0$, $r>0$ such that if $\|(u,v)\|=R$,
then $J(u,v)\geq r$;
\item[(ii)] there exist $(u_0,v_0)\in X$ such that $\|(u_0,v_0)\|>R$ and
$J(u_0,v_0) \leq 0$.
\end{itemize}
Let $c=\inf_{\gamma \in \Gamma }\max_{t\in [0,1]}(J(\gamma (t)))$ where
\begin{equation*}
\Gamma =\{\gamma \in C([0,1];X)\text{ such
that }\gamma (0)=(0,0)\text{ and }\gamma (1)=(u_0,v_0)\},
\end{equation*}
then $c$ is a critical value of $J$ such that $c\geq r$.
\end{lemma}
\subsection{Nehari manifold}
It is well known that $J$ is of class $C^{1}$ in $\mathcal{H}$ and the
solutions of \eqref{eSllm}
are the critical points of $J$ which is not bounded below on $\mathcal{H}$.
Consider the Nehari manifold
\begin{equation*}
\mathcal{N}=\{(u,v)\in \mathcal{H}\backslash \{0,0\}: \langle J'(u,v),(u,v)\rangle =0\},
\end{equation*}
Thus, $(u,v)\in \mathcal{N}$ if and only if
\begin{equation}
\|(u,v)\|_{\mu ,a}^2-2_{\ast }P(u,v)-Q(u,v)=0. \label{e13}
\end{equation}
Note that $\mathcal{N}$ contains every nontrivial solution of
\eqref{eSllm}. Moreover, we
have the following results.
\begin{lemma}\label{lem4}
$J$ is coercive and bounded from below on $\mathcal{N}$.
\end{lemma}
\begin{proof}
If $(u,v)\in \mathcal{N}$, then by \eqref{e13}
and the H\"{o}lder inequality, we deduce that
\begin{equation} \label{f14}
\begin{split}
J(u,v)&= ((2_{\ast }-2)/2_{\ast }2)\|(u,v)\|_{\mu ,a}^2-((2_{\ast}-q)/2_{\ast }q)Q(u,v) \\
&\geq ((2_{\ast }-2)/2_{\ast }2)\|(u,v)\|_{\mu ,a}^2
-(\frac{(2_{\ast }-q)}{2_{\ast }q})\Big((|\lambda _1||f_1|_{\mathcal{
\infty }})^{1/(2-q)}\\
&\quad +(|\lambda_2||f_2|_{\infty })^{1/(2-q)}\Big)(C_{a,p})^q\|(u,v)\|_{\mu ,a}^q.
\end{split}
\end{equation}
Thus, $J$ is coercive and bounded from below on $\mathcal{N}$.
\end{proof}
Define
\begin{equation*}
\phi (u,v)=\langle J'(u,v),(u,v)\rangle .
\end{equation*}
Then, for $(u,v)\in \mathcal{N}$,
\begin{equation} \label{r16}
\begin{split}
\langle \phi '(u,v),(u,v)\rangle
&= 2\|(u,v)\|_{\mu,a}^2-(2_{\ast })^2P(u,v)-qQ(u,v) \\
&= (2-q)\|(u,v)\|_{\mu,a}^2-2_{\ast }(2_{\ast }-q)P(u,v) \\
&= (2_{\ast }-q)Q(u,v)-(2_{\ast }-2)\|(u,v)\|_{\mu ,a}^2.
\end{split}
\end{equation}
Now, we split $\mathcal{N}$ into three parts:
\begin{gather*}
\mathcal{N}^{+} = \{(u,v)\in \mathcal{N}:\langle \phi '(u,v),(u,v)\rangle >0\}\\
\mathcal{N}^{0} = \{(u,v)\in \mathcal{N}:\langle \phi '(u,v),(u,v)\rangle =0\}\\
\mathcal{N}^{-} = \{(u,v)\in \mathcal{N}:\langle \phi '(u,v),(u,v)\rangle <0\}.
\end{gather*}
We have the following results.
\begin{lemma} \label{lem5}
Suppose that $(u_0,v_0)$ is a local minimizer
for $J$ on $\mathcal{N}$. Then, if $(u_0,v_0)\notin
\mathcal{N}^{0}$, $(u_0,v_0)$ is a critical point of $J$.
