\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 29, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/29\hfil Oscillation of solutions] {Oscillation of solutions to third-order half-linear neutral differential equations} \author[J. D\v zurina, E. Thandapani, S. Tamilvanan \hfil EJDE-2012/29\hfilneg] {Jozef D\v zurina, Ethiraju Thandapani, Sivaraj Tamilvanan} % in alphabetical order \address{Jozef D\v zurina \newline Department of Mathematics, Faculty of Electrical Engineering and Informatics, Technical University of Ko\v{s}ice, Letn\'a 9, 042 00 Ko\v{s}ice, Slovakia} \email{jozef.dzurina@tuke.sk} \address{Ethiraju Thandapani \newline Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, 600 005, India} \email{ethandapani@yahoo.co.in} \address{Sivaraj Tamilvanan \newline Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, 600 005, India} \email{saitamilvanan@yahoo.in} \thanks{Submitted November 12, 2011. Published February 21, 2012.} \subjclass[2000]{34K11, 34C10} \keywords{Third-order neutral differential equation; Riccati transformation; \hfill\break\indent oscillation of solutions} \begin{abstract} In this article, we study the oscillation of solutions to the third-order neutral differential equations $$ \Big(a(t)\big([x(t)\pm p(t)x(\delta(t))]''\big)^\alpha\Big)' + q(t)x^\alpha(\tau(t)) = 0. $$ Sufficient conditions are established so that every solution is either oscillatory or converges to zero. In particular, we extend the results obtain in \cite{bac} for $a(t)$ non-decreasing, to the non-increasing case. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In recent years, there has been great interest in studying the oscillatory behavior of differential equations; see for example \cite{erbe,gre,gyori,kig,lad} and the references cited therein. Compared to first and second order, third-order neutral differential equations have received less attention, even though such equations arise in many physical problems. Motivated by this observation, we study the oscillation of solutions to the third-order half-linear neutral differential equations \begin{equation} \label{eE+} \Big(a(t)\big([x(t)+ p(t)x(\delta(t))]''\big)^\alpha\Big)' + q(t)x^\alpha(\tau(t)) = 0,\quad t\geq t_0, \end{equation} and \begin{equation} \label{eE-} \Big(a(t)\big([x(t)- p(t)x(\delta(t))]''\big)^\alpha\Big)' + q(t)x^\alpha(\tau(t)) = 0, \quad t\geq t_0\,. \end{equation} We assume the following conditions: \begin{itemize} \item[(H1)] $a(t)$, $p(t)$, $q(t)$, $\tau(t)$, $\delta(t)$ are in $C([0, \infty))$; $a(t)$, $q(t)$, $\tau(t)$, $\delta(t)$ are positive functions; $\alpha$ is the quotient of two odd positive integers. \item[(H2)] There is constant $p$ such that $0\leq p(t)\leq p<1$; the delay arguments satisfy $\tau(t)\leq t$, $\delta(t)\leq t$, $\lim_{t\to \infty} \tau(t) = \lim_{t\to \infty} \delta(t) = \infty$. \item[(H3)] $a(t)$ is positive and non-increasing; $A(t):=\int_{t_0}^t a^{-1/\alpha}(s)\, d{s} \to \infty$ as $t\to\infty$. \end{itemize} By a solution to \eqref{eE+}, we mean a function $x(t)$ in $\mathcal{C}^2[T_x,\infty)$ for which $ a(t)(z''(t))^{\alpha}$ is in $\mathcal{C}^1[T_x,\infty)$ and \eqref{eE+} is satisfied on some interval $[T_x,\infty)$, where $T_x\geq t_0$, and $z(t)= x(t)+p(t)x(\delta(t))$. The same concept of a solution applies to \eqref{eE-}. Dzurina \cite{bac} obtained sufficient conditions for the oscillation of solutions to \eqref{eE+} and to \eqref{eE-}, under the assumption that $a(t)$ is non-decreasing. Here we establish similar results when $a(t)$ is non-increasing. We follow the same strategy as in \cite {bac}, but with new estimates in Lemmas \ref{lem23}, \ref{lem24}, \ref{lem25}. We consider only solutions $x(t)$ for which $\sup \{|x(t)|: t\geq T\} >0$ for all $T\geq T_x$. We say that a solution is oscillatory if it has arbitrarily large zeros, and non-oscillatory otherwise. All functional inequalities are assumed to hold eventually; that is, for all $t$ large enough. Note that if $x(t)$ is a solution so is $-x(t)$; so our proofs are done only for positive solutions. In Section 2, we present oscillation results for \eqref{eE+}, while in Section 3 we present similar results for \eqref{eE-}. In both section we give examples to illustrate our results. \section{Oscillation results for \eqref{eE+}} For a solution $x(t)$ of \eqref{eE+}, we define the corresponding function \begin{equation} \label{e21} z(t) = x(t)+p(t)x(\delta(t)). \end{equation} To obtain sufficient conditions for the oscillation of solutions to \eqref{eE+}, we need the the following lemmas. \begin{lemma}[{\cite[Lemma 1]{bac}}] \label{lem21} Let $x(t)$ be a positive solution of \eqref{eE+}. Then there are only two possible cases: \begin{itemize} \item[(I)] $z(t) > 0$, $z'(t)>0$, $z''(t)>0$, $(a(t)(z''(t))^\alpha)' < 0$; \item[(II)] $z(t) > 0$, $z'(t)<0$, $z''(t)>0$, $(a(t)(z''(t))^\alpha)' < 0$. \end{itemize} \end{lemma} \begin{lemma}[{\cite[Lemma 2]{bac}}] \label{lem22} Let $x(t) $ be a positive solution of \eqref{eE+}, and let the corresponding function $z(t)$ satisfy Case (II) of Lemma \ref{lem21}. If \begin{equation}\label{e22} \int_{t_0}^{\infty}\int_{v}^{\infty} \Big[\frac{1}{a(u)}\int_{u}^{\infty}q(s)ds\Big]^{1/\alpha}du \,dv = \infty, \end{equation} then $\lim_{t \to \infty} x(t) = \lim_{t\to \infty} z(t) = 0$. \end{lemma} \begin{lemma}\label{lem23} Assume that $u(t)>0$, $u'(t)>0$, $(a(t)(u'(t))^\alpha)' \leq 0 $ on $[t_0,\infty)$. Then for each $\ell\in(0,1) $ there exists $T_\ell\geq t_0 $ such that $$ \frac{u(\tau(t))}{A(\tau(t))}\geq \ell\frac{u(t)}{A(t)}\quad \text{for } t\geq T_\ell. $$ \end{lemma} \begin{proof} Since $a(t)(u'(t))^\alpha$ is non-increasing, so is $a^{1/\alpha}(t)(u'(t))$. Then by the definition of $A(t)$, we have \begin{equation}\label{e23} \begin{split} u(t) - u(\tau(t)) &=\int_{\tau(t)}^t a^{1/\alpha}(s)(u'(s))\frac{1}{a^{1/\alpha}(s)}\,ds\\ &\leq a^{1/\alpha}(\tau(t))u'(\tau(t))\big(A(t) - A(\tau(t))\big). \end{split} \end{equation} Also $$ u(\tau(t)) \geq u(\tau(t)) -u(t_0) \geq a^{1/\alpha}(\tau(t))u'(\tau(t)) \big( A(\tau(t)) -A(t_0) \big). $$ Since $\lim_{t\to \infty} \frac{A(\tau)-A(t_0)}{A(\tau)}=1$, for each $\ell \in (0,1)$ there exists $T_\ell\geq t_0 $ such that $\big( A(\tau(t)) -A(t_0) \big) > \ell A(\tau(t))$ for $t\geq T_\ell$. From the above inequality, \begin{equation} \label{e24} \frac{u(\tau(t))}{u'(\tau(t))}\geq \ell a^{1/\alpha}(\tau(t))A(\tau(t)),\quad t\geq T_\ell. \end{equation} Combining \eqref{e23} and \eqref{e24}, we obtain $$ \frac{u(t)}{u(\tau(t))}\leq 1+ \frac{A(t)-A(\tau(t))}{\ell A(\tau(t))} \leq \frac{A(t)}{\ell A(\tau(t))}, $$ which completes the proof. \end{proof} \begin{lemma}\label{lem24} Assume that $z(t) > 0$, $z'(t)>0$, $z''(t)>0$, $\big(a(t)(z''(t))^\alpha\big)' \leq 0 $ on $(T_\ell,\infty)$. Then $$ \frac{z(t)}{z'(t)} \geq \frac{a^{1/\alpha}(t)A(t)}{2} \quad\text{for } t\geq T_\ell. $$ \end{lemma} \begin{proof} Since $a(t)(z''(t))^\alpha$ is positive and non-increasing, so is $a^{1/\alpha}(t) z''(t)$. From $z'(t)>0$, $a(t)>0$, we have \begin{equation} \label{e24i} z'(t) \geq z'(t)- z'(\tau(t)) \geq \int_{T_\ell}^{t}\frac{a^{1/\alpha}(s)z''(s)}{a^{1/\alpha}(s)} ds \geq a^{1/\alpha}(t)A(t) z''(t). \end{equation} Since $A'(t)=a^{-1/\alpha}(t)$, \begin{equation} \label{e24b} A'(t) z'(t) \geq A(t)z''(t),\quad t\geq T_\ell. \end{equation} Integrating both sides of the above inequality, and using that $A(T_\ell)z'(T_\ell)>0$, we obtain $$ \int_{T_\ell}^{t}A'(s) z'(s)ds \geq A(t) z'(t)- \int_{T_\ell}^{t}A'(s) z'(s)ds. $$ Therefore, \begin{equation}\label{e25} \int_{T_\ell}^{t}A' (s) z'(s)ds \geq \frac{1}{2}A(t)z'(t). \end{equation} Since $a(t) $ is non-increasing, we have $A(t)>0$, $A'(t)>0$, $A''(t)\geq 0$. and \begin{equation}\label{e26} ( A'(t) z(t))' = A'(t) z'(t) + A''(t) z(t) \geq A'(t) z'(t). \end{equation} Integrating on both sides of the above equality, then using that $A'(T_\ell)z(T_\ell)>0$ and \eqref{e25}, we obtain $$ A'(t)z(t) \geq \frac{1}{2}A(t)z'(t),\quad t\geq T_\ell, $$ which implies the desired result. \end{proof} The next lemma follows from \eqref{e24b}. \begin{lemma} \label{lem25} Assume that $ z'(t)>0$, $z''(t)>0$, $\big(a(t)(z''(t))^\alpha\big)' \leq 0 $ on $(T_\ell,\infty)$. Then $$ \frac{A(t)z''(t)}{A'(t)z'(t)} \leq 1, \quad\text{for } \quad t\geq T_\ell. $$ \end{lemma} For simplicity of notation, we introduce $$ P_\ell(t) = \ell^\alpha(1-p)^\alpha q(t) a(\tau(t)) \Big(\frac{A(\tau(t))}{A(t)}\Big)^\alpha\Big(\frac{A(\tau(t))}{2}\Big)^\alpha $$ with $\ell \in (0,1)$ and $t\geq T_\ell$; \begin{equation}\label{e27} P= \liminf_{t\to \infty}A^\alpha(t)\int_{t}^{\infty}P_\ell(s)ds, \quad Q= \limsup_{t\to \infty}\frac{1}{A(t)} \int_{t_0}^{t} A^{\alpha+1}(s)P_\ell(s)ds. \end{equation} Further, for $z(t)$ satisfying Case (I) of Lemma \ref{lem21}, we define \begin{gather} \label{e28} w(t)= a(t)\Big(\frac{z''(t)}{z'(t)}\Big)^\alpha,\\ \label{e29} r= \liminf_{t\to \infty} A^\alpha(t)w(t),\quad R = \limsup _{t\to \infty} A^\alpha(t) w(t). \end{gather} \begin{lemma}\label{lem26} Let $x(t)$ be a positive solution of \eqref{eE+}. \begin{itemize} \item[(a)] Let $P<\infty$, $Q< \infty$ and $z(t)$ satisfy Case (I) of Lemma \ref{lem21}. Then $P \leq r - r^{1+\frac{1}{\alpha}}$ and $P+Q \leq 1$. \item[(b)] If $P=\infty $ or $Q= \infty$, then $z(t)$ does not satisfy Case (I) of Lemma \ref{lem21}. \end{itemize} \end{lemma} \begin{proof} Part (a). Assume that $x(t) $ is a positive solution of \eqref{eE+} and the corresponding function $z(t) $ satisfies Case(I) of Lemma \ref{lem21}. From the definition of $z(t)$, we have $$ x(t) = z(t)- p(t)x(\delta(t)) > z(t) - p(t)z(\delta(t)) \geq (1-p)z(t). $$ Using this inequality in \eqref{eE+}, we obtain \begin{equation}\label{e211} (a(t)(z''(t))^\alpha)' \leq - (1-p)^\alpha q(t)z^\alpha(\tau(t)) \leq 0. \end{equation} Then from its definition, $w(t)$ is positive and satisfies \begin{equation}\label{e212} \begin{split} w'(t) &= \frac{1}{(z'(t))^\alpha} \big(a(t) (z''(t))^\alpha\big)' - \alpha a(t)\Big(\frac{z''(t)}{z'(t)}\Big)^{\alpha+1}\\ &\leq -q(t)(1-p)^\alpha \frac{z^\alpha(\tau(t))}{(z'(t))^\alpha} - \frac{\alpha}{a^{1/\alpha} (t)} w^{1+\frac{1}{\alpha}}(t). \end{split} \end{equation} From Lemma \ref{lem23} with $u(t) = z'(t)$, we have $$ \frac{1}{z'(t)} \geq \ell \frac{A(\tau(t))}{A(t)}\frac{1}{z'(\tau(t))}, \quad t\geq T_\ell, $$ where $\ell $ is the same as in $P_\ell$. Now \eqref{e212} becomes $$ w'(t) \leq - \ell^\alpha q(t)(1-p)^\alpha \Big(\frac{A(\tau(t))}{A(t)}\Big)^\alpha \frac{z^\alpha(\tau(t))}{(z'(\tau(t)))^\alpha} - \frac{\alpha}{a^{1/\alpha}(t)} w^{1+\frac{1}{\alpha}}(t). $$ From Lemma \ref{lem24}, we have $z(t) \geq \frac{a^{1/\alpha}(t)A(t)}{2}z'(t)$, so that \begin{equation}\label{e213} w'(t)+ P_\ell(t)+ \frac{\alpha}{a^{1/\alpha}(t)} w^{1+\frac{1}{\alpha}}(t) \leq 0. \end{equation} Since $P_\ell (t)>0 $ and $w(t)>0 $ for $t\geq T_\ell$. It follows that $w'(t)\leq 0 $ and $-w'(t)\geq \alpha w^{1+(1/\alpha)}(t)/a^{1/\alpha}(t)$; thus $$ \Big(\frac{1}{w^{1/\alpha}(t)}\Big)' > \frac{1}{a^{1/\alpha}(t)}. $$ Integrating the above inequality from $T_\ell $ to $t$, and using that $w^{-1/\alpha}(T_\ell)>0$, we obtain $$ w(t)< \frac{1}{\big(\int_{T_\ell}^t a^{-1/\alpha}(s)\,ds\big)^\alpha}\,, $$ which in view of (H3) implies that $\lim_{t\to \infty}w(t) = 0$. On the other hand, from the definition of $w(t) $ and Lemma \ref{lem25}, $$ A^\alpha(t)w(t)=a(t)\Big(\frac{A(t)z''(t)}{z'(t)}\Big)^\alpha =\Big(\frac{A(t)z''(t)}{A'(t)z'(t)}\Big)^\alpha \leq 1^\alpha. $$ Then \begin{equation}\label{e214} 0\leq r \leq R\leq 1. \end{equation} Next we prove the first inequality in (a). Let $\epsilon > 0$. Then from the definition of $P$ and $r$, we can choose $t_2 \geq T_\ell $, sufficiently large such that $$ A^\alpha(t)\int_{t}^{\infty}P_\ell(s)ds \geq P-\epsilon\quad \text{and}\quad A^\alpha(t)w(t) \geq r-\epsilon \quad\text{ for } t\geq t_2. $$ Integrating \eqref{e213} from $t$ to $\infty $ and using that $\lim_{t\to \infty}w(t) = 0$, we have \begin{equation}\label{e215} w(t) \geq \int_{t}^{\infty}P_\ell(s)ds + \alpha \int_{t}^{\infty} \frac{ w^{1+\frac{1}{\alpha}}(s)} {a^{1/\alpha}(s)}ds \quad\text{ for } t\geq t_2. \end{equation} Multiplying the above inequality by $A^\alpha(t) $ and simplifying, we obtain \begin{align*} A^\alpha(t)w(t) &\geq A^\alpha(t) \int_{t}^{\infty}P_\ell(s)ds + \alpha A^\alpha(t)\int_{t}^{\infty} \frac{A^{\alpha+1}(s) w^{1+\frac{1}{\alpha}}(s)} {A^{\alpha+1 }(s)a^{1/\alpha}(s)}ds \\ &\geq (P-\epsilon) + (r-\epsilon)^{1+\frac{1}{\alpha}} A^\alpha(t)\int_{t}^{\infty} \frac{\alpha A'(s)}{A^{\alpha +1}(s)}ds, \end{align*} and so $$ A^{\alpha}(t)w(t)\geq (P-\epsilon) + (r-\epsilon)^{1+\frac{1}{\alpha}}. $$ Taking the limit inferior on both sides as $t\to \infty$, we obtain $$ r\geq (P-\epsilon) + (r-\epsilon)^{1+\frac{1}{\alpha}}. $$ Since $\epsilon > 0 $ is arbitrary, we obtain the desired result $$ P\leq r - r^{1+\frac{1}{\alpha}}. $$ Next, we prove the second inequality in (a). Multiplying \eqref{e213} by $A^{\alpha +1}(t) $ and integrating it from $t_2$ to $t$, we obtain $$ \int_{t_2}^{t}A^{\alpha +1}(s)w'(s)ds \leq - \int_{t_2}^{t} A^{\alpha +1}(s) P_\ell(s)ds -\alpha \int_{t_2}^{t} \frac{\left(A^{\alpha}(s) w(s)\right) ^{(\alpha+1)/\alpha}}{a^{1/\alpha}(s)}ds. $$ Integrating by parts, \begin{align*} A^{\alpha + 1}(t)w(t) &\leq A^{\alpha + 1}(t_2)w(t_2) - \int_{t_2}^{t} A^{\alpha +1}(s)P_\ell(s)ds\\ &\quad - \alpha\int_{t_2}^{t} \frac{\left(A^{\alpha}(s) w(s) \right)^{(\alpha+1)/\alpha}}{ a^{1/\alpha}(s)}ds +\int_{t_2}^{t}w(s)\left( A^{\alpha +1}(s)\right)' ds. \end{align*} Hence, \begin{align*} A^{\alpha + 1}(t)w(t) &\leq A^{\alpha + 1}(t_2)w(t_2) - \int_{t_2}^{t} A^{\alpha +1}(s)P_\ell(s)ds\\ &\quad +\int_{t_2}^{t}\big[\frac{(\alpha+1)A^\alpha(s)w(s)}{ a^{1/\alpha}(s)} -\frac{\alpha (A^\alpha(s)w(s))^{(\alpha +1)/\alpha}}{ a^{1/\alpha}(s)} \big] ds. \end{align*} Using the inequality \begin{equation} \label{eBD} Bu - Du^{(\alpha +1)/\alpha} \leq \frac{\alpha^\alpha}{(\alpha+1)^{\alpha+1}}\frac{B^{\alpha+1}}{D^\alpha} \end{equation} with $ u = A^\alpha(t)w(t)$, $D = \frac{\alpha}{a^{1/\alpha}(t)}$, and $B = \frac{\alpha+1}{a^{1/\alpha}(t)}$, we obtain $$ A^{\alpha + 1}(t)w(t) \leq A^{\alpha + 1}(t_2)w(t_2) - \int_{t_2}^{t} A^{\alpha +1}(s)P_\ell(s)ds + A(t)-A(t_2). $$ It follows that $$ A^{\alpha }(t)w(t) \leq \frac{1}{A(t)}A^{\alpha + 1}(t_2)w(t_2) - \frac{1}{A(t)}\int_{t_2}^{t} A^{\alpha +1}(s)P_\ell(s)ds + 1-\frac{A(t_2)}{A(t)}. $$ Taking the limit superior on both sides as $t\to \infty$, we obtain \begin{equation}\label{e216} R\leq -Q + 1. \end{equation} Combining this inequality with \eqref{e214}, we have $$ P\leq r-r^{1+\frac{1}{\alpha}} \leq r \leq R\leq -Q + 1, $$ which completes the proof of Part (a). \smallskip Part (b). Assume that $x(t) $ is a positive solution of \eqref{eE+}. We shall show