\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 28, pp. 1--16.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/28\hfil Solvability of nonlocal problems] {Solvability of nonlocal problems for semilinear one-dimensional wave equations} \author[S. Kharibegashvili, B. Midodashvili \hfil EJDE-2012/28\hfilneg] {Sergo Kharibegashvili, Bidzina Midodashvili} % in alphabetical order \address{Sergo Kharibegashvili \newline I. Javakhishvili Tbilisi State University\\ A. Razmadze Mathematical Institute\\ 2, University St., Tbilisi 0143, Georgia.\newline Georgian Technical University\\ Department of Mathematics\\ 77, M. Kostava Str., Tbilisi 0175, Georgia} \email{kharibegashvili@yahoo.com} \address{Bidzina Midodashvili \newline I. Javakhishvili Tbilisi State University\\ Faculty of Exact and Natural Sciences\\ 2, University St., Tbilisi 0143, Georgia.\newline Gori Teaching University\\ Faculty of Education, Exact and Natural Sciences\\ 5, I. Chavchavadze Str., Gori, Georgia} \email{bidmid@hotmail.com} \thanks{Submitted November 14, 2011. Published February 15, 2012.} \subjclass[2000]{35L05, 35L20, 35L71} \keywords{Nonlocal problem; semilinear wave equation; \hfill\break\indent existence and nonexistence of solutions} \begin{abstract} In this article, we prove theorems on existence, uniqueness, and nonexistence of solutions for nonlocal problems of a semilinear wave equations in one space variable. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In a domain $\Omega: 00$, $|\mu|<1$, $f \in C(\overline{\Omega} \times \mathbb{R})$, $F \in C(\overline{\Omega})$, $\varphi \in C^1([0,l])$, $\psi \in C([0,l])$, $\varphi(0)=\varphi(l)=\psi(0)=\psi(l)=0$, and the conditions \eqref{e2.2}, \eqref{e2.3} be fulfilled. Then for the strong generalized solution $u=u(x,t)$ of \eqref{e1.1}-\eqref{e1.4} in class $C$ in the domain $\Omega$ in the sense of Definition \ref{def1.1}, following a priori estimate is valid: \begin{equation} \begin{split} \|u\|_{C(\overline{\Omega})} &\leq c_1\|F\|_{C(\overline{\Omega})} +c_2 \|g(x,0,\varphi(x))\|_{C([0,l])}^{1/2} + c_3\|\varphi\|_{C^1([0,l])} \\ &\quad + c_4\|\psi\|_{C([0,l])} +c_5 \end{split} \label{e2.4} \end{equation} with nonnegative constants $c_i=c_i(\lambda,\mu,l,M_1,M_2)$ independent of $u, F, \varphi, \psi$, and $c_i>0$ for $i<5$. \end{lemma} \begin{proof} Let $u$ be a strong generalized solution of \eqref{e1.1}-\eqref{e1.4} of class $C$ in the domain $\Omega$. In view of Definition \ref{def1.1} there exists a sequence of the functions $u_n \in C^2(\overline{\Omega}) \cap C ^0{}(\overline{\Omega},\Gamma)$ such that \begin{gather} \lim_{n \to \infty}\|u_n-u\|_{C(\overline{\Omega})}=0, \quad \lim_{n \to \infty}\|L_\lambda u_n -F\|_{C(\overline{\Omega})}=0, \label{e2.5} \\ \lim_{n \to \infty}\|u_n|_{t=0}-\varphi\|_{C^1([0,l])}=0, \quad \lim_{n \to \infty}\|K_\mu u_{nt}-F\|_{C([0,l])}=0, \label{e2.6} \end{gather} and therefore $$ \lim_{n \to \infty}\|f(\cdot,\cdot,u_n(\cdot,\cdot))-f(\cdot,\cdot,u(\cdot,\cdot))\|_{C(\overline{\Omega})}=0. $$ Consider function $u_n \in C^2(\overline{\Omega}) \cap C ^0{}(\overline{\Omega},\Gamma)$ as a solution of the problem \begin{gather} L_\lambda u_n = F_n, \label{e2.7} \\ u_n(0,t)=0, u_n(l,t)=0, 0 \leq t \leq l, \label{e2.8} \\ u_n(x,0)=\varphi_n(x), 0 \leq x \leq l, \label{e2.9} \\ K_\mu u_{nt}=\psi_n(x), 0 \leq x \leq l. \label{e2.10} \end{gather} Here \begin{equation} F_n:=L_\lambda u_n, \varphi_n:=u_n|_{t=0}, \, \psi_n(x):=K_\mu u_{nt}. \label{e2.11} \end{equation} Multiplying both sides of the equation \eqref{e2.7} by $u_{nt}$ and integrating in the domain $\Omega_\tau:=\{(x,t) \in \Omega: t<\tau \}$, $ 0<\tau \leq l$, due to the \eqref{e2.1}, we have \begin{equation} \begin{split} &\frac{1}{2}\int_{\Omega_\tau}\frac {\partial}{\partial t} \Big(\frac {\partial u_n}{\partial t}\Big)^2\,dx\,dt - \int_{\Omega_\tau} \frac {\partial^2 u_n}{\partial x^2} \frac{\partial u_n}{\partial t}\,dx\,dt\\ &+ \lambda \int_{\Omega_\tau} \frac{d}{d t}\big(g(x,t,u_n(x,t)\big)\,dx\,dt - \lambda \int_{\Omega_\tau} g_t(x,t,u_n(x,t)\,dx\,dt \\ & = \int_{\Omega_\tau}F_n\frac {\partial u_n}{\partial t}\,dx\,dt. \end{split}\label{e2.12} \end{equation} Let $\omega_\tau:00$ there exists the number $N=N(\epsilon)>0$ such that \begin{equation} \|g(x,0,u_n(x,0)\|_{C([0,l])} \leq \|g(x,0,\varphi(x))\|_{C([0,l])}+\epsilon, \, n>N. \label{e2.17} \end{equation} Below we assume that $n>N$. Let \begin{equation} w_n(\tau):=\int_{\omega_\tau}[u_{nt}^2+u_{nx}^2]dx. \label{e2.18} \end{equation} Since $2F_n u_{nt} \leq \epsilon_1^{-1} F_n^2 + \epsilon_1 u_{nt}^2$ for any $\epsilon_1=const >0$, then due to \eqref{e2.2}, \eqref{e2.3}, \eqref{e2.17} and \eqref{e2.18} from \eqref{e2.16} it follows that \begin{equation} \begin{split} w_n(\tau) &\leq w_n(0) + 2 \lambda l M_1 + 2 \lambda l \big(\|g(x,0,\varphi(x))\|_{C([0,l])}+\epsilon \big) \\ &\quad +2 \lambda l M_2 + \epsilon_1 \int_{\Omega_\tau}u_{nt}^2\,dx\,dt + \epsilon_1^{-1}\int_{\Omega_\tau}F_{n}^2\,dx\,dt. \end{split} \label{e2.19} \end{equation} Taking into account that $$ \int_{\Omega_\tau}u_{nt}^2\,dx\,dt = \int_0^\tau \Big[\int_{\omega_s}u_{nt}^2dx\Big]ds \leq \int_0^\tau \Big[\int_{\omega_s}[u_{nt}^2+u_{nx}^2]dx\Big]ds = \int_0^\tau w_n(s)ds, $$ from \eqref{e2.19} we obtain \begin{equation} \begin{split} &w_n(\tau) \\ &\leq \epsilon_1 \int_0^\tau w_n(s)ds +w_n(0) + 2 \lambda l \big[M_1+M_2+\|g(x,0,\varphi(x))\|_{C([0,l])}+\epsilon \big] \\ &\quad + \epsilon_1^{-1} \int_{\Omega_\tau}F_n^2\,dx\,dt, \quad 0 <\tau \leq l. \end{split}\label{e2.20} \end{equation} Because $\Omega_\tau \subset \Omega$, by the Gronwall's Lemma \cite[p. 13]{h1}, from \eqref{e2.20} it follows that for $0<\tau \leq l$, \begin{equation} \begin{split} w_n(\tau)&\leq \Big[w_n(0) + 2 \lambda l \big(M_1+M_2+\|g(x,0,\varphi(x))\|_{C([0,l])} +\epsilon \big) \\ &\quad +\epsilon_1^{-1}l^2\|F_n\|^2_{C(\overline{\Omega})}\Big]e^{\epsilon_1 \tau}, \end{split} \label{e2.21} \end{equation} Using the inequality $$ |a+b|^2=a^2+b^2+2ab \leq a^2+b^2 +\epsilon_2 a^2+\epsilon_2^{-1}b^2 =(1+\epsilon_2)a^2+(1+\epsilon_2^{-1})b^2 \, \forall \epsilon_2>0, $$ from \eqref{e2.10}, we have \begin{equation} |u_{nt}(x,0)|^2=|\mu u_{nt}(x,l) + \psi_n(x)|^2 \leq |\mu|^2(1+\epsilon_2) u_{nt}^2(x,l) +(1+\epsilon_2^{-1}) \psi_n(x)^2. \label{e2.22} \end{equation} From which we obtain \begin{equation} \begin{split} \int_{\omega_0}u_{nt}^2dx &=\int_0^l|u_{nt}(x,0)|^2dx \\ &\leq |\mu|^2(1+\epsilon_2)\int_0^lu_{nt}^2(x,l)dx +(1+\epsilon_2^{-1})\int_0^l\psi_n^2(x)dx\\ &=|\mu|^2(1+\epsilon_2)\int_{\omega_l} u_{nt}^2dx +(1+\epsilon_2^{-1}) l \|\psi_n\|_{C([0,l])}^2. \end{split} \label{e2.23} \end{equation} In view of \eqref{e2.18} from \eqref{e2.21}, we have \begin{equation} \int_{\omega_l}u_{nt}^2dx \leq w_n(l) \leq \Big[\int_{\omega_0}\varphi_{nx}^2dx + \int_{\omega_0}u_{nt}^2dx +M_3\Big]e^{\epsilon_1l}, \label{e2.24} \end{equation} where \begin{equation} M_3=2\lambda l \big(M_1+M_2 +\|g(x,0,\varphi(x))\|_{C([0,l])}+\epsilon \big ) +\epsilon_1^{-1}l^2\|F_n\|_{C(\overline{\Omega})}^2. \label{e2.25} \end{equation} From \eqref{e2.23} and \eqref{e2.24} it follows that \begin{equation} \begin{split} \int_{\omega_0}u_{nt}^2dx &\leq |\mu|^2(1+\epsilon_2)\Big [\int_{\omega_0}\varphi_{nx}^2dx + \int_{\omega_0}u_{nt}^2dx +M_3\Big]e^{\epsilon_1l}\\ &\quad +(1+\epsilon_2^{-1}) l \|\psi_n\|_{C([0,l])}^2. \end{split}\label{e2.26} \end{equation} Because $|\mu|<1$, then positive constants $\epsilon_1$ and $\epsilon_2$ can be chosen so small that \begin{equation} \mu_1=|\mu|^2(1+\epsilon_2)e^{\epsilon_1 l} <1. \label{e2.27} \end{equation} Due to \eqref{e2.27}, from \eqref{e2.26} we obtain \begin{equation} \begin{split} \int_{\omega_0}u_{nt}^2dx &\leq (1-\mu_1)^{-1} \Big[|\mu|^2(1+\epsilon_2)\Big(\int_{\omega_0}\varphi_{nx}^2dx+M_3 \Big)e^{\epsilon_1 l}\\ &\quad +(1+\epsilon_2^{-1})l\|\psi_{n}\|_{C([0,l])}^2\Big]. \end{split}\label{e2.28} \end{equation} From \eqref{e2.9} and \eqref{e2.28} it follows that \begin{equation} \begin{split} w_n(0)&=\int_{\omega_0}[u_{nx}^2+u_{nt}^2]dx \\ &\leq \int_{\omega_0}\varphi_{nx}^2dx+(1-\mu_1)^{-1} \Big[|\mu|^2(1+\epsilon_2)\Big(\int_{\omega_0}\varphi_{nx}^2dx +M_3 \Big)e^{\epsilon_1 l} \\ &\quad +(1+\epsilon_2^{-1})l\|\psi_{n}\|_{C([0,l])}^2\Big]\\ &\leq l \|\varphi_n\|_{C^1([0,l])}^2+(1-\mu_1)^{-1}\Big[|\mu|^2(1+\epsilon_2) \Big(l\|\varphi_n\|_{C^1([0,l])}^2+M_3 \Big)e^{\epsilon_1 l} \\ &\quad +(1+\epsilon_2^{-1})l\|\psi_n\|_{C([0,l])}^2\Big]. \end{split} \label{e2.29} \end{equation} In view of \eqref{e2.25} and \eqref{e2.29}, from \eqref{e2.21} we obtain \begin{equation} \begin{split} w_n(\tau) &\leq \Big[l \|\varphi_n\|_{C^1([0,l])}^2+(1-\mu_1)^{-1}\big\{|\mu|^2 (1+\epsilon_2)\big(l\|\varphi_n\|_{C^1([0,l])}^2+M_3 \big)e^{\epsilon_1 l}\\ &\quad + (1+\epsilon_2^{-1})l\|\psi_{n}\|_{C([0,l])}^2 \big \} + M_3 \Big] e^{\epsilon_1 \tau}, \quad 0<\tau \leq l. \end{split}\label{e2.30} \end{equation} In view of \eqref{e2.8}, \eqref{e2.18}, using the Schwartz inequality, for any $(x,\tau) \in \Omega$ we have \begin{align*} |u_n(x,\tau)|^2 &= \Big ( \int_0^x u_{nx}(\xi,\tau)d\xi\Big)^2 \leq \int_0^x1^2d\xi \int_0^x u_{nx}^2(\xi,\tau)d\xi \\ &\leq l \int_0^l u_{nx}^2(\xi,\tau)d\xi =l \int_{\omega_\tau}u_{nx}^2dx \leq l w_n(\tau), \end{align*} from which it follows that \begin{equation} |u_n(x,\tau)| \leq [l w_n(\tau)]^{1/2} \quad \forall (x,\tau) \in \Omega. \label{e2.31} \end{equation} Using the inequality $$ \Big(\sum_{i=1}^n a_i^2 \Big)^{1/2} \leq \sum_{i=1}^n|a_i| $$ and taking into account \eqref{e2.25}, from \eqref{e2.30} and \eqref{e2.31}, we obtain \begin{equation} \begin{split} |u_n(x,\tau)| &\leq c_1\|F_n\|_{C(\overline {\Omega})} +c_2\|g(x,0,\varphi(x)\|_{C([0,l])}^{1/2} +c_3 \|\varphi_n\|_{C^1([0,l])}\\ &\quad +c_4 \|\psi_n\|_{C([0,l])} + \tilde{c}_5(\epsilon) \quad \forall (x,\tau) \in \Omega. \end{split} \label{e2.32} \end{equation} Here \begin{gather} c_1=\epsilon_1^{-\frac{1}{2}}l^{3/2}\alpha_1^{1/2}, \quad c_2=(2\lambda \alpha_1)^{1/2}l, \quad \alpha_1=(1-\mu_1)^{-1}\mu^2(1+\epsilon_2)e^{2\epsilon_1 l}+e^{\epsilon_1 l}, \label{e2.33} \\ c_3=l^{1/2}\big[l+(1-\mu_1)^{-1}|\mu|^2 l (1+\epsilon_2)e^{\epsilon_1 l}\big]^{1/2} e^{\frac{1}{2}\epsilon_1 l}, \label{e2.34}\\ c_4=(1-\mu_1)^{-\frac{1}{2}}(1+\epsilon_2^{-1})^{1/2} l e^{\frac{1}{2} \epsilon_1 l}, \quad \tilde{c}_5(\epsilon)=l(2 \lambda \alpha_1)^{1/2}(M_1+M_2+\epsilon)^{1/2}, \label{e2.35} \end{gather} where positive constants $\epsilon_1, \epsilon_2, \mu_1$ satisfy \eqref{e2.27}, and $M_1$, $M_2$ are from \eqref{e2.2} and \eqref{e2.3}. Since \eqref{e2.32} is valid for any $\epsilon = const >0$ and natural number $n > N(\epsilon)$, then, passing in the \eqref{e2.32} to the limit for $n \to \infty$, in view of \eqref{e2.5} and \eqref{e2.6}, we obtain a priori estimate \eqref{e2.4} with constants $c_1, c_2, c_3$ and $c_4$ from \eqref{e2.33}-\eqref{e2.35}, and for $c_5$ we have \begin{equation} c_5:=\lim_{\epsilon \to 0}\tilde{c}_5(\epsilon) =l (2 \lambda \alpha_1)^{1/2}(M_1+M_2)^{1/2}. \label{e2.36} \end{equation} This completes the proof. \end{proof} \section{Reduction of \eqref{e1.1}-\eqref{e1.4} to a nonlinear integral equation} First let us consider in the domain $\Omega: 00$, $|\mu|<1$, $f \in C^1(\overline{\Omega} \times \mathbb{R})$, $F \in C(\overline{\Omega})$, $\varphi \in C^1([0,l])$, $\psi \in C([0,l])$, $\varphi(0)=\varphi(l)=\psi(0)=\psi(l)=0$ and the conditions \eqref{e2.2}, \eqref{e2.3} be fulfilled. Then \eqref{e1.1}-\eqref{e1.4} has at least one strong generalized solution of the class $C$ in the domain $\Omega$ in the sense of Definition \ref{def1.1}. \end{theorem} \begin{remark} \label{rmk4.1} \rm Since \eqref{e3.23} can be rewritten in the form of \eqref{e3.20}: $$ u(x,t)=\big(l_0^{-1}(\varphi,\psi)\big)(x,t)+\big(L_0^{-1} \big(-\lambda f|_{u=u(x,t)}+F\big)(x,t), \quad (x,t) \in \overline{\Omega}, $$ in view of Lemma \ref{lem3.1} and Remark \ref{rmk3.3}, the generalized solution $u$ of the class $C$, the existence of which is asserted