\end{lemma}
\begin{proof}
If $(u_0,v_0)$ is a local minimizer for $J$ on $\mathcal{N}$,
then $(u_0,v_0)$ is a solution of the optimization problem
\begin{equation*}
\min_{\{(u,v):\phi (u,v)=0\}}J(u,v).
\end{equation*}
Hence, there exists a Lagrange multipliers $\theta \in\mathbb{R}$ such that
\begin{equation*}
J'(u_0,v_0)=\theta \phi '(u_0,v_0)\text{ in }\mathcal{H}'
\end{equation*}
Thus,
\begin{equation*}
\langle J'(u_0,v_0),(
u_0,v_0)\rangle =\theta \langle \phi '(u_0,v_0),(u_0,v_0)\rangle .
\end{equation*}
But $\langle \phi '(u_0,v_0),(u_0,v_0)\rangle \neq 0$, since
$(u_0,v_0) \notin \mathcal{N}^{0}$. Hence $\theta =0$. This completes the proof.
\end{proof}
\begin{lemma} \label{lem6} There exists a positive number $\Lambda _0$ such that for all
$ \lambda _1$, $\lambda _2$ satisfying
\begin{equation*}
0<(|\lambda _1||f_1|_{\mathcal{\infty }})^{1/(2-q)}
+(|\lambda_2||f_2|_{\infty })^{1/(2-q)}<\Lambda _0,
\end{equation*}
we have $\mathcal{N}^{0}=\emptyset $.
\end{lemma}
\begin{proof}
By contradiction, suppose $\mathcal{N}^{0}\neq \emptyset $
and that
$$
0<(|\lambda _1||f_1|_{\mathcal{\infty }})^{1/(2-q)}+(|\lambda _2|
|f_2|_{\infty })^{1/(2-q) }<\Lambda _0.
$$
Then, by \eqref{r16} and for
$(u,v)\in \mathcal{N}^{0}$, we have
\begin{equation} \label{e18}
\|(u,v)\|_{\mu ,a}^2 = 2_{\ast }(2_{\ast }-q)/(2-q)P(u,v)
= ((2_{\ast }-q)/(2_{\ast }-2))Q(u,v)
\end{equation}
Moreover, by the H\"{o}lder inequality and the Sobolev embedding theorem, we
obtain
\begin{equation}
\|(u,v)\|_{\mu ,a}\geq [(S_{\mu
})K(\alpha ,\beta )]^{2_{\ast }/2(2_{\ast
}-2)}[(2-q)/2_{\ast }(2_{\ast }-q)
|h^{+}|_{\infty }]^{-1/(2_{\ast }-2)} \label{r18'}
\end{equation}
and
\begin{equation}
\|(u,v)\|_{\mu ,a}\leq [(\frac{
2_{\ast }-q}{2_{\ast }-2})^{-1/(2-q)}((
|\lambda _1||f_1|_{\mathcal{
\infty }})^{1/(2-q)}+(|\lambda
_2||f_2|_{\infty })^{1/(2-q)})(C_{a,q})^q]. \label{e19}
\end{equation}
From \eqref{r18'} and \eqref{e19}, we obtain
$(|\lambda _1||f_1|_{\mathcal{\infty }})^{1/(2-q)}+(|\lambda
_2||f_2|_{\infty })^{1/(2-q)}\geq \Lambda _0$, which contradicts an hypothesis.
\end{proof}
Thus $\mathcal{N}=\mathcal{N}^{+}\cup \mathcal{N}^{-}$. Define
\begin{equation*}
c:=\inf_{u\in \mathcal{N}}J(u,v),\quad
c^{+}:=\inf_{u\in \mathcal{N}^{+}}J(u,v), \quad
c^{-}:=\inf_{u\in \mathcal{N}^{-}}J(u,v).
\end{equation*}
In the sequel, we need the following Lemma.
\begin{lemma}\label{lem7}
(i) For all $\lambda _1$, $\lambda _2$ with
$0<(|\lambda _1||f_1|_{\mathcal{\infty }})^{1/(2-q)}+(|\lambda _2||f_2|_{\infty })^{1/(
2-q)}<\Lambda _0$, one has $c\leq c^{+}<0$.