that $z(t) $ can not satisfy Case (I) of Lemma \ref{lem21}. On the contrary, first, we assume that $P=\infty$. Then \eqref{e215}, $$ A^{\alpha}(t)w(t)\geq A^\alpha(t)\int_{t}^{\infty}P_\ell(s)ds. $$ Note that by \eqref{e214}, the left-hand side is bounded above by $1$. Also note that limit inferior of the right-hand side is $P=\infty$. This leads to a contradiction. Now, we assume that $Q=\infty$. Then by \eqref{e216}, $R=-\infty$, which contradicts $0\leq R\leq 1$ in \eqref{e214}. The proof is complete. \end{proof} Now we present oscillation results whose proofs follow the steps in \cite[Theorems 1 and 2]{bac}. \begin{theorem} \label{thm21} Assume that \eqref{e22} holds, and let $x(t) $ be a solution of \eqref{eE+}. If \begin{equation}\label{e217} P := \liminf_{t\to \infty}A^{\alpha }(t)\int_{t}^{\infty}P_\ell(s)ds > \frac{\alpha^\alpha}{(\alpha+1)^{\alpha+1}}, \end{equation} then $x(t)$ is either oscillatory or $\lim_{t\to \infty}x(t) = 0$. \end{theorem} \begin{proof} Suppose $x$ is a non-oscillatory solution of \eqref{eE+}. Since $-x$ is also a solution, we can assume without loss of generality that $x$ is positive. If $P=+\infty$, then by Lemma \ref{lem26}, $z(t)$ does not have property (I). That is, $z(t)$ satisfies Case (II) of Lemma \ref{lem21}. Therefore, n from Lemma \ref{lem22}, we have $\lim_{t\to\infty}x(t)=0$. Now assume that $z(t)$ satisfies Case (I) of Lemma \ref{lem21}. Let $w(t)$ and $r$ be defined by \eqref{e28} and \eqref{e29}, respectively. Then from Lemma \ref{lem26}, we have $P\leq r -r^{(\alpha+1)/\alpha}$. Using \eqref{eBD} with $B=D=1$, we have $$ P\leq \frac{\alpha^\alpha}{(\alpha+1)^{\alpha +1}}, $$ which contradicts \eqref{e217}. The proof is complete. \end{proof} \begin{theorem} \label{thm22} Assume that \eqref{e22} holds, and let $x(t)$ be a solution of \eqref{eE+}. If \begin{equation}\label{e218} P+Q>1, \end{equation} then $x(t)$ is either oscillatory or $\lim_{t\to \infty}x(t) =0$. \end{theorem} \begin{proof} Suppose $x$ is a non-oscillatory solution of \eqref{eE+}. Since $-x$ is also a solution, we can assume without loss of generality that $x$ is positive. If $P$ or $Q$ equal $infty$, then by Lemma \ref{lem26}, $z(t)$ does not satisfy Case (I), and $z(t)$ must satisfy Case (II). Then from Lemma \ref{lem22}, $\lim_{t\to\infty}x(t)=0$. Now assume that Case (I) holds. Let $w(t)$ and $r$ be defined as above. Then from Lemma \ref{lem26}, $P+Q\leq 1$. which contradicts \eqref{e218}. The proof is complete. \end{proof} As a consequence of Theorem \ref{thm22}, we have the following results. \begin{corollary}\label{coro23} Assume that \eqref{e22} holds. If $$ \lim_{t\to \infty} \inf A^{\alpha }(t) \int_{t}^{\infty} q(s) a(\tau(s)) \frac{(A(\tau(s)))^{2\alpha}}{A^\alpha} ds > \frac{(2\alpha)^\alpha}{\ell^\alpha(1-p)^\alpha} \frac{\alpha^\alpha}{(\alpha+1)^{\alpha+1}}, $$ then every solution $x(t) $ of \eqref{eE+} is either oscillatory or $ \lim_{t\to \infty}x(t) = 