\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 40, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/40\hfil Well-posedness of KdV type equations] {Well-posedness of KdV type equations} \author[X. Carvajal, M. Panthee \hfil EJDE-2012/40\hfilneg] {Xavier Carvajal, Mahendra Panthee} % in alphabetical order \address{Xavier Carvajal \newline Instituto de Matem\'atica - UFRJ Av. Hor\'acio Macedo, Centro de Tecnologia Cidade Universit\'aria, Ilha do Fund\~ao, Caixa Postal 68530 21941-972 Rio de Janeiro, RJ, Brasil} \email{carvajal@im.ufrj.br} \address{Mahendra Panthee \newline Centro de Matem\'atica, Universidade do Minho, 4710-057, Braga, Portugal} \email{mpanthee@math.uminho.pt} \thanks{Submitted September 9, 2011. Published March 14, 2012.} \subjclass[2000]{35A07, 35Q53} \keywords{Initial value problem; well-posedness; Bourgain spaces, KdV equation} \begin{abstract} In this work, we study the initial value problems associated to some linear perturbations of KdV equations. Our focus is in the well-posedness issues for initial data given in the $L^2$-based Sobolev spaces. We develop a method that allows us to treat the problem in the Bourgain's space associated to the KdV equation. With this method, we can use the multilinear estimates developed in the KdV context, thereby getting analogous well-posedness results for linearly perturbed equations. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In this article, we consider the initial value problem (IVP) \begin{equation}\label{eq:hs} \begin{gathered} v_t+v_{xxx}+\eta Lv+(v^{k+1})_x=0, \quad x \in \mathbb{R}, \; t\geq 0,\; k \in \mathbb{Z}^+,\\ v(x,0)=v_0(x), \end{gathered} \end{equation} and \begin{equation}\label{eq:hs-1} \begin{gathered} u_t+u_{xxx}+\eta Lu+(u_x)^{k+1}=0, \quad x \in \mathbb{R}, \,t\geq 0,\; k\in \mathbb{Z}^+,\\ u(x,0)=u_0(x), \end{gathered} \end{equation} where $\eta>0$ is a constant; $u=u(x, t)$, $v=v(x,t)$ are real valued functions and the linear operator $L$ is defined via the Fourier transform by $\widehat{Lf}(\xi)=-\Phi(\xi)\hat{f}(\xi)$. The Fourier symbol \begin{align}\label{phi} \Phi(\xi)=\sum_{j=0}^{n}\sum_{i=0}^{2m}c_{i,j}\xi^i |\xi|^j, \quad c_{i,j} \in \mathbb{R}, \; c_{2m,n}=-1, \end{align} is a real valued function which is bounded above; i.e., there is a constant $C$ such that $\Phi(\xi) < C$. We observe that, if $u$ is a solution of \eqref{eq:hs-1} then $v=u_x$ is a solution of \eqref{eq:hs} with initial data $v_0 = (u_0)_x$. That is why \eqref{eq:hs} is called the derivative equation of \eqref{eq:hs-1}. In this work, we are interested in investigating the well-posedness results to the IVPs \eqref{eq:hs-1} and \eqref{eq:hs} for given data in the low regularity Sobolev spaces $H^s(\mathbb{R})$. Recall that, for $s\in \mathbb{R}$, the $L^2$-based Sobolev spaces $H^s(\mathbb{R})$ are defined by $$ H^s(\mathbb{R}) := \{f\in \mathcal{S}'(\mathbb{R}) : \|f\|_{H^s} < \infty\}, $$ where $$ \|f\|_{H^s} := \Big(\int_{\mathbb{R}} (1+|\xi|^2)^s|\hat f(\xi)|^2d\xi\Big)^{1/2}, $$ and $\hat f(\xi)$ is the usual Fourier transform given by $$ \hat f(\xi) \equiv \mathcal{F}(f)(\xi) := \frac 1{\sqrt{2\pi}}\int_{\mathbb{R}}e^ {-ix\xi} f(x)\, dx. $$ The factor $\frac1{\sqrt{2\pi}}$ in the definition of the Fourier transform does not alter our analysis, so we will omit it. The notion of well-posedness we use is the standard one. We say that an IVP for given data in a Banach space $X$ is locally well-posed, if there exists a certain time interval $[-T, T]$ and a unique solution depending continuously upon the initial data and the solution satisfies the persistence property; i.e., the solution describes a continuous curve in $X$ in the time interval $[-T, T]$. If the above properties are true for any time interval, we say that the IVP is globally well-posed. Before stating the