(ii) For all $\lambda _1$, $\lambda _2$ such that $
0<(|\lambda _1||f_1|_{\mathcal{\infty }})^{1/(2-q)}+(|\lambda
_2||f_2|_{\infty })^{1/(2-q)}<(1/2)\Lambda _0$, one has
\begin{align*}
c^{-} &> C_0=C_0(\lambda _1,\lambda _2,S_{\mu
},\|f_1\|_{\mathcal{H}_{\mu }'},
\|f_2\|_{\mathcal{H}_{\mu }'}) \\
&= (\frac{(2_{\ast }-2)}{2_{\ast }2})[\frac{
(2-q)}{2_{\ast }(2_{\ast }-q)|
h^{+}|_{\infty }}]^{2/(2_{\ast }-2)}[
K(\alpha ,\beta )]^{2_{\ast }/(2_{\ast }-2)
}(S_{\mu })^{2_{\ast }/(2_{\ast }-2)} \\
&\quad -(\frac{(2_{\ast }-q)}{2_{\ast }q})((|\lambda _1|
|f_1|_{\mathcal{\infty }})^{1/(2-q)}+(|\lambda _2||
f_2|_{\infty })^{1/(2-q)})(C_{a,q})^q.
\end{align*}
\end{lemma}
\begin{proof}
(i) Let $(u,v)\in \mathcal{N}^{+}$. By \eqref{r16}, we have
\begin{equation*}
[(2-q)/2_{\ast }(2_{\ast }-1)]
\|(u,v)\|_{\mu ,a}^2>P(u,v)
\end{equation*}
and so
\begin{align*}
J(u,v)&= (-1/2)\|(u,v)
\|_{\mu ,a}^2+(2_{\ast }-1)P(u,v)\\
&< -[\frac{2_{\ast }(2_{\ast }-q)-2(2_{\ast
}-1)(2-q)}{2_{\ast }2(2_{\ast }-q)}]
\|(u,v)\|_{\mu ,a}^2.
\end{align*}
We conclude that $c\leq c^{+}<0$.
(ii) Let $(u,v)\in \mathcal{N}^{-}$. By
\eqref{r16}, we obtain
\begin{equation*}
[(2-q)/2_{\ast }(2_{\ast }-q)]
\|(u,v)\|_{\mu ,a}^2[(S_{\mu
})K(\alpha ,\beta )]^{2_{\ast }/2(2_{\ast
}-2)}[\frac{(2-q)}{2_{\ast }(2_{\ast
}-q)|h^{+}|_{\infty }}]^{-1/(
2_{\ast }-2)}
\label{e20'}
\end{equation}
for all $u\in \mathcal{N}^{-}$.
By \eqref{f14}, we obtain
\begin{align*}
J(u,v)&\geq ((2_{\ast }-2)/2_{\ast}2)\|(u,v)\|_{\mu ,a}^2
-(\frac{(2_{\ast }-q)}{2_{\ast }q})\Big((
|\lambda _1||f_1|_{\mathcal{\infty }})^{1/(2-q)} \\
&\quad +(|\lambda_2||f_2|_{\infty })^{1/(2-q)}\Big)(C_{a,p})^q\|(u,v)
\|_{\mu ,a}^q.
\end{align*}
Thus, for all $(\lambda _1,\lambda _2)$ such that
$0<(|\lambda _1||f_1|_{\mathcal{\infty }})^{1/(2-q)}+(|\lambda
_2||f_2|_{\infty })^{1/(2-q)}<(1/2)\Lambda _0$, we have $J(u,v)
\geq C_0$.
\end{proof}
For each $(u,v)\in \mathcal{H}$ with
$\int_{\Omega }|x|^{-2_{\ast }b}h|u|^{\alpha +1}|v|^{\beta +1}dx>0$, we write
\begin{equation*}
t_{m}:=t_{\rm max }(u,v)=[\frac{(2-q)\|
(u,v)\|_{\mu ,a}^2}{2_{\ast }(2_{\ast
}-q)\int_{\Omega }|x|^{-2_{\ast }b}h|
u|^{\alpha +1}|v|^{\beta +1}dx}]
^{(2-q)/2_{\ast }(2_{\ast }-q)}>0.
