-\sum_{k=1}^{m}\frac{\partial W(t,t_k)}{\partial t}U_k(x(t_k),x'(t_k)) \\ &\quad + \sum_{k=1}^{m}\frac{\partial G(t,t_k)}{\partial t}\ V_k(x(t_k),x'(t_k)). \end{align*} Let $x,y\in PC(J)$, then \begin{align*} \| \frac{d}{dt}\omega (x)-\frac{d}{dt}\omega (y)\| _0 &\leq \sup_{t\in J} \Big\{\int_0^1| \frac{\partial G(t,s) }{\partial t}\ | | F(s,x(s),x'(s))-F(s,y(s),y'(s))| ds \\ &\quad + \sum_{k=1}^{m}| \frac{\partial W(t,t_k)}{\partial t} | | U_k(x(t_k),x'(t_k))-U_k(y(t_k),y'(t_k))| \\ &\quad + \sum_{k=1}^{m}| \frac{\partial G(t,t_k)}{\partial t} | | V_k(x(t_k),x'(t_k))-V_k(y(t_k),y'(t_k))| \Big\}. \end{align*} Conditions (H1) and (H2) imply \begin{equation} \| \frac{d}{dt}\omega (x)-\frac{d}{dt}\omega (y)\| _0\leq \beta M\| x-y\| _1+RN\sum_{k=1}^{m}c_k\| x-y\| _1+RM\sum_{k=1}^{m}d_k\| x-y\| _1. \label{e13} \end{equation} From \eqref{e12} and \eqref{e13} we obtain \begin{align*} \| \omega (x)-\omega (y)\| _1 &= \| \omega (x)-\omega (y)\| _0+\| \frac{d}{dt}\omega (x)-\frac{d}{dt} \omega (y)\| _0 \\ &\leq \Big( \beta K+RL\sum_{k=1}^{m}c_k+RK\sum_{k=1}^{m}d_k\Big) \| x-y\| _1 \\ &\quad + ( \beta M+RN\sum_{k=1}^{m}c_k+RM\sum_{k=1}^{m}d_k) \| x-y\| _1 \\ &\leq 2P\Big( \beta +R\sum_{k=1}^{m}c_k+R\sum_{k=1}^{m}d_k\Big) \| x-y\| _1 \end{align*} Condition (H3) implies that $\omega $ is a contraction. By the Banach fixed point theorem $\omega $ has a unique fixed point $x$, which is the unique solution of \eqref{e9}. \end{proof} For the next Theorem, we use the following assumptions: \begin{itemize} \item[(H4)] $F:[0,1]\times\mathbb{R}^2\to\mathbb{R}$ is continuous on $J'$ and there exists $h:J\times\mathbb{R}_{+}\to\mathbb{R}_{+}$ a Caratheodory function, nondecreasing with respect to its second argument such that \begin{equation*} | F(t,x,y)| \leq h(t,| x| +|y| ),\quad\text{a.e. }t\in [ 0,1]. \end{equation*} \item[(H5)] $U_k$ and $V_k$ are continuous and there exist $a_k>0$ and $ b_k>0 $ such that \begin{equation*} | U_k(x(t_k),y(t_k))| \leq a_k, \quad | V_k(x(t_k),y(t_k))| \leq b_k,\text{ \ }k=1,2,\dots ,m. \end{equation*} \item[(H6)] $\lim_{\varrho \to +\infty } \sup \frac{1}{ \varrho }\big( \int_0^1h(t,\varrho )dt+\sum_{k=1}^{m}R( a_k+b_k) \big) < 1/(2P)$. \end{itemize} \begin{theorem}\label{thm2} Under assumptions {\rm (H0), (H4)--(H6)}, problem \eqref{e9} has at least one solution. \end{theorem} \begin{proof} The proof is given in two steps. \textbf{Step 1.} A priori bound on solutions. Let $x\in PC^1(J)$ be a solution of \eqref{e9}. \begin{align*} x(t) &= \int_0^1G(t,s)F(s,x(s),x'(s))ds-\sum_{k=1}^{m}W(t,t_k)p(t_k)U_k(x(t_k),x'(t_k)) \\ &\quad + \sum_{k=1}^{m}G(t,t_k)p(t_k)V_k(x(t_k),x'(t_k)), \end{align*} and \begin{align*} x'(t) &= \int_0^1\frac{\partial G(t,s)}{\partial t} F(s,x(s),x'(s))ds-\sum_{k=1}^{m}\frac{\partial W(t,t_k)}{\partial t}p(t_k)U_k(x(t_k),x'(t_k)) \\ &\quad + \sum_{k=1}^{m}\frac{\partial G(t,t_k)}{\partial t} p(t_k)V_k(x(t_k),x'(t_k)). \end{align*} It is easy to see that \begin{align*} | x(t)| &\leq K\int_0^1| F(s,x(s),x'(s))| ds+RL\sum_{k=1}^{m}| U_k(x(t_k),x'(t_k))| \\ &\quad + RK\sum_{k=1}^{m}| V_k(x(t_k),x'(t_k))| , \end{align*} and \begin{align*} | x'(t)| &\leq M\int_0^1| F(s,x(s),x'(s))| ds+RN\sum_{k=1}^{m}| U_k(x(t_k),x'(t_k))| \\ &\quad + RM\sum_{k=1}^{m}| V_k(x(t_k),x'(t_k))| . \end{align*} Conditions (H4), (H5) and (H6) lead to \begin{equation*} \| x\| _0+\| x'\| _0\leq (K+M)\int_0^1h(s,\| x\| _0+\| x'\| _0)ds+\sum_{k=1}^{m}R((L+N)l_k+(K+M)p_k). \end{equation*} Since $\| x\| _1=\| x\| _0+\|x'\| _0$ and $h$ is nondecreasing, then \begin{equation*} \| x\| _1\leq 2P\int_0^1h(s,\| x\|_1)ds+\sum_{k=1}^{m}R(2Pa_k+2Pb_k), \end{equation*} or \begin{equation*} \| x\| _1\leq 2P( \int_0^1h(s,\|x\| _1)ds+\sum_{k=1}^{m}R( a_k+b_k) ) . \end{equation*} Let $\beta _0=\| x\| _1$. Then the above inequality gives \begin{equation} \frac{1}{2P}\leq \frac{1}{\beta _0}\Big( \int_0^1h(s,\beta _0)ds+\sum_{k=1}^{m}R( a_k+b_k) \Big) . \label{e14} \end{equation} Condition (H6) implies that there exists $r>0$ such that for all $\beta >r$, we have \begin{equation} \frac{1}{\beta }\Big( \int_0^1h(s,\beta )ds+\sum_{k=1}^{m}R( a_k+b_k) \Big) <\frac{1}{2P}. \label{e15} \end{equation} Comparing \eqref{e14} and \eqref{e15} we see that $\beta _0\leq r$ . Hence we have $\| x\| _1\leq r$. \textbf{Step 2.} Existence of solutions. Let $\Omega =\{x\in PC^1(J):\| x\| _10$ such that \begin{equation*} | U_k(x(t_k),y(t_k))| \leq \alpha _k( \|x\| _0+\| y\| _0) ,\text{ }k=1,2,\dots ,m. \end{equation*} \item[(H9)] $V_k:\mathbb{R}^2\to\mathbb{R}$ is continuous and there exists $\beta _k>0$ such that \begin{equation*} | V_k(x(t_k),y(t_k))| \leq \beta _k( \|x\| _0+\| y\| _0) ,\text{ \ }k=1,2,\dots ,m. \end{equation*} \item[(H10)] $2PR\sum_{k=1}^{m}( \alpha _k+\beta _k) <1$. \end{itemize} \begin{theorem} \label{thm3} Under assumptions {\rm (H0), (H7)--(H10)}, equation \eqref{e5} has at least one solution. \end{theorem} \begin{proof} The proof is given in two steps. \textbf{Step1.} A priori bound on solutions. We have \begin{align*} x(t) &= \int_0^1G(t,s)F(s,x(s),x'(s))ds-\sum_{k=1}^{m}W(t,t_k)p(t_k)U_k(x(t_k),x'(t_k)) \\ &\quad + \sum_{k=1}^{m}G(t,t_k)p(t_k)V_k(x(t_k),x'(t_k)). \end{align*} and \begin{align*} x'(t) &= \int_0^1\frac{\partial G(t,s)}{\partial t} F(s,x(s),x'(s),(Sx)(s))ds+\sum_{k=1}^{m}\frac{\partial W(t,t_k)}{ \partial t}p(t_k)U_k(x(t_k),x'(t_k)) \\ &\quad + \sum_{k=1}^{m}\frac{\partial G(t,t_k)}{\partial t} p(t_k)V_k(x(t_k),x'(t_k)). \end{align*} It is easy to see that \begin{align*} | x(t)| &\leq K\int_0^1| F(s,x(s),x'(s))| ds+RL\sum_{k=1}^{m}| U_k(x(t_k),x'(t_k))| \\ &\quad +RK\sum_{k=1}^{m}|V_k(x(t_k),x'(t_k))| , \end{align*} and \begin{align*} | x'(t)| &\leq M\int_0^1| F(s,x(s),x'(s))| ds+RN\sum_{k=1}^{m}| U_k(x(t_k),x'(t_k))| \\ &\quad +RM\sum_{k=1}^{m}|V_k(x(t_k),x'(t_k))| . \end{align*} From (H7), (H8) and (H9), we obtain \begin{align*} \| x\| _0+\| x'\| _0 &\leq (K+M)\| g\| _{L^1}+\sum_{k=1}^{m}R( L+N) \alpha _k(\| x\| _0+\| x'\|_0) \\ &\quad +\sum_{k=1}^{m}R( K+M) \beta _k(\| x\|_0+\| x'\| _0). \end{align*} Setting $\mu =2PR\sum_{k=1}^{m}( \alpha _k+\beta _k) $, we obtain \begin{equation*} \| x\| _1\leq 2P\| g\| _{L^1}+\mu \| x\| _1. \end{equation*} Then $(1-\mu )\| x\| _1\leq 2P\| g\| _{L^1}$. Using condition (H10) we obtain \begin{equation*} \| x\| _1\leq ( \frac{2P}{1-\mu }) \|g\| _{L^1}:=r_1. \end{equation*} \textbf{Step 2.} Existence of solutions. Let $\Omega _1=\{x\in PC^1(J):\| x\| _1