main results of this work, we present some particular examples that belong to the class considered in \eqref{eq:hs} and \eqref{eq:hs-1} and discuss the known well-posedness results about them. The first examples belonging to the classes \eqref{eq:hs} and \eqref{eq:hs-1} are \begin{equation}\label{eqhs} \begin{gathered} v_t+v_{xxx}-\eta(\mathcal{H}v_x+\mathcal{H}v_{xxx})+(v^{k+1})_x=0, \quad x \in \mathbb{R}, \; t\geq 0, \; k\in \mathbb{Z}^+,\\ v(x,0)=v_0(x), \end{gathered} \end{equation} and \begin{equation}\label{eqhs-1} \begin{gathered} u_t+u_{xxx}-\eta(\mathcal{H}u_x+\mathcal{H}u_{xxx})+(u_x)^{k+1}=0, \quad x \in \mathbb{R}, \; t\geq 0, \; k\in \mathbb{Z}^+,\\ u(x,0)=u_0(x), \end{gathered} \end{equation} respectively, where $\mathcal{H}$ denotes the Hilbert transform \begin{align*} \mathcal{H}g(x)=\operatorname{P.V.} \frac{1}{\pi}\int\frac{g(x-\xi)}{\xi}d\xi; \end{align*} $u=u(x,t)$, $v=v(x,t)$ are real-valued functions and $\eta>0$ is a constant. The equation in \eqref{eqhs} with $k=1$ was derived by Ostrovsky et al \cite{O:O} to describe the radiational instability of long waves in a stratified shear flow. Recently, Carvajal and Scialom \cite{Cv-Sc} considered the IVP \eqref{eqhs} and proved the local well-posedness results for given data in $H^s$, $s \geq 0$ when $k=1,2,3$. They also obtained an \emph{a priori} estimate for given data in $L^2(\mathbb{R})$ there by proving global well-posedness result. The earlier well-posedness results for \eqref{eqhs} with $k=1$ can be found in \cite{pa:ba1}, where for given data in $H^s(\mathbb{R})$, local well-posedness when $s>1/2$ and global well-posedness when $s\geq 1$ have been proved. In \cite{pa:ba1}, IVP \eqref{eqhs-1}, when $k=1$, is also considered to prove global well-posedness for given data in $H^s(\mathbb{R})$, $s\geq1$. Another two models that fit in the classes \eqref{eq:hs-1} and \eqref{eq:hs} respectively are the Korteweg-de Vries-Kuramoto Sivashinsky (KdV-KS) equation \begin{equation}\label{1eqhs-1} \begin{gathered} u_t+u_{xxx}+\eta(u_{xx}+u_{xxxx})+(u_x)^2=0, \quad x \in \mathbb{R}, \; t\geq 0,\\ u(x,0)=u_0(x), \end{gathered} \end{equation} and its derivative equation \begin{equation}\label{1eqhs} \begin{gathered} v_t+v_{xxx}+\eta(v_{xx}+v_{xxxx})+vv_x=0, \quad x \in \mathbb{R}, \;t\geq 0,\\ v(x,0)=v_0(x), \end{gathered} \end{equation} where $u=u(x,t)$, $v=v(x,t)$ are real-valued functions and $\eta>0$ is a constant. The KdV-KS equation arises as a model for long waves in a viscous fluid flowing down an inclined plane and also describes drift waves in a plasma (see \cite{CKTR, TK}). The KdV-KS equation is very interesting in the sense that it combines the dispersive characteristics of the Korteweg-de Vries equation and dissipative characteristics of the Kuramoto-Sivashinsky equation. Also, it is worth noticing that \eqref{1eqhs} is a particular case of the Benney-Lin equation \cite{B,TK}; i.e., \begin{equation}\label{2eqhs} \begin{gathered} v_t+v_{xxx}+\eta(v_{xx}+v_{xxxx})+\beta v_{xxxxx}+vv_x=0, \quad x \in \mathbb{R},\;t\geq 0,\\ v(x,0)=v_0(x), \end{gathered} \end{equation} when $\beta=0$. The IVPs \eqref{1eqhs-1} and \eqref{1eqhs} were studied by Biagioni, Bona, Iorio and Scialom \cite{BBIS}. The authors in \cite{BBIS} proved that the IVPs \eqref{1eqhs-1} and \eqref{1eqhs} are locally well-posed for given data in $H^s$, $s\geq 1$ with $\eta >0$. They also constructed appropriate \emph{a priori} estimates and used them to prove global well-posedness too. The limiting behavior of solutions as the dissipation tends to zero (i.e., $\eta\to 0$) has also been studied in \cite{BBIS}. The IVP \eqref{2eqhs} associated to the Benney-Lin equation is also widely studied in the literature \cite{B, BL, TK}. Regarding well-posedness issues for the IVP \eqref{2eqhs} the work of Biagioni and Linares \cite{BL} is worth mentioning, where they proved global well-posedness for given data in $L^2(\mathbb{R})$. Now, we state the main results of this work. The first result deals with the local well-posedness results for the IVP \eqref{eq:hs}, while the second result deals the same for the IVP \eqref{eq:hs-1}, with low regularity data. \begin{theorem}\label{teorp-1} Let $\eta>0$ be fixed and $\Phi(\xi)$ be as given by \eqref{phi}, then the IVP \eqref{eq:hs} is locally well-posed for any data $v_0 \in H^s(\mathbb{R})$, in the following cases: \begin{gather*} k=1, \quad s>-3/4,\\ k=2, \quad s>1/4,\\ k=3, \quad s>-1/6,\\ k=4, \quad s>0. \end{gather*} \end{theorem} \begin{theorem}\label{teorp} Let $\eta>0$ be fixed and $\Phi(\xi)$ be as given by \eqref{phi}, then the IVP \eqref{eq:hs-1} is locally well-posed for any data $u_0 \in H^s(\mathbb{R})$, in the following cases: \begin{gather*} k=1, \quad s>1/4,\\ k=2, \quad s>5/4,\\ k=3, \quad s>5/6,\\ k=4, \quad s>1. \end{gather*} \end{theorem} The first main result, Theorem \ref{teorp-1}, deals with the quite general Fourier symbol and generalized nonlinearity. As discussed above, some particular cases are studied in the recent literature. In particular, the result of Theorem \ref{teorp-1} improves the local well-posedness result for \eqref{eqhs} with $k=3$ obtained in \cite{Cv-Sc}. It is worth noticing that, when $\eta =0$ and $k=2$, the IVP \eqref{eq:hs} turns out the modified KdV equation. We know that for the modified KdV equation local well-posedness holds for data in $H^s$, $s\geq 1/4$ and we have ill-posedness for $s<1/4$. However, for $k=2$, $\Phi(\xi) = |\xi|-|\xi|^3$ and $\eta >0$ it has been proved in \cite{Cv-Sc} that the local well-posedness holds for $s\geq 0$. Therefore, it would really be interesting to study the limiting behavior when $\eta \to 0$. As noted in \cite{Cv-Sc}, it is still an open problem. At this point, we would like to note that the first main result for $k=1$ is just the reproduction of our earlier result in \cite{XC-MP}. Although the result presented in \cite[Theorem 1.1]{XC-MP} is correct, in the due course of time, we found a misleading argument employed in the proof. More precisely, the estimate \cite[(2.5)]{XC-MP} was not as it should have been. In this work, this flaw is corrected (see Lemma \ref{xav5}, below). This correction leads us to develop the contraction mapping scheme in the space $X_{s-p(b-\frac12), b}$. The second main result, Theorem \ref{teorp}, in particular, improves the local well-posedness results for \eqref{eqhs-1} with $k=1$ obtained in \cite{pa:ba1} and for \eqref{1eqhs-1} obtained in \cite{BBIS}. To prove the main results we follow the techniques used in \cite{XC-MP}. The main idea is to use the theory developed by Bourgain \cite{bou:bou} and Kenig, Ponce and Vega \cite{kpv2:kpv2}. The main ingredients in the proof are estimates in the integral equation associated to an extended IVP that is defined for all $t\in \mathbb{R}$ (see IVPs \eqref{eq:hs2-1} and \eqref{eq:hs2} below). The main idea is to use the usual Bourgain space associated to the KdV equation instead of that associated to the linear part of the IVPs \eqref{eq:hs} and \eqref{eq:hs-1}. To carry out this scheme, the Proposition \ref{prop3} plays a fundamental role which permits us to use a multilinear estimates for $\partial_x(u^2)$, $\partial_x(u^3)$ $\partial_x(u^4)$ and $\partial_x(u^5)$ proved respectively in \cite{kpv2:kpv2,Tao,Axel,MSYG}. As noted earlier, the IVPs \eqref{eq:hs-1} and \eqref{eq:hs} are globally well-posed for given data in $H^s(\mathbb{R})$, $s\geq 1$. As the models under consideration do not have conserved quantities, the global well-posedness have been proved by constructing appropriate \emph{a priori} estimates. However, for given data in $H^s(\mathbb{R})$, $s< 