\end{equation*}
\begin{lemma}\label{lem8}
Let $\lambda _1$, $\lambda _2$ real parameters such that
$0<|\lambda _1|\|f_1\|_{\mathcal{H}_{\mu }'}+|\lambda _2|\|
f_2\|_{\mathcal{H}_{\mu }'}<\Lambda _0$. For each
$(u,v)\in \mathcal{H}$ with $\int_{\Omega }|x|^{-2_{\ast }b}h|u|^{\alpha +1}|
v|^{\beta +1}dx>0$, one has the following:
(i) If $Q(u,v)\leq 0$, then there exists a
unique $t^{-}>t_{m}$ such that $(t^{-}u,t^{-}v)\in \mathcal{N}
^{-}$ and
\begin{equation*}
J(t^{-}u,t^{-}v)=\sup_{t\geq 0}(tu,tv).
\end{equation*}
(ii) If $Q(u,v)>0$, then there exist unique $t^{+}$ and $t^{-}$ such that
$00,
\end{equation*}
there exists $t_0^{+}<$ $t^{-}\leq $ $t_0^{-}$ such that
$J(t_0^{+}u_0^{+},t_0^{+}v_0^{+})0$ and $v_0^{+}>0$, see for
example \cite{d3}.
\end{proof}
\section{Proof of Theorem \ref{thm2}}
Next, we establish the existence of a local minimum for $J$ on $\mathcal{N}^{-}$.
For this, we require the following Lemma.
\begin{lemma}\label{lem9}
For all $\lambda _1$, $\lambda _2$ such that
$0<(|\lambda _1||f_1|_{\mathcal{\infty }})^{1/(2-q)}+(|\lambda_2||f_2|_{\infty })^{1/(
2-q)}<(1/2)\Lambda _0$, the functional $J$ has a
minimizer $(u_0^{-},v_0^{-})$ in $\mathcal{N}^{-}$ and it
satisfies:
\begin{itemize}
\item[(i)] $J(u_0^{-},v_0^{-})=c^{-}>0$,
\item[(ii)] $(u_0^{-},v_0^{-})$ is a nontrivial
solution of \eqref{eSllm} in $\mathcal{H}$.
\end{itemize}
\end{lemma}
\begin{proof}
If $0<(|\lambda _1||f_1|_{\mathcal{\infty }})^{1/(2-q)}+(|
\lambda _2||f_2|_{\infty })^{1/(2-q)}<(1/2)\Lambda _0$, then by Proposition
\ref{prop1} (ii) there exists a $(u_{n},v_{n})_{n} $, $(PS)_{c^{-}}$ sequence
in $\mathcal{N}^{-}$, thus it
bounded by Lemma \ref{lem4}. Then, there exists $(u_0^{-},v_0^{-})\in \mathcal{H}$
and we can extract a subsequence
which will denoted by $(u_{n},v_{n})_{n}$ such that
\begin{gather*}
(u_{n},v_{n}) \rightharpoonup (u_0^{-},v_0^{-})\quad \text{weakly in }\mathcal{H} \\
(u_{n},v_{n}) \rightharpoonup (u_0^{-},v_0^{-})\quad \text{weakly in }
(L^{2_{\ast }}(\Omega ,|y|^{-2_{\ast }b}))^2 \\
(u_{n},v_{n}) \to (u_0^{-},v_0^{-}) \quad \text{strongly in }(L^q(\Omega ,|x|
^{-c}))^2 \\
u_{n} \to u_0^{-}\quad\text{a.e in }\Omega, \\
v_{n}\to v_0^{-}\quad \text{a.e in }\Omega .
\end{gather*}
This implies
$P(u_{n},v_{n})\to P(u_0^{-},v_0^{-})$, as $n\to \infty$.
Moreover, by (H2) and \eqref{r16} we obtain
\begin{equation}
P(u_{n},v_{n})>A(q)\|(u_{n},v_{n})\|_{\mu ,a}^2, \label{r36}
\end{equation}
where, $A(q):=(2-q)/2_{\ast }(2_{\ast}-q)$. By \eqref{r18'} and \eqref{r36}
there exists a positive number
\begin{equation*}
C_1:=[A(q)K(\alpha ,\beta )]
^{2_{\ast }/(2_{\ast }-2)}(S_{\mu })^{2_{\ast}/(2_{\ast }-2)},
\end{equation*}
such that
\begin{equation}
P(u_{n},v_{n})>C_1. \label{r36'}
\end{equation}
This implies $P(u_0^{-},v_0^{-})\geq C_1$.