0$. \end{corollary} \begin{corollary}\label{coro24} Assume that \eqref{e22} holds. If $$ Q = \lim_{t\to \infty} \sup \frac{1}{A(t)} \int_{t_0}^{t} A^{\alpha +1}(s)P_\ell(s)ds > 1, $$ then $x(t) $ is either oscillatory or $\lim_{t\to \infty}x(t) = 0$. \end{corollary} We conclude this section with an example. Consider the third-order neutral differential equation \begin{equation}\label{e219} \big[\frac{1}{t^3}([x(t)+ \frac{1}{3} x(\frac{t}{2})]'')^3\big]' + \frac{\lambda}{t^{10}}x^3(\frac{t}{2}) = 0,\quad \lambda >0, \quad t\geq 1. \end{equation} Here $a(t)=1/t^3$, $p=1/3$, $\alpha = 3$, $\tau(t) = \delta(t)= t/2$, $q(t)= \lambda/t^{10}$. It is easy to see that \eqref{e22} holds. Hence by Corollary \ref{coro23}, every non-oscillatory solution of \eqref{e219} converges to zero provided that $\lambda > 3^6\times 4^5$. \section{Oscillation results for \eqref{eE-}} For each solution $x(t)$ of \eqref{eE-}, we define the associated function \begin{equation}\label{e31} z(t) = x(t) - p(t)x(\tau(t)). \end{equation} \begin{lemma}[{\cite[Lemma 7]{bac}}] \label{lem31} Let $x(t)$ be a positive solution of equation\eqref{eE-}. Then there are the following four cases for $z(t)$: \begin{itemize} \item[(I)] $z(t) > 0$, $z'(t)>0$, $z''(t)>0$, $(a(t)(z''(t))^\alpha)' < 0$; \item[(II)] $z(t) > 0$, $z'(t)<0$, $z''(t)>0$, $(a(t)(z''(t))^\alpha)' < 0$; \item[(III)] $z(t) < 0$, $z'(t)<0$, $z''(t)>0$, $(a(t)(z''(t))^\alpha)' < 0$; \item[(IV)] $z(t) <0$, $z'(t)<0$, $z''(t)<0$, $(a(t)(z''(t))^\alpha)' < 0$. \end{itemize} \end{lemma} \begin{lemma}[{\cite[Lemma 8]{bac}}] \label{lem32} Let $x(t)$ be a positive solution of \eqref{eE-} and $z(t)$ satisfy Case (II) of Lemma \eqref{lem31}. If \eqref{e22} holds, then $\lim_{t\to \infty}x(t) = \lim_{t\to \infty}z(t) = 0$. \end{lemma} For simplicity of notation, we introduce $$ \overline{P_\ell}(t) = \ell^\alpha q(t)a(\tau(t)) \Big(\frac{A(\tau(t))}{A(t)}\Big)^\alpha \Big(\frac{A(\tau(t))}{2}\Big)^\alpha $$ with $\ell \in (0,1) $; $$ \overline{P} = \liminf_{t\to \infty}A^{\alpha}(t) \int_{t}^{\infty}\overline{P_\ell}(s)ds,\quad \overline{Q} = \limsup_{t\to \infty}\frac{1}{A(t)} \int_{t_0}^{t}A^{\alpha +1}(s)\overline{P_\ell}(s) ds. $$ Also $w(t), r, R$ are defined as in \eqref{e28} and \eqref{e29}. \begin{lemma}\label{lem33} Let $x(t)$ be a positive solution of \eqref{eE-}. \begin{itemize} \item[(a)] Let $\overline{P}<\infty$ and $\overline{Q}< \infty$. Assume that $z(t)$ satisfies Case (I) of Lemma \ref{lem31}. Then $\overline{P} \leq r - r^{1+\frac{1}{\alpha}}$ and $\overline{P} + \overline{Q} \leq 1$. \item[(b)] If $\overline{P}=\infty $ or $\overline{Q}= \infty$, then $z(t)$ can not satisfy Case (I) of Lemma \ref{lem31}. \end{itemize} \end{lemma} \begin{proof} Assume that $x(t)$ is a positive solution of \eqref{eE-} and the associated function $z(t) $ satisfies Case (I) of Lemma \ref{lem31}. Since $0 \frac{\alpha^\alpha}{(\alpha+1)^{\alpha+1}}, \end{equation} then every solution $x(t) $ of \eqref{eE-} is either