1$ no \emph{a priori} estimates are available. Also, the lack of conserved quantities prevent us to use the recently introduced $I$-method \cite{CKSTT, CKSTT-2}, to obtain global solution for the low regularity data. Now we introduce function spaces that will be used to prove the main results. We consider the following IVP associated to the linear KdV equation \begin{equation}\label{eq:hs0} \begin{gathered} w_t+w_{xxx}=0, \quad x, \;t\in \mathbb{R},\\ w(0)=w_0. \end{gathered} \end{equation} The solution to \eqref{eq:hs0} is given by $w(x,t)=[U(t)w_0](x)$, where the unitary group $U(t)$ is defined as \begin{align}\label{gU} \widehat{U(t)w_0}(\xi)=e^{it\xi^3}\widehat{w_0}(\xi). \end{align} For $s,b\in \mathbb{R}$, we define the space $X_{s,b}$ as the completion of the Schwartz space $S(\mathbb{R}^2)$ with respect to the norm \begin{equation}\label{xsb-norm} \begin{split} \|w\|_{X_{s,b}} \equiv \|U(-t)w\|_{H_{s,b}} &:= \|\langle \tau \rangle^{b} \langle \xi \rangle^{s} \widehat{U(-t)w}(\xi,\tau) \|_{L_{\tau}^2L_{\xi}^2} \\ &= \|\langle \tau-\xi^3 \rangle^{b} \langle \xi \rangle^{s} \widehat w(\xi,\tau) \|_{L_{\tau}^2L_{\xi}^2 {\textstyle,}} \end{split} \end{equation} where $\widehat w(\xi,\tau)$ is the Fourier transform of $w$ in both space and time variables, and $\langle\cdot\rangle = (1+|\cdot|^2)^{1/2}$. The space $X_{s,b}$ is the usual Bourgain space for the KdV equation (see \cite{bou:bou}) and using the Sobolev embedding theorem one has that $X_{s,b}\subset C(\mathbb{R}; H^s(\mathbb{R}))$, whenever $b>1/2$. Note that, the IVPs \eqref{eq:hs-1} and \eqref{eq:hs} are defined only for $t \ge 0$. To use Bourgain's type space, we should be able to write these IVPs for all $t \in \mathbb{R}$. For this, we define \begin{equation}\label{eta} \eta (t)\equiv \eta \operatorname{sgn}(t)= \begin{cases} \eta & \text{if } t \geq 0 ,\\ -\eta & \text{if } t <0 \end{cases} \end{equation} and write the IVPs \eqref{eq:hs} and \eqref{eq:hs-1} in the following forms \begin{equation}\label{eq:hs2} \begin{gathered} v_t+v_{xxx}+\eta(t)Lv+(v^{k+1})_x=0, \quad x, t \in \mathbb{R},\; k\in \mathbb{Z}^+,\\ v(0)=v_0, \end{gathered} \end{equation} and \begin{equation}\label{eq:hs2-1} \begin{gathered} u_t+u_{xxx}+\eta(t)Lu+(u_x)^{k+1}=0, \quad x, t \in \mathbb{R}, \; k\in \mathbb{Z}^+,\\ u(0)=u_0, \end{gathered} \end{equation} respectively. From here onwards we consider the IVPs \eqref{eq:hs2} and \eqref{eq:hs2-1} instead of \eqref{eq:hs} and \eqref{eq:hs-1} respectively. Now we consider the IVP associated to the linear parts of \eqref{eq:hs2-1} and \eqref{eq:hs2}, \begin{equation}\label{eq:hs1} \begin{gathered} w_t+w_{xxx}+\eta(t)Lw=0, \quad x, \; t\in \mathbb{R},\\ w(0)=w_0. \end{gathered} \end{equation} The solution to \eqref{eq:hs1} is given by $w(x,t)=V(t)w_0(x)$ where the semigroup $V(t)$ is defined as \begin{equation}\label{gV} \widehat{V(t)w_0}(\xi)=e^{it\xi^3+\eta |t|\Phi(\xi)}\widehat{w_0}(\xi). \end{equation} Observe that, defining $\widetilde{U}(t)$ by $\widehat{\widetilde{U}(t)u_0}(\xi)=e^{\eta |t|\Phi(\xi)}\widehat{u_0}(\xi)$, the semigroup $V(t)$ can be written as $V(t)=U(t)\widetilde{U}(t)$ where $U(t)$ is the unitary group associated to the KdV equation (see \eqref{gU}). This paper is organized as follows: In Section \ref{sec-2}, we prove some preliminary estimates and in Section \ref{sec-3} we prove the main results. \section{Preliminary estimates}\label{sec-2} This section is devoted to obtain some preliminary estimates that are essential in the proof of the main results. Before going to details, we consider a cut-off function $\psi \in C^{\infty}(\mathbb{R})$, such that $0\leq \psi(t) \leq 1$, \begin{equation}\label{psi} \psi(t)= \begin{cases} 1 & \text{if } |t| \leq 1,\\ 0 & \text{if } |t| \ge 2. \end{cases} \end{equation} Also, we define $\psi_{T}(t)\equiv\psi(\frac{t}{T})$. Let $p=2m+n$, observe that the Fourier symbol given in \eqref{phi} can be written as \begin{equation} \label{phi1} \begin{split} \Phi(\xi) &= -|\xi|^{p}+ \sum_{\substack{0 \le i \le 2m, \,0 \le j\le n, \\ (i,j) \neq (2m,n)}}c_{i,j}\xi^i |\xi|^j, \quad c_{i,j} \in \mathbb{R}, \\ &=-|\xi|^{p}+\Phi_1(\xi), \end{split} \end{equation} where the degree of $\Phi_1$ is less than $p$. In what follows, we present some elementary lemmas. \begin{lemma}\label{xav4} There exists $M>0$ such that for all $|\xi| \geq M$, one has that \begin{equation}\label{xavi9} \Phi(\xi)=-|\xi|^{p}+\Phi_1(\xi) <-1. \end{equation} \end{lemma} \begin{proof} The inequality \eqref{xavi9} is a direct consequence of \begin{equation*} \lim_{|\xi| \to \infty} \frac{\Phi_1(\xi) +1}{ |\xi|^p}=0. \end{equation*} \end{proof} \begin{lemma}\label{xav7} The Fourier symbol $\Phi(\xi)$ satisfies the estimate \begin{equation} \langle\Phi(\xi)\rangle \le c \langle \xi \rangle^{p}. \end{equation} \end{lemma} \begin{proof} It is not difficult see that \begin{align*} \langle\Phi(\xi)\rangle &\le \langle|\xi|^p\rangle + \langle\Phi_1(\xi)\rangle \\ &\leq \langle\xi\rangle^p + \sum_{\substack{0 \le i \le 2m, \,0 \le j\le n, \\ (i,j) \neq (2m,n)}}|c_{i,j}|\langle\xi^i |\xi|^j \rangle \\ &\leq \langle\xi\rangle^p + \sum_{\substack{0 \le i \le 2m, \,0 \le j\le n, \\ (i,j) \neq (2m,n)}}|c_{i,j}|\langle\xi \rangle^{i +j}\\ &\leq \langle\xi\rangle^p \Big(1 + \sum_{\substack{0 \le i \le 2m, \,0 \le j\le n, \\ (i,j) \neq (2m,n)}}|c_{i,j}|\Big). \end{align*} \end{proof} \begin{lemma}\label{xav5} Let $01/2$ and $-1/2 a_k$. There exist $\gamma \in (\frac12, 1)$ and $r(s)>0$ such that if $b$ and $b'$ are two numbers satisfying $\frac12 s_k, \end{equation} where $s_2=-3/4$, $s_3=1/4$, $s_4=-1/6$, $s_5=0$. \end{proposition} \begin{proof} To prove the estimate \eqref{eq:prop}, we will use the techniques developed by Tao in \cite{Tao} on $[k,Z]$ multipliers. Consider $u_j \in X_{s,b}$ for $j=1,\dots k$, $u_{k+1} \in X_{-s,-b'}$ and use properties of the Fourier transform, to obtain \begin{align*} &\int_{\mathbb R^2} (\prod_{j=1}^{k}u_j)(\xi, \tau) \overline{u_{k+1}}(\xi, \tau) d\xi d\tau \\ &= \int_{\mathbb R^2} \int_{\mathbb R^{(k-1)\times(k-1)}}\widehat{u_1}(\xi_1,\tau_1) \widehat{u_2}(\xi_2,\tau_2)\dots\\ &\quad \widehat{u_{k}}(\xi-\sum_{j=1}^{k-1}\xi_j,\tau-\sum_{j=1}^{k-1}\tau_j) \widehat{u_{k+1}}(-\xi,-\tau)d\xi_1d\tau_1 \dots d\xi_{k-1} d\tau_{k-1}d\xi d\tau\\ &=:\int_{\stackrel{\xi_1+\xi_2+\dots+\xi_{k+1}=0}{\tau_1+\tau_2+\dots +\tau_{k+1}=0}}\prod_{j=1}^{k+1}\widehat{u_j}(\xi_j,\tau_j)d\xi_1d\tau_1\dots d\xi_4 d\tau_4, \end{align*} Therefore, using duality proving \eqref{eq:prop} is equivalent to proving \begin{align*} &\int_{\stackrel{\xi_1+\xi_2+\dots+\xi_{k+1}=0}{\tau_1+\tau_2+\dots +\tau_{k+1}=0}} \prod_{j=1}^{k+1}\widehat{u_j}(\xi_j,\tau_j)d\xi_1d \tau_1\dots d\xi_{k+1} d\tau_{k+1} \\ &\lesssim \prod_{j=1}^{k}\|u_j\|_{X_{s,b}} \|u_{k+1}\|_{X_{-s,-b'}}. \end{align*} Let \begin{gather*} \langle \xi_j \rangle^s \langle \tau_j- \xi_j^3 \rangle^b\widehat{u_j}(\xi, \tau) =\widehat{f_j}(\xi, \tau), \quad j=1,\dots,k, \\ \langle \xi_{k+1}\rangle^{-s} \langle \tau_{k+1}- \xi_{k+1}^3 \rangle^{-b'}\widehat{u_{k+1}}(\xi, \tau) =\widehat{f_{k+1}}(\xi, \tau). \end{gather*} Now with these considerations, proving \eqref{eq:prop} is equivalent to proving \begin{equation} \label{Taoxav} \begin{split} &\int_{\stackrel{\xi_1+\xi_2+\dots+\xi_{k+1}=0}{\tau_1+\tau_2+\dots+\tau_{k+1}=0}} m((\xi_1,\tau_1),\dots (\xi_{k+1}, \tau_{k+1}))\\ &\times \prod_{j=1}^{k+1} \widehat{f_j}(\xi_j,\tau_j)d\xi_1d\tau_1\dots d\xi_{k+1} d\tau_{k+1} \\ &\lesssim \prod_{j=1}^{k+1}\|f_j\|_{L_{x,t}^{2}}, \end{split} \end{equation} where \begin{equation}\label{Taoxav1} m((\xi_1,\tau_1),\dots (\xi_{k+1},\tau_{k+1})) =\frac{ \langle\xi_{k+1} \rangle^s}{\prod_{j=1}^{k} \langle\xi_j \rangle^s \prod_{j=1}^{k+1}\langle\tau_j-\xi_j^3\rangle^{b_j}}, \end{equation} and $b_1=\dots =b_k=b$, $b_{k+1}=-b'$. So, we need to prove that the $[k+1,\mathbb{R}^2]$-multiplier estimate is finite; i.e., $\|m\|_{[k+1;\mathbb{R}^2]}< \infty$. We know from Proposition \ref{prop4} that the $[k+1,\mathbb{R}^2]$-multiplier estimate \begin{equation}\label{Taoxav12} \tilde{m}((\xi_1,\tau_1),\dots (\xi_{k+1},\tau_{k+1})) =\frac{|\xi_{k+1}| \langle\xi_{k+1} \rangle^s}{\prod_{j=1}^{k} \langle\xi_j \rangle^s \prod_{j=1}^{k+1}\langle\tau_j-\xi_j^3\rangle^{b_j}}, \end{equation} where $b_1=\dots =b_k=b$, $b_{k+1}=-b'$; is finite. Observe that we may restrict the multiplier \eqref{Taoxav1} to the region $|\xi_{k+1} | \ge 1$, (since the general case then follows by an averaging over unit time scales). The $|\xi_j| \le 1$ behavior of $m$ is usually identical to its $|\xi_j| \sim 1$ behavior, see Section 4 on $X_{s,b}$ spaces in \cite[page 17]{Tao}. In the high frequencies, we have $m \le \tilde{m}$, and the Comparison principle implies that $\|m\|_{[k+1;\mathbb{R}^2]}< \infty$ as required. \end{proof} \begin{remark} \rm We note that the multilinear estimates without derivative hold in the $X_{s,b}$ spaces with low regularity than that with derivative. For example, in the case $k=3$ the inequality \eqref{eq:prop} holds true for $s>-1/4$, see \cite{XC}, and with derivative holds for $s\geq 1/4$, see \eqref{bil-1} in Proposition \ref{prop4} above. \end{remark} The following Lemma is an immediate consequence of Propositions \ref{prop4} and \ref{prop1} and will be used in the proof of Theorem \ref{teorp}. \begin{lemma}\label{Cor-1} Let $ k =1,2,3,4$. Under the hypothesis of Proposition \ref{prop4}, we have \begin{equation}\label{eq.cor} \|(u_x)^{k+1}\|_{X_{s,b'}} \leq c\|u\|_{X_{s,b}}^{k+1}, \end{equation} whenever, \begin{equation}\label{conk2} \begin{gathered} k=1, \quad s>1/4,\\ k=2, \quad s>5/4,\\ k=3, \quad s>5/6,\\ k=4, \quad s>1. \end{gathered} \end{equation} \end{lemma} \begin{proof} Let $k=1, 2, 3, 4$, and consider $s$ satisfying \eqref{conk2}. As $\langle\xi\rangle^s=\langle\xi\rangle^{s-1}\langle\xi\rangle$, we have \begin{equation}\label{eq:333} \| (u_x)^{k+1}\|_{X_s, b'} \leq\|D_x(u_x)^{k+1}\|_{X_{s-1, b'}} +\| (u_x)^{k+1}\|_{X_{s-1}, b'}. \end{equation} For the first term we have \begin{equation}\label{rv-c1} \|D_x(u_x)^{k+1}\|_{X_{s-1,b'}} \leq c\,\|u_x\|_{X_{s-1,b}}^{k+1} \leq c\|u\|_{X_{s,b}}^{k+1}, \end{equation} where in the first inequality the bilinear estimate \eqref{bil-1} has been used. To estimate the second term in \eqref{eq:333}, we use \eqref{eq:prop} to obtain \begin{align} \| (u_x)^{k+1}\|_{X_{s-1}, b'} \le c\| u_x\|_{X_{s-1}, b}^{k+1}\leq c\|u\|_{X_{s,b}}^{k+1}, \end{align} which completes the proof of \eqref{eq.cor}. \end{proof} \section{Proof of main results}\label{sec-3} \begin{proof}[Proof of Theorem \ref{teorp-1}] As discussed in the introduction, we will use Bourgain's space associated to the KdV group to prove well-posedness for the IVP \eqref{eq:hs}, therefore we need to consider the IVP \eqref{eq:hs2} that is defined for all $t$. Now consider the IVP \eqref{eq:hs2} in its equivalent integral form \begin{equation} \label{int1} v(t)=V(t)v_{0}- \int_{0}^{t}V(t-t')(v^{k+1})_x(t')dt', \end{equation} where $V(t)$ is the semigroup associated with the linear part given by \eqref{gV}. Note that, if for all $t\in \mathbb{R}$, $v(t)$ satisfies \[ v(t)=\psi(t)V(t)v_{0}- \psi_{T}(t)\int_{0}^{t}V(t-t')(v^{k+1})_x(t')dt', \] with $T\in (0, 1]$, then $v(t)$ satisfies \eqref{int1} in $[-T,T]$. We define an application \[ \Psi(v)(t)= \psi(t)\,V(t)v_0-\psi_{T}(t)\,\int_0^t V(t-t')(v^{k+1})_x(t')dt'. \] Assume $k\in\{1,2,3,4\}$ and $s>a_k$, where $a_k$ is given by \eqref{eq-b22}. Let $v_0\in H^s$ and let us define $b:=1/2 + \epsilon$, $b':=-1/2+4 \epsilon$, with $0< \epsilon \ll 1$ satisfying \begin{equation}\label{epsilon-1} 0<\epsilon< \min\big\{ \frac{s-a_k}p, \frac14\big(\gamma-\frac12\big), \frac{r(s)}4\big\}, \end{equation} where $\gamma$ and $r(s)$ are as in Proposition \ref{prop4}. With these choices of $b$ and $b'$ it is easy to verify that all the conditions of Propositions \ref{prop3} and \ref{prop4}, and Lemma \ref{lema2.4} are satisfied. For $M>0$, let us define a ball \[ X_{s-p(b-\frac12),b}^M= \{f\in X_{s-p(b-\frac12),b} : \|f\|_{X_{s-p(b-\frac12),b}}\leq M \}. \] We will prove that there exists $M$ such that the application $\Psi$ maps $X_{s-p(b-\frac12),b}^M $ into $X_{s-p(b-\frac12),b}^M$ and is a contraction. Let $v\in X_{s-p(b-\frac12),b}^M$. By using Proposition \ref{prop3}, we obtain \begin{equation}\label{eq3.5} \|\Psi(v)\|_{X_{s-p(b-\frac12),b}} \leq c\|v_0\|_{H^s}+c\,T^\alpha \|(v^{k+1})_x\|_{X_{s-p(b-\frac12),b'}}, \end{equation} where $\alpha:=1+\frac{b'}2-\frac{3b}2 =\frac{\epsilon}2>0$. The use of Proposition \ref{prop4} in \eqref{eq3.5} yields \begin{equation}\label{eq3.6} \|\Psi(v)\|_{X_{s-p(b-\frac12),b}}\leq c\|v_0\|_{H^s}+c\,T^\alpha \|v\|_{X_{s-p(b-\frac12),b}}^{k+1}, \end{equation} whenever \begin{equation}\label{eq3.7} \begin{gathered} s-p(b-\frac12)>-3/4, \quad \text{for } k =1,\\ s-p(b-\frac12)>1/4, \quad \text{for } k =2,\\ s-p(b-\frac12)>-1/6, \quad \text{for } k =3,\\ s-p(b-\frac12)>0, \quad \text{for } k =4, \end{gathered} \end{equation} holds, which is true because of the choice of $b$ and arbitrarily small $\epsilon$ satisfying \eqref{epsilon-1}. Now, using the definition of $X_{s-p(b-\frac12),b}^M$, one obtains \begin{equation}\label{eq3.8} \|\Psi(v)\|_{X_{s-p(b-\frac12),b}}\leq \frac{M}{4}+ cT^\alpha M^{k+1}\leq \frac{M}{2}, \end{equation} where we have chosen $M=4c\|v_0\|_{H^s}$ and $cT^\alpha M^k=1/4$. Therefore, from \eqref{eq3.8} we see that the application $\Psi$ maps $X_{s-p(b-\frac12),b}$ into itself. A similar argument proves that $\Psi$ is a contraction. Hence $\Psi$ has a fixed point $v$ which is a solution of the IVP \eqref{eq:hs} such that $u \in C([-T,T], H^{s-p(b-\frac12)})$. Since $\epsilon>0$ is arbitrarily small satisfying \eqref{epsilon-1} and $b=\frac12+\epsilon$, this concludes the proof of the theorem. \end{proof} \begin{proof}[Proof of Theorem \ref{teorp}] This proof is analogous to that of Theorem \ref{teorp-1}. The only difference is that, in this case, we use Lemma \ref{Cor-1} instead of Proposition \ref{prop4}. \end{proof} \section{A priori estimate: global solutions}\label{global} In this section we find an \emph{a priori} estimate that leads to conclude global well-posedness of the IVPs \eqref{eq:hs} and \eqref{eq:hs-1}. \begin{lemma}\label{a-priori} Let $v_0\in H^3(\mathbb{R})$ and $v \in C([0, T ],H^3(\mathbb{R}))$ be the solution of \eqref{eq:hs} with initial data $v(x, 0) = v_0$. Then the following a priori estimate \begin{equation}\label{eq4.1} \|v(t)\|_{L^2} \leq C \|v_0\|_{L^2}e^{C\eta T}, \end{equation} holds. \end{lemma} \begin{proof} We multiply \eqref{eq:hs} by $v$ and integrate by parts to obtain \begin{equation}\label{eq4.2} \frac12\frac{d}{dt}\int v^2(x)dx +\eta\int v(x)Lv(x)dx=0. \end{equation} Now using our assumption on the Fourier symbol $\Phi$ of $L$ from \eqref{phi}, Plancherel's identity we obtain from \eqref{eq4.2} that \begin{equation}\label{eq4.3} \frac12\frac{d}{dt}\|v(t)\|_{L^2}^2 = \eta\int \widehat{v}(\xi)\Phi(\xi)\bar{\widehat{v}}(\xi)d\xi \leq C\eta\int\int\widehat{v}(\xi)\bar{\widehat{v}}(\xi)d\xi = C\eta\|v(t)\|_{L^2}^2. \end{equation} Now, integrating \eqref{eq4.3} in $[0, t]$ for $t\in [0, T]$, and applying Gronwall's inequality, we obtain the required an \emph{a priori} estimate \eqref{eq4.1}. \end{proof} \begin{remark} \rm As in