Now, we prove that $(u_{n},v_{n})_{n}$ converges to
$(u_0^{-},v_0^{-})$ strongly in $\mathcal{H}$. Suppose otherwise.
Then, either $\|u_0^{-}\|_{\mu
,a}<\liminf_{n\to \infty }\|u_{n}\|
_{\mu ,a}$ or $\|v_0^{-}\|_{\mu ,a}<\liminf_{n\to \infty }\|v_{n}\|
_{\mu ,a}$. By Lemma $\ref{lem8}$ there is a unique $t_0^{-}$ such that
$(t_0^{-}u_0^{-},t_0^{-}v_0^{-})\in \mathcal{N}^{-}$.
Since
\begin{equation*}
(u_{n},v_{n})\in \mathcal{N}^{-},J(
u_{n},v_{n})\geq J(tu_{n},tv_{n}),\quad \text{for all }t\geq 0,
\end{equation*}
we have
\begin{equation*}
J(t_0^{-}u_0^{-},t_0^{-}v_0^{-})
<\lim_{n\to \infty }J(
t_0^{-}u_{n},t_0^{-}v_{n})\leq \lim_{n\to\infty }J(u_{n},v_{n})=c^{-},
\end{equation*}
and this is a contradiction. Hence,
$(u_{n},v_{n})_{n}\to (u_0^{-},v_0^{-})$ strongly in $\mathcal{H}$.
Thus,
\begin{equation*}
J(u_{n},v_{n})\text{ converges to }J(
u_0^{-},v_0^{-})=c^{-}\text{ as }n\to +\infty .
\end{equation*}
Since $J(u_0^{-},v_0^{-})=J(|u_0^{-}|,|v_0^{-}|)$ and
$(u_0^{-},v_0^{-})\in \mathcal{N}^{-}$, then by \eqref{r36'}
and Lemma \ref{lem5}, we may assume that $(u_0^{-},v_0^{-})$
is a nontrivial nonnegative solution of \eqref{eSllm}.
By the maximum principle, we conclude that $u_0^{-}>0$ and $v_0^{-}>0$.
\end{proof}
Now, we complete the proof of Theorem \ref{thm2}. By Propositions \ref{prop2}
and Lemma \ref{lem9}, we obtain that \eqref{eSllm} has two positive solutions
$(u_0^{+},v_0^{+})\in \mathcal{N}^{+}$ and
$(u_0^{-},v_0^{-})\in \mathcal{N}^{-}$. Since
$\mathcal{N}^{+}\cap \mathcal{N}^{-}=\emptyset $, this implies that
$(u_0^{+},v_0^{+})$ and $(u_0^{-},v_0^{-})$ are distinct.
\section{Proof of Theorem \ref{thm3}}
In this section, we consider the Nehari submanifold of $\mathcal{N}$
\begin{equation*}
\mathcal{N}_{\varrho }=\{(u,v)\in \mathcal{H}\backslash
\{0,0\}:\langle J'(u,v),(u,v)\rangle =0\text{ and }\|(u,v)
\|_{\mu ,a}\geq \varrho >0\}.
\end{equation*}
Thus, $(u,v)\in \mathcal{N}_{\varrho }$ if and only if
\begin{equation*}
\|(u,v)\|_{\mu ,a}^2-2_{\ast }P(
u,v)-Q(u,v)=0\text{ and }\|(u,v)\|_{\mu ,a}\geq \varrho >0.
\end{equation*}
Firstly, we need the following Lemmas.
\begin{lemma} \label{lem1}
Under the hypothesis of theorem \ref{thm3}, there exist
$\varrho _0$, $\Lambda _2>0$ such that $\mathcal{N}_{\varrho }$ is nonempty for
any $\lambda \in (0,\Lambda _2)$ and $\varrho \in (0,\varrho _0)$.
\end{lemma}
\begin{proof}
Fix $(u_0,v_0)\in \mathcal{H}\backslash \{0,0\}$ and let
\begin{align*}
g(t)&= \langle J'(tu_0,tv_0)
,(tu_0,tv_0)\rangle \\
&= t^2\|(u_0,v_0)\|_{\mu ,a}^2-2_{\ast }t^{2_{\ast }}P(u_0,v_0)-tQ(
u_0,v_0).