oscillatory or $\lim_{t\to \infty} x(t)= 0$. \end{theorem} The proof of the above theorem is similar to that of \cite[Theorem 3]{bac}; hence it is omitted. From the above theorem we have a simplified criterion as follows. \begin{corollary}\label{coro32} Assume that \eqref{e22} holds. If \begin{equation}\label{e33} \liminf_{t\to \infty} A^{\alpha}(t)\int_{t}^{\infty}q(s)a(\tau(s)) \frac{(A(\tau(s)))^{2\alpha}}{A^\alpha(s)}ds > \frac{(2\alpha)^\alpha}{(\alpha+1)^{\alpha+1}}, \end{equation} then every solution $x(t) $ of \eqref{eE-} is either oscillatory or $\lim_{t\to \infty} x(t) = 0$. \end{corollary} \begin{theorem}\label{thm33} Assume that \eqref{e22} holds. Let $x(t)$ be a solution of \eqref{eE-}. If \begin{equation}\label{e34} \overline{P} + \overline{Q} > 1, \end{equation} then every solution of \eqref{eE-} is either oscillatory or $\lim_{t\to \infty} x(t) = 0$. \end{theorem} The proof of the above theorem is similar to that of Theorem \ref{thm22}; hence it is omitted. \begin{corollary}\label{coro34} Assume that \eqref{e22} holds. If \begin{equation}\label{e35} \limsup_{t\to \infty} \frac{1}{A(t)}\int_{t_0}^{t}A^{\alpha +1}(s) \overline{P_\ell}(s)ds > 1, \end{equation} then every solution $x(t) $ of \eqref{eE-} is either oscillatory or $\lim_{t\to \infty} x(t) = 0$. \end{corollary} As an example, consider the third-order neutral differential equation \begin{equation}\label{e36} \Big(\frac{1}{t^3}([x(t)- \frac{1}{3}x(\frac{t}{2})]'')^3\Big)' + \frac{\lambda}{t^{10}}x^3(\frac{t}{2}) = 0,\quad \lambda >0, \quad t\geq 1. \end{equation} Corollary \ref{coro32} implies that every solution of \eqref{e36} is either oscillatory or approaches zero as $t\to\infty$, provided $\lambda > 6^4 \times 2^7$. We conclude this article with by remarking that when $a(t)$ is constant, our results coincide with the results in \cite{bac}. \begin{thebibliography}{10} \bibitem{bac} B. Baculikova, J. Dzurina; Oscillation of third order neutral differential equations, {\em Math. Comp. Modelling,} \textbf{52} (2010), 215-226. \bibitem{BD2} B. Bacul\'{i}kov\'{a}; Properties of third order nonlinear functional differential equations with mixed arguments, {\em Abstr. Appl. Anal.} 2011, 1--15. \bibitem{erbe} L. H. Erbe, Q. Kong, B. G. Zhang; Oscillation Theory For Functional Differential Equations, {\em Marcel Dekker, New york,} 1995. \bibitem{gre} M. Gregus; Third order linear differential equations, {\em Reidel, Dordrecht,} 1982. \bibitem{gyori} I. Gyori, G. Ladas; Oscillation Theory of Delay Differential Equations with Applications, {\em Clarendan Press, Oxford,} 1991. \bibitem{kig} I. T. Kiguradze, T. A. Chaturia; Asymptotic properties of solutions of nonautonomous ordinary differential equations, {\em Kluwer Acad. Publ., Dordrecht,} 1993. \bibitem{lad} G. S. Ladde, V. Lakshmikanthan, B. G. Zhang; Oscillation Theory of Differential Equations with Deviating Arguments, {\em Marcel Dekker, New York,} 1987. \end{thebibliography} \end{document}