in the Theorem \ref{thm4.1}, belongs to the class $C^1(\overline{\Omega})$. Moreover, if we require in addition that $F \in C^1(\overline{\Omega})$, $\varphi \in C^2([0,l])$, $\psi \in C^1([0,l])$ and $\varphi(0)=\varphi(l)=\psi(0)=\psi(l)=0$, $-\varphi''(0) + \lambda f(0,0,0) = F(0,0)$, $-\varphi''(l) + \lambda f(l,0,0) = F(l,0)$, then this solution will belong to the class $C^2(\overline{\Omega})$; i.e., it will be a classical solution of \eqref{e1.1}-\eqref{e1.4}. \end{remark} \begin{remark} \label{rmk4.2} \rm Let us consider some classes of functions $f=f(x,t,u)$ frequently encountered in applications and which satisfy the conditions \eqref{e2.2}, \eqref{e2.3}: 1. $f(x,t,u)=f_0(x,t)\psi(u)$, where $f_0, \frac {\partial}{\partial t}f_0 \in C(\overline{\Omega})$ and $\psi \in C(\mathbb{R})$. In this case $g(x,t,u)=f_0(x,t) \int_0^u \psi(s)ds$ and when $f_0 \geq 0$, $\frac {\partial}{\partial t}f_0 \leq 0$, $\int_0^u \psi(s)ds \geq -M$, $M$ is a non-negative constant, the conditions \eqref{e2.2}, \eqref{e2.3} will be fulfilled. 2. $f(x,t,u)=f_0(x,t)|u|^\alpha sgn\, u$, where $f_0, \frac {\partial}{\partial t}f_0 \in C(\overline{\Omega})$ and $\alpha >1$. In this case $g(x,t,u)=f_0(x,t) \frac {|u|^{\alpha +1}}{\alpha +1}$ and when $f_0 \geq 0$, $\frac {\partial}{\partial t}f_0 \leq 0$, the conditions \eqref{e2.2}, \eqref{e2.3} will be fulfilled. 3. $f(x,t,u)=f_0(x,t) e^u$, where $f_0, \frac {\partial}{\partial t}f_0 \in C(\overline{\Omega})$. In this case $g(x,t,u)=f(x,t,u)$ and when $f_0 \geq 0$, $\frac {\partial}{\partial t}f_0 \leq 0$, the conditions \eqref{e2.2}, \eqref{e2.3} will be also fulfilled. Therefore, if function $f \in C^1(\overline{\Omega} \times \mathbb{R})$ belongs to the one of the classes considered above, then according to the Theorem \ref{thm4.1}, problem \eqref{e1.1}-\eqref{e1.4} is solvable in the class $C$ in the sense of Definition \ref{def1.1}. \end{remark} \begin{remark} \label{rmk4.3} \rm Let us consider the example of the function $f$, which is also often encountered in applications, when at least one of the conditions \eqref{e2.2} and \eqref{e2.3} is violated. Such function is \begin{equation} f(x,t,u) = f_0(x,t)|u|^\alpha, \quad \alpha >1, \label{e4.2} \end{equation} where $f_0, \frac {\partial}{\partial t} f_0 \in C(\overline{\Omega})$ and $f_0 \neq 0$. In this case due to \eqref{e2.1} we have $g(x,t,u)=f_0(x,t) \frac {|u|^{\alpha}u}{\alpha +1}$, and since $\alpha >1 $ and $f_0 \neq 0$, then the condition \eqref{e2.2} will be violated. If $\frac {\partial}{\partial t}f_0 \neq 0$, then the condition \eqref{e2.3} will be also violated. Below we show that when \eqref{e2.2} and \eqref{e2.3} are violated then the problem \eqref{e1.1}-\eqref{e1.4} may be insoluble. \end{remark} Let us consider the uniqueness of the solution of \eqref{e1.1}-\eqref{e1.4}. Let the function $f$ satisfy the Lipshitz local condition on the set $\overline{\Omega} \times \mathbb{R}$ with respect to variable $u$; i.e., \begin{equation} |f(x,t,u_2) - f(x,t,u_1)| \leq M(R)|u_2-u_1|, \quad (x,t) \in \overline{\Omega}, \; |u_i| \leq R, \; i=1, 2, \label{e4.3} \end{equation} where $M=M(R)$ is a non-negative constant, it is nondecreasing function of variable $R$. \begin{theorem} \label{thm4.2} Let $|\mu|<1$, $F \in C(\overline{\Omega}); \varphi \in C^1([0,l]), \psi \in C([0,l])$, $\varphi(0) = \varphi(l)=\psi(0)=\psi(l)=0$, function $f \in C(\overline{\Omega} \times \mathbb{R})$ and satisfy the condition \eqref{e4.3}. Then there exists a positive number $\lambda_0=\lambda_0(F,f,\varphi,\mu,l)$ such that for $0<\lambda<\lambda_0$, problem \eqref{e1.1}-\eqref{e1.4} can not have more than one strong generalized solution of the class $C$ in the domain $\Omega$ in the sense of Definition \ref{def1.1}. \end{theorem} \begin{proof} Suppose that \eqref{e1.1}-\eqref{e1.4} has two strong generalized solutions $u_1$ and $u_2$ of the class $C$ in the domain $\Omega$. According to Definition \ref{def1.1} there exists a sequence of functions $u_{jn} \in C^2(\overline{\Omega}) \cap C ^0{}(\overline{\Omega}, \Gamma)$ such that \begin{gather} \lim_{n \to \infty}\|u_{jn}-u_j\|_{C(\overline{\Omega})}=0, \quad \lim_{n \to \infty}\|L_{\lambda}u_{jn}-F\|_{C(\overline{\Omega})}=0, \label{e4.4} \\ \lim_{n \to \infty}\|u_{jn}|_{t=0}-\varphi\|_{C^1([0,l])}=0, \quad \lim_{n \to \infty}\|K_\mu u_{jnt}-\psi\|_{C([0,l])}=0,\label{e4.5} \end{gather} for $j=1, 2$. Let $v_n:=u_{2n}-u_{1n}$. It is easy to see that the function $v_n \in C^2(\overline{\Omega}) \cap C ^0{}(\overline{\Omega}, \Gamma)$ represents a classical solution of the problem \begin{gather} \big(\frac {\partial^2}{\partial t^2}-\frac {\partial^2}{\partial x^2}\big) v_n =\big(F_n + g_n\big)(x,t), \quad (x,t) \in \Omega, \label{e4.6} \\ v_n(0,t)=0, v_n(l,t)=0, 0 \leq t \leq l, \label{e4.7}\\ v_n(x,0)=\varphi_n(x), 0 \leq x \leq l, \label{e4.8}\\ K_\mu v_{nt}:=v_{nt}(x,0)-\mu v_{nt}(x,l) = \psi_n(x), 0 \leq x \leq l. \label{e4.9} \end{gather} Here \begin{gather} g_n:=\lambda(f(x,t,u_{1n})-f(x,t,u_{2n})), \label{e4.10}\\ F_n:=L_\lambda u_{2n}-L_\lambda u_{1n}, \label{e4.11}\\ \varphi_n:=v_n|_{t=0}, \label{e4.12} \\ \psi_n:=K_\mu v_{nt}. \label{e4.13} \end{gather} From the proof of Lemma \ref{lem2.1} it follows easily that a priori estimate \eqref{e2.4} is valid in the linear case too; i.e., when in \eqref{e1.1} the parameter $\lambda=0$. In this case due to \eqref{e2.33}-\eqref{e2.36}, determining the constants $c_i$, we have $c_2=c_5=0$ and the estimate \eqref{e2.4} takes the form \begin{equation} \|u\|_{C(\overline{\Omega})} \leq c_1\|F\|_{C(\overline{\Omega})} + c_3\|\varphi\|_{C^1([0,l])} + c_4\|\psi\|_{C([0,l])}, \label{e4.15} \end{equation} where the constants $c_1, c_3$ and $c_4$ do not depend on the parameter $\lambda$ and the functions $u, F, \varphi, \psi$. In view of \eqref{e4.15} for the solution $v_n \in C^2(\overline{\Omega}) \cap C ^0{}(\overline{\Omega}, \Gamma)$ of \eqref{e4.6}-\eqref{e4.9}, the following estimate is valid \begin{equation} \|v_n\|_{C(\overline{\Omega})} \leq c_1\|F_n+g_n\|_{C(\overline{\Omega})} + c_3\|\varphi_n\|_{C^1([0,l])} + c_4\|\psi_n\|_{C([0,l])}. \label{e4.16} \end{equation} From \eqref{e4.4}, \eqref{e4.5} and \eqref{e4.11}-\eqref{e4.13} it follows that \begin{equation} \lim_{n \to \infty}\|F_n\|_{C(\overline{\Omega})}=0,\quad \lim_{n \to \infty}\|\varphi_n\|_{C^1([0,l])}=0, \quad \lim_{n \to \infty}\|\psi_n\|_{C([0,l])}=0. \label{e4.17} \end{equation} Due to a priori estimate \eqref{e2.4} for the solutions $u_1$ and $u_2$ of \eqref{e1.1}-\eqref{e1.4}, we have \begin{equation} \|u_j\|_{C(\overline{\Omega})} \leq m_3 + \lambda^{1/2}m_4, \quad j=1,2, \label{e4.18} \end{equation} where according to \eqref{e2.33}-\eqref{e2.36} positive constants $m_i=m_i(\mu,l,M_1,M_2,F,\varphi,\psi)$, $i=3,4$, do not depend on $\lambda$. Let us fix arbitrarily the number $\lambda_1 >0$ and put $M_0=M(m_3+\lambda_1^{1/2}m_4 +1)$, where $M=M(R)$ is nondecreasing function from \eqref{e4.3}. In view of \eqref{e4.4} for any $\epsilon > 0$ there exists number $N>0$ such that $\|u_{jn}\|_{C(\overline{\Omega})} \leq \|u_j\|_{C(\overline{\Omega})}+\epsilon$, $j=1, 2$, for $n>N$, and, therefore, for $0<\lambda<\lambda_1$, taking into account \eqref{e4.18}, we have \begin{equation} \|u_{jn}\|_{C(\overline{\Omega})} \leq m_3+\lambda^{1/2} m_4 +\epsilon \leq m_3+\lambda_1^{1/2}m_4 + \epsilon, \quad j=1,2;\, n>N. \label{e4.19} \end{equation} From \eqref{e4.3}, \eqref{e4.10} and \eqref{e4.19} for $0<\lambda < \lambda_1$ and $\epsilon=1$ it follows that \begin{equation} \|g_n\|_{C(\overline{\Omega})} \leq \lambda\|f(x,t,u_{1n})-f(x,t,u_{2n})\|_{C(\overline{\Omega})} \leq \lambda M_0\|v_n\|_{C(\overline{\Omega})}, \label{e4.20} \end{equation} for $n>N$. Due to \eqref{e4.16} and \eqref{e4.20} we have $$ \|v_n\|_{C(\overline{\Omega})} \leq c_1\|F_n\|_{C(\overline{\Omega})} +\lambda c_1 M_0 \|v_n\|_{C(\overline{\Omega})} + c_3\|\varphi_n\|_{C^1([0,l])} + c_4\|\psi_n\|_{C([0,l])}, $$ for $n>N$, whence for $\lambda_0 := min\big(\lambda_1, \frac {1}{c_1 M_0}\big)$ and $0 < \lambda <\lambda_0$ it follows that \begin{equation} \|v_n\|_{C(\overline{\Omega})} \leq (1-\lambda c_1 M_0)^{-1}\big[c_1\|F_n\|_{C(\overline{\Omega})} + c_3\|\varphi_n\|_{C^1([0,l])} + c_4\|\psi_n\|_{C([0,l])}\big], \label{e4.21} \end{equation} for $n>N$. From \eqref{e4.4} we find that $$ \lim_{n \to \infty}\|v_n\|_{C(\overline{\Omega})} = \|u_2-u_1\|_{C(\overline{\Omega})}. $$ Also, in view of \eqref{e4.17} and \eqref{e4.21} we have $$ \lim_{n \to \infty}\|v_n\|_{C(\overline{\Omega})} = 0. $$ Thus $\|u_2-u_1\|_{C(\overline{\Omega})}=0$; i.e., $u_2=u_1$, which leads to contradiction, the proof is complete. \end{proof} Since the function $f \in C^1(\overline{\Omega} \times \mathbb{R})$ satisfies condition \eqref{e4.3}, then from theorems \ref{thm4.1} and \ref{thm4.2}, we have the following theorem. \begin{theorem} \label{thm4.3} Let $|\mu|<1$, $f \in C^1(\overline{\Omega} \times \mathbb {R})$, $F \in C(\overline{\Omega})$, $\varphi \in C^1([0,l])$, $ \psi \in C([0,l])$, $\varphi(0) = \varphi(l)=\psi(0)=\psi(l)=0$, and the conditions \eqref{e2.2}, \eqref{e2.3} be fulfilled. Then there exists a positive number $\lambda_0=\lambda_0(F,\varphi, \psi, \mu,l)$ such that for $0<\lambda<\lambda_0$ the problem \eqref{e1.1}-\eqref{e1.4} has a unique strong generalized solution of the class $C$ in the domain $\Omega$ in the sense of Definition \ref{def1.1}. \end{theorem} \section{Cases of nonexistence of solutions to \eqref{e1.1}-\eqref{e1.4}} Below, using the method of test-functions \cite{m2}, we show that when condition \eqref{e2.2} or \eqref{e2.3} is violated, problem \eqref{e1.1}-\eqref{e1.4} may have no strong generalized solution of the class $C$ in the domain $\Omega$, in the sense of Definition \ref{def1.1}. \begin{lemma} \label{lem5.1} Let $u$ is a strong generalized solution of \eqref{e1.1}-\eqref{e1.4} of the class $C$ in the domain $\Omega$ in the sense of Definition \ref{def1.1}. Then the integral equation \begin{equation} \int_{\Omega}u\Box v \,dx\,dt = -\lambda \int_{\Omega}f(x,t,u)v\,dx\,dt +\int_{\Omega} F v \,dx\,dt \label{e5.1} \end{equation} is valid for any test function $v$ such that \begin{equation} v \in C^2(\overline{\Omega}), v|_{\partial \Omega} =v_t|_{\partial \Omega}=v_x|_{\partial \Omega}=0, \label{e5.2} \end{equation} where $\Box:=\frac {\partial^2}{\partial t^2}-\frac {\partial^2}{\partial x^2}$. \end{lemma} \begin{proof} According to the definition of a strong generalized solution $u$ of \eqref{e1.1}-\eqref{e1.4} of the class $C$ in the domain $\Omega$ in the sense of Definition \ref{def1.1} there exists a sequence of functions $u_n \in C^2(\overline{\Omega}) \cap C ^0{}(\overline{\Omega}, \Gamma)$ such that the equalities \eqref{e2.5}, \eqref{e2.6} are valid and also, as an implication, the equality \begin{equation} \lim_{n \to \infty}\|f(x,t,u_n)-f(x,t,u)\|_{C(\overline{\Omega})}=0. \label{e5.3} \end{equation} Let $F_n:=L_\lambda u_n$. Multiply both parts of the equality $L_\lambda u_n=F_n$ by the function $v$ and integrate the received equality in the domain $\Omega$. By integration by parts of the left side of this equality and due to \eqref{e5.2} we have \begin{equation} \int_{\Omega}u_n \Box v \,dx\,dt + \lambda \int_{\Omega}f(x,t,u_n)v\,dx\,dt = \int_{\Omega} F_n v \,dx\,dt. \label{e5.4} \end{equation} In view of \eqref{e2.5} and \eqref{e5.3}, passing in the equality \eqref{e5.4} to the limit for $n \to \infty$, we obtain \eqref{e5.1}. The proof is complete. \end{proof} Consider the following condition imposed on function $f$: \begin{equation} f(x,t,u) \leq -|u|^{\alpha+1}, \quad (x,t,u) \in \overline{\Omega} \times \mathbb{R}, \label{e5.5} \end{equation} where $\alpha$ is a positive constant. It is easy to verify that when \eqref{e5.5} is fulfilled, condition \eqref{e2.2} is violated. Let us introduce a function $v_0=v_0(x,t)$ such that \begin{equation} v_0 \in C^2(\overline{\Omega}), v_0|_{\Omega}>0, v_0|_{\partial \Omega} =v_{0x}|_{\partial \Omega}=v_{0t}|_{\partial \Omega}=0 \label{e5.6} \end{equation} and \begin{equation} \text{\ae}_0 = \int_{\Omega} \frac {|\Box v_0|^{p'}}{|v_0|^{p'-1}} \,dx\,dt <+\infty, \quad p'=1+\frac{1}{\alpha}. \label{e5.7} \end{equation} Simple verification shows that for function $v_0$, satisfying conditions \eqref{e5.6} and \eqref{e5.7}, can be chosen as $$ v_0(x,t)=[xt(l-x)(l-t)]^k, \quad (x,t) \in \Omega, $$ for $k$ a sufficiently large constant. Due to \eqref{e5.5} and \eqref{e5.6} from \eqref{e5.1}, where instead of $v$ is chosen $v_0$, in the case $\lambda >0$, we have \begin{equation} \lambda \int_{\Omega}|u|^p v_0 \,dx\,dt \leq \int_{\Omega} |u| \Box v_0|\,dx\,dt -\int_{\Omega}Fv_0\,dx\,dt, p=\alpha+1. \label{e5.8} \end{equation} \begin{theorem} \label{thm5.1} Let $f \in C(\overline{\Omega} \times \mathbb {R})$ satisfy \eqref{e5.5}, and $F=\gamma F^0$, where $F^0 \in C(\overline{\Omega})$, $F^0 \geq 0$ and $F^0 \neq 0$. The functions $\varphi, \psi$ satisfy the conditions from Definition \ref{def1.1}. Then for $\lambda >0$ there exists the number $\gamma_0=\gamma_0(F^0,\alpha,\lambda) >0$, such that for $\gamma > \gamma_0$, problem \eqref{e1.1}-\eqref{e1.4} does not have a strong generalized solution of the class $C$ in the domain $\Omega$ in the sense of Definition \ref{def1.1}. \end{theorem} \begin{proof} If in the Young's inequality with the parameter $\epsilon >0$, $$ ab<\frac {\epsilon}{p} a^p+\frac {1}{p' \epsilon^{p'-1}}b^{p'}; \quad a,b \geq 0, \frac {1}{p}+\frac {1}{p'}=1, p=\alpha +1 >1 $$ we take $a=|u|v_0^{\frac {1}{p}}, b=\frac {|\Box v_0|}{v_0^{\frac {1}{p}}}$, then, since $\frac {p'}{p}=p'-1$, we obtain \begin{equation} |u\|\Box v_0|=|u|v_0^{\frac {1}{p}} \frac {|\Box v_0|} {v_0^{\frac {1}{p}}} \leq \frac {\epsilon}{p} |u|^pv_0 + \frac {1}{p' \epsilon^{p'-1}} \frac {|\Box v_0|^{p'}}{v_0^{p'-1}}. \label{e5.9} \end{equation} Since $F=\gamma F^0$ and due to \eqref{e5.9}, from \eqref{e5.8} it follows that $$ \big(\lambda -\frac {\epsilon}{p}\big)\int_{\Omega}|u|^pv_0\,dx\,dt \leq \frac {1}{p' \epsilon^{p'-1}}\int_{\Omega}\frac {|\Box v_0|^{p'}}{v_0^{p'-1}}\,dx\,dt -\gamma \int_{\Omega}F^0v_0\,dx\,dt, $$ whence for $\epsilon < \lambda p$, we obtain \begin{equation} \int_{\Omega}|u|^pv_0\,dx\,dt \leq \frac {p}{(\lambda p-\epsilon)p' \epsilon^{p'-1}} \int_{\Omega}\frac {|\Box v_0|^{p'}}{v_0^{p'-1}}\,dx\,dt -\frac {p\gamma}{\lambda p -\epsilon} \int_{\Omega}F^0v_0\,dx\,dt. \label{e5.10} \end{equation} Taking into account that $p'=\frac {p}{p-1}$, $p=\frac {p'}{p'-1}$ and $$ \min_{0<\epsilon<\lambda p}\frac {p}{(\lambda p-\epsilon)p' \epsilon^{p'-1}} =\frac {1}{\lambda^p}, $$ which is achieved at $\epsilon=\lambda$, from \eqref{e5.10} it follows that \begin{equation} \int_{\Omega}|u|^pv_0\,dx\,dt \leq \frac {1}{\lambda^{p'}} \int_{\Omega}\frac {|\Box v_0|^{p'}}{v_0^{p'-1}}\,dx\,dt -\frac {p'\gamma}{\lambda} \int_{\Omega}F^0v_0\,dx\,dt. \label{e5.11} \end{equation} In view of the conditions imposed on function $F^0$ and $v_0|_{\Omega} >0$ we have \begin{equation} 0<\text{\ae}_1 :=\int_{\Omega}F^0v_0\,dx\,dt <+\infty. \label{e5.12} \end{equation} Denoting the right part of the inequality \eqref{e5.11} by $\chi=\chi(\gamma)$, which is a linear function with respect to the parameter $\gamma$, from \eqref{e5.7} and \eqref{e5.12} we have \begin{equation} \chi(\gamma)\begin{cases} <0 & \text{for } \gamma >\gamma_0\\ >0 & \text{for } \gamma <\gamma_0, \end{cases} \label{e5.13} \end{equation} where $$ \chi(\gamma)=\frac {\text{\ae}_0}{\lambda^{p'}} - \frac {p'\gamma}{\lambda}\text{\ae}_1, \quad \gamma_0=\frac {\lambda \text{\ae}_0}{\lambda^{p'} p' \text{\ae}_1}. $$ There remains only to note that the left-hand side of \eqref{e5.11} is nonnegative, whereas the right-hand side, due to \eqref{e5.13}, is negative for $\gamma > \gamma_0$. Thus, for $\gamma > \gamma_0$, problem \eqref{e1.1}-\eqref{e1.4} does not have a strong generalized solution of the class $C$ in the domain $\Omega$ in the sense of Definition \ref{def1.1}. The proof is complete. \end{proof} \begin{thebibliography}{00} \bibitem{a1} S. Aizicovici, M. McKibben; \emph{Existence results for a class of abstract nonlocal Cauchy problems}. Nonlinear Analsysis, \textbf{39} (2000), No. 5, 649-668. \bibitem{a2} G. A. Avalishvili; \emph{Nonlocal in time problems for evolution equations of second order}. J. Appl. Anal. \textbf{8} (2002), No. 2, 245-259. \bibitem{b1} S. A. Beilin; \emph{On a mixed nonlocal problem for a wave equation}. Electron. J. Differential Equations, \textbf{2006} (2006), No. 103, 1-10. \bibitem{b2} A. V. Bitsadze; \emph{Some Classes of Partial Differential Equations}. (in Russian) Izdat. Nauka, Moscow, 1981. \bibitem{b3} G. Bogveradze, S. Kharibegashvili; \emph{On some nonlocal problems for a hyperbolic equation of second order on a plane}. Proc. A. Razmadze Math. Inst. \textbf{136} (2004), 1-36. \bibitem{b4} G. Bogveradze, S. Kharibegashvili; \emph{On some problems with integral restrictions for hyperbolic second order equations and systems on a plane}. Proc. A. Razmadze Math. Inst. \textbf{140} (2006), 17-48. \bibitem{b5} A. Bouziani; \emph{On a class of nonclassical hyperbolic equations with nonlocal conditions}. J. Appl. Math. Stochastic Anal. \textbf{15} (2002), No.2, 135-153. \bibitem{b6} L. Byszewski, V. Lakshmikantham; \emph{Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space}. Applicable Analysis \textbf{4} (1991), No. 1, 11-19. \bibitem{g1} D. Gilbarg, N. S. Trudinger; \emph{Elliptic partial differential equations of second order}. (in Russian) Nauka, Moscow, 1989. \bibitem{g2} D. G. Gordeziani, G. A. Avalishvili; \emph{Investigation of the nonlocal initial boundary value problems for some hyperbolic equations}. Hirosima Math. J., \textbf{31} (2001), 345-366. \bibitem{h1} D. Henry, ; \emph{Geometric theory of semilinear parabolic equations}. (in Russian) Mir, Moscow, 1985. \bibitem{h2} E. Hern\'{a}ndez; \emph{Existence of solutions for an abstract second-order differential equation with nonlocal conditions}. Electron. J. Differential Equations, \textbf{2009} (2009), No.96, 1-10. \bibitem{k1} S. S. Kharibegashvili; \emph{On the well-posedness of some nonlocal problems for the wave equation}. (in Russian) Differential'nye Uravneniya \textbf{39} (2003), No.4, 539-553; English transl.: Differential Equations \textbf{39} (2003), No. 4, 577-592. \bibitem{k2} S. Kharibegashvili, B. Midodashvili; \emph{Some nonlocal problems for second order strictly hyperbolc systems on the plane}. Georgian Math. J.,\textbf{ 17} (2010), No.2, 287-303. \bibitem{k3} T. Kiguradze; \emph{Some boundary value problems for systems of linear partial differential equations of hyperbolic type}. Mem. Differential Equations Math. Phys. \textbf{1} (1994), 1-144. \bibitem{k4} T. I. Kiguradze; \emph{Some nonlocal problems for linear hyperbolic systems}. (in Russian) Dokl. Akad. Nauk \textbf{345} (1995), No. 3, 300-302; English transl.: Dokl. Math. \textbf{52} (1995), No. 3, 376-378. \bibitem{m1} B. Midodashvili; \emph{A nonlocal problem for fourth order hyperbolic equations with multiple characteristics}. Electron. J. Differential Equations, \textbf{2002} (2002), No. 85, 1-7. \bibitem{m2} E. Mitidieri, S. I. Pokhozhaev; \emph{A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities}. (in Russian) Trudy Mat. Inst. Steklova, \textbf{234} (2001), 1-384; English transl.: Proc. Steklov Inst. Math., (\textbf{234}) 2001, No. 3, 1-362. \bibitem{n1} R. Narasimhan; \emph{Analysis on real and complex manifolds}. (in Russian) Mir, Moscow, 1971. \bibitem{p1} L. S. Pul'kina, ; \emph{A mixed problem with an integral condition for a hyperbolic equation}. (in Russian) Mat. Zametki \textbf{74} (2003), No.3, 435-445; English transl.: Math. Notes \textbf{74} (2003), No. 3-4, 411-421. \bibitem{r1} W. Rudin; \emph{Functional Analysis}. (in Russian) Mir, Moscow, 1975. \bibitem{t1} V. A. Trenogin; \emph{Functional Analysis}. (in Russian) Nauka, Moscow, 1993. \end{thebibliography} \end{document}