\end{align*}
Clearly $g(0)=0$ and $g(t)\to -\infty $
as $n\to +\infty $. Moreover, we have
\begin{align*}
g(1)&= \|(u_0,v_0)\|_{\mu
,a}^2-2_{\ast }P(u_0,v_0)-Q(u_0,v_0)\\
&\geq [\|(u_0,v_0)\|_{\mu
,a}^2-2_{\ast }[K(\alpha ,\beta )]^{-2_{\ast
}/2}(S_{\mu })^{-2_{\ast }/2}|h^{+}|
_{\infty }\|(u_0,v_0)\|_{\mu
,a}^{2_{\ast }}] \\
&\quad -((|\lambda _1||f_1|_{\mathcal{\infty }
})^{1/(2-q)}+(|\lambda _2||f_2|_{\infty })^{1/(2-q)})
\|(u_0,v_0)\|_{\mu ,a}.
\end{align*}
If $\|(u_0,v_0)\|_{\mu ,a}\geq \varrho>0 $ for
$$
0<\varrho <\varrho _0=(|h^{+}|_{\infty }2_{\ast }(2_{\ast }-1))^{-1/(2_{\ast
}-2)}([K(\alpha ,\beta )]S_{\mu
})^{2_{\ast }/2(2_{\ast }-2)},
$$
$| h^{+}|_{\infty }\in (0,\alpha _0)$ for
$\alpha _0=([K(\alpha ,\beta )]S_{\mu })
^{2_{\ast }/2}/(2_{\ast }(2_{\ast }-1))^{(
2_{\ast }-1)/2_{\ast }}$, then there exists
\begin{equation*}
\Lambda _2:=[(|h^{+}|_{\infty }2_{\ast
}(2_{\ast }-1))([K(\alpha ,\beta
)]S_{\mu })^{-2_{\ast }/2}]^{-1/(2_{\ast
}-2)}-\Theta \times \Phi ,
\end{equation*}
where
\begin{gather*}
\Theta :=(2_{\ast }(2_{\ast }-1))^{2_{\ast
}-1}((|h^{+}|_{\infty })^{2_{\ast
}/2}[K(\alpha ,\beta )]S_{\mu })^{-(2_{\ast })^2/2},
\\
\Phi :=[(|h^{+}|_{\infty }2_{\ast }(
2_{\ast }-1))([K(\alpha ,\beta )
]S_{\mu })^{-2_{\ast }/2}]^{-1/(2_{\ast}-2)}
\end{gather*}
and there exists $t_0>0$ such that $g(t_0)=0$. Thus,
$(t_0u_0,t_0v_0)\in \mathcal{N}_{\varrho }$ and
$\mathcal{N}_{\varrho }$ is nonempty for any
$\lambda \in (0,\Lambda_2)$.
\end{proof}
\begin{lemma}\label{lem10} There exist $M$, $\Lambda _1$ positive reals such that
\[
\langle \phi '(u,v),(u,v)
\rangle <-M<0
\]
for $(u,v)\in \mathcal{N}_{\varrho }$
and any $\lambda _1,\lambda _2$ satisfying
\begin{equation*}
0<(|\lambda _1||f_1|_{
\mathcal{\infty }})^{1/(2-q)}+(|\lambda
_2||f_2|_{\mathcal{\infty }})
^{1/(2-q)}<\min ((1/2)\Lambda _0,\Lambda_1).
\end{equation*}
\end{lemma}
\begin{proof}
Let $(u,v)\in \mathcal{N}_{\varrho }$, then by \eqref{e13}, \eqref{r16}
and the Holder inequality, allows us to write
\begin{align*}
&\langle \phi '(u,v),(u,v) \rangle \\
&\leq \|(u_{n},v_{n})\|_{\mu,a}^2[((|\lambda _1||
f_1|_{\mathcal{\infty }})^{1/(2-q)}+(|\lambda _2||f_2|_{\infty
})^{1/(2-q)})B(\varrho ,q)-(2_{\ast }-2)],
\end{align*}
where $B(\varrho ,q):=(2_{\ast }-1)(
C_{a,p})^q\varrho ^{q-2}$. Thus, if
\begin{equation*}
0<(|\lambda _1||f_1|_{\mathcal{\infty }})^{1/(2-q)}+(|\lambda
_2||f_2|_{\mathcal{\infty }})^{1/(2-q)}<\Lambda _{3}=[(2_{\ast }-2)
/B(\varrho ,q)],
\end{equation*}
and choosing $\Lambda _1:=\min (\Lambda _2,\Lambda _{3})$
with $\Lambda _2$ defined in Lemma \ref{lem1}, then we obtain that
\begin{equation}
\langle \phi '(u,v),(u,v)
\rangle <0\text{, for any }(u,v)\in \mathcal{N}_{\varrho }. \label{in13}
\end{equation}
\end{proof}
\begin{lemma}\label{lem11}
Suppose $N\geq \max (3,6(a-b+1))$ and $\int_{\Omega }|x|^{-2_{\ast
}b}h|u|^{\alpha +1}|v|^{\beta+1}dx>0$. Then, there exist $r$ and $\eta $
positive constants such that
\begin{itemize}
\item[(i)] we have
\begin{equation*}
J(u,v)\geq \eta >0\text{ \ for }\|(u,v)
\|_{\mu ,a}=r.
\end{equation*}
\item[(ii)] there exists $(\sigma ,\omega )\in \mathcal{N}_{\varrho }$
when $\|(\sigma ,\omega )\|_{\mu ,a}>r$,
with $r=\|(u,v)\|_{\mu ,a}$, such that $J(\sigma ,\omega )\leq 0$.
\end{itemize}
\end{lemma}
\begin{proof}
We assume that the minima of $J$ are realized by $(u_0^{+},v_0^{+})$ and
$(u_0^{-},v_0^{-})$. The
geometric conditions of the mountain pass theorem are satisfied. Indeed, we
have
(i) By \eqref{r16}, \eqref{in13} and
$P(u,v)\leq [K(\alpha ,\beta )
]^{-2_{\ast }/2}(S_{\mu })^{-2_{\ast }/2}|
h^{+}|_{\infty }\|(u,v)\|_{\mu,a}^{2_{\ast }}$, we obtain
\begin{equation*}
J(u,v)\geq [(1/2)-(2_{\ast }-2)
/(2_{\ast }-q)q]\|(u,v)\|
_{\mu ,a}^2-C_2\|(u,v)\|_{\mu,a}^{2_{\ast }},
\end{equation*}
where $C_2=[K(\alpha ,\beta )]^{-2_{\ast
}/2}(S_{\mu })^{-2_{\ast }/2}|h^{+}|_{\infty }$
Using the function $l(x)=x(2_{\ast }-x)$ and
if $N\geq \max (3,6(a-b+1))$, we obtain that
$[(1/2)-(2_{\ast }-2)/(2_{\ast}-q)q]>0$ for $10$ such that
\begin{equation*}
J(u,v)\geq \eta >0\quad \text{when }r=\|(u,v)\|_{\mu ,a}\text{ is small.}
\end{equation*}
(ii) Let $t>0$. Then for all $(\phi ,\psi )\in \mathcal{N}_{\varrho }$
\begin{equation*}
J(t\phi ,t\psi ):=(t^2/2)\|(\phi,\psi )\|_{\mu }^2-(t^{2_{\ast }})P(
\phi ,\psi )-(t^q/q)Q(\phi ,\psi ).
\end{equation*}
Letting $(\sigma ,\omega )=(t\phi ,t\psi )$ for $t$ large enough. Since
\begin{equation*}
P(\phi ,\psi ):=\int_{\Omega }|x|^{-2_{\ast }b}h|\phi |^{\alpha +1}|\psi
|^{\beta +1}dx>0,
\end{equation*}
we obtain $J(\sigma ,\omega )\leq 0$. For $t$ large enough we can
ensure $\|(\sigma ,\omega )\|_{\mu ,a}>r$.
\end{proof}
Let $\Gamma $ and $c$ defined by
\begin{gather*}
\Gamma :=\{\gamma :[0,1]\to \mathcal{N}
_{\varrho }:\gamma (0)=(u_0^{-},v_0^{-}),\quad \gamma (1)=(u_0^{+},v_0^{+})\},\\
c:=\inf_{\gamma \in \Pi }\max_{t\in [0,1]}(J(\gamma (t))).
\end{gather*}
\begin{proof}[Proof of Theorem \ref{thm3}]
If
\begin{equation*}
(|\lambda _1||f_1|_{\mathcal{\infty }})^{1/(2-q)}+(|\lambda
_2||f_2|_{\mathcal{\infty }})^{1/(2-q)}<\min ((1/2)\Lambda _0,\Lambda _1),
\end{equation*}
then, by the Lemma \ref{lem4} and Proposition \ref{prop1} (ii),
the function $J$ satisfying the Palais-Smale condition on $\mathcal{N}_{\varrho }$.
Moreover, from the Lemmas \ref{lem5}, \ref{lem10} and \ref{lem11}, there
exists $(u_{c},v_{c})$ such that
\begin{equation*}
J(u_{c},v_{c})=c\quad \text{and}\quad (u_{c},v_{c})\in \mathcal{N}_{\varrho }.
\end{equation*}
Thus $(u_{c},v_{c})$ is the third solution of our system such
that $(u_{c},v_{c})\neq (u_0^{+},v_0^{+})$ and
$(u_{c},v_{c})\neq (u_0^{-},v_0^{-})$.
Since $(\mathcal{S}_{\lambda _1,\lambda _2,\mu })$ is odd with
respect $(u,v)$, we obtain that $(-u_{c},-v_{c})$
is also a solution of \eqref{eSllm}.
\end{proof}
\begin{thebibliography}{99}
\bibitem{a1} C. O. Alves, D. C. de Morais Filho, M. A. S. Souto;
\emph{On systems of elliptic equations involving subcritical or critical Sobolev
exponents}, Nonlinear Anal., 42 (2000) 771-787.
\bibitem{b1} M. Bouchekif, M. E. O. El Mokhtar;
\emph{On nonhomogeneous singular elliptic systems with critical
Caffarelli-Kohn-Nirenberg exponent}, preprint
Universit\'{e} de Tlemcen, (2011).
\bibitem{b2} M. Bouchekif, Y. Nasri;
\emph{On elliptic system involving critical Sobolev-Hardy exponents},
Mediterr. J. Math., 5 (2008) 237-252.
\bibitem{b3} K. J. Brown, Y. Zhang;
\emph{The Nehari manifold for a semilinear
elliptic equation with a sign changing weight function}, J. Differential
Equations, 2 (2003) 481--499.
\bibitem{c1} L. Caffarelli, R. Kohn, L. Nirenberg;
\emph{First order interpolation inequality with weights},
Compos. Math., 53 (1984) 259--275.
\bibitem{c2} K. S. Chou, C. W. Chu;
\emph{On the best constant for a weighted Sobolev-Hardy Inequality},
J. London Math. Soc., 2 (1993) 137-151.
\bibitem{d1} D. G. de Figueiredo;
\emph{Semilinear elliptic systems}, Lecture
Notes at the Second School on ``Nonlinear functional
analysis and application to differential equations'', held
at ICTP of Trieste, April 21-May 9, (1997).
\bibitem{d2} L. Ding, S. W. Xiao;
\emph{Solutions for singular elliptic systems
involving Hardy-Sobolev critical nonlinearity}, Differ. Equ. Appl., 2 (2010)
227-240.
\bibitem{d3} P. Drabek, A. Kufner, F. Nicolosi;
\emph{Quasilinear Elliptic Equations with Degenerations and Singularities},
Walter de Gruyter Series in Nonlinear Analysis and Applications,
Vol. 5 (New York, 1997).
\bibitem{k1} D. Kang, S. Peng;
\emph{Positive solutions for singular elliptic problems},
Appl. Math. Lett., 17 (2004) 411-416.
\bibitem{l1} Z. Liu, P. Han;
\emph{Existence of solutions for singular elliptic
systems with critical exponents}, Nonlinear Anal., 69 (2008) 2968-2983.
\bibitem{t1} G. Tarantello;
\emph{Multiplicity results for an inhomogeneous Neumann
problem critical exponent}, Manuscripta Math., 81 (1993) 57-78.
\bibitem{w1} T.-F. Wu;
\emph{The Nehari manifold for a semilinear system involving
sign-changing weight functions}, Nonlinear Anal., 68 (2008) 1733-1745.
\bibitem{x1} B. J. Xuan;
\emph{The solvability of quasilinear Br\'{e}zis-Nirenberg-type problems
with singular weights}, Nonlinear Anal., 62 (4) (2005) 703-725.
\end{thebibliography}
\end{document}