Lemma \ref{a-priori}, differentiating equation \eqref{eq:hs-1} with respect to $x$, multiplying the resulting equation by $u_x$ and the integrating by parts and using Plancherel's identity and Gronwall's inequality, we obtain the following an \emph{a priori} estimate \begin{equation}\label{eq4.4} \|\partial_xu(t)\|_{L^2} \leq C \|\partial_xu_0\|_{L^2}e^{C\eta T}. \end{equation} \end{remark} Now, with the \emph{a priori} estimates \eqref{eq4.1} and \eqref{eq4.4} at hand, one can prove the following global results for the IVPs \eqref{eq:hs} and \eqref{eq:hs-1} for some particular values of $k$. \begin{theorem}\label{global-1} Let $k = 1, 3$, and $v_0\in H^s(\mathbb{R})$, $s\geq 0$, then the local solution of \eqref{eq:hs} obtained in Theorem \ref{teorp-1} can be extended globally in time. \end{theorem} \begin{theorem}\label{global-2} Let $k = 1, 3$, and $u_0\in H^s(\mathbb{R})$, $s\geq 1$, then the local solution of \eqref{eq:hs-1} obtained in Theorem \ref{teorp} can be extended globally in time. \end{theorem} \subsection*{Acknowledgments} X. Carvajal was supported by grants E-26/111.564/2008 and E-26/ 110.560/2010 from FAPERJ Brazil, grant 303849/2008-8 from the National Council of Technological and Scientific Development (CNPq) Brazil. M. Panthee was supported by grant Est-C/MAT/UI0013/2011 from FEDER Funds through ``Programa Operacional Factores de Competitividade - COMPETE'', and by grant PTDC/MAT/109844/2009 from Portuguese Funds through FCT - ``Funda\c c\~ao para a Ci\^encia e a Tecnologia''. Part of this research was done while M. Panthee was visiting the Institute of Mathematics, Federal University of Rio de Janeiro, Brazil. He wishes to thank for the support received during his visit. The authors are thankful to the anonymous referee for his or her numerous corrections and remarks on early versions of this work. \begin{thebibliography}{99} \bibitem{pa:ba1} B. Alvarez; \emph{The Cauchy problem for a nonlocal perturbation of the KdV equation}, Differential Integral Equations \textbf{16 10} (2003) 1249--1280. \bibitem{B} D. J. Benney; \emph{Long waves on liquids films}, J. Math. Phys. \textbf{45} (1996) 150--155. \bibitem{BBIS} H. A. Biagioni, J. L. Bona, R. J. I\'orio, M. Scialom; \emph{On the Korteweg-de Vries-Kuramoto-Sivashinsky equation.} Adv. Differential Equations, \textbf{1} (1996), 1--20. \bibitem{BL} H. A. Biagioni, F. Linares; \emph{On the Benney-Lin and Kawahara Equations}, J. Math. Anal. Appl. \textbf{211} (1997) 131--152. \bibitem{bou:bou} J. Bourgain; \emph{Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation}, Geom. Funct. Anal. \textbf{3} (1993) 209--262. \bibitem{XC} X. Carvajal; \emph{Local well-posedness for a higher order nonlinear Schr\"odinger equation}, Electron. J. Differential Equations, (2004), No. 13, 1-10. \bibitem{XC-MP} X. Carvajal, M. Panthee; \emph{Well-posedness for for some perturbations of the KdV equation with low regularity data}, Electron. J. Differential Equations, (2008), No. 02, 1-18. \bibitem{Cv-Sc} X. Carvajal, M. Scialom; \emph{On the well-posedness for the generalized Ostrovsky, Stepanyams and Tsimring equation}, Nonlinear Anal. \textbf{62} 2 (2005), 1277--1287. \bibitem{xavirica} X. Carvajal, R. Pastran; \emph{Well-posedness for a Family of Perturbations of the KdV Equation in Periodic Sobolev Spaces of Negative Order}, preprint, http://arxiv.org/abs/1105.2995. \bibitem{Cz:Cz} T. Cazenave; \emph{An introduction to nonlinear Schr\"odinger equations}, Textos de Metodos Matem\'aticos 22 (Rio de Janeiro), (1989). \bibitem{CKTR} B. I. Cohen, J. A. Krommes, W. M. Tang, M. N. Rosenbluth; \emph{Non-linear saturation of the dissipative trapped-ion mode by mode coupling}, Nuclear Fusion, \textbf{16 9} (1976) 971--992. \bibitem{CKSTT} J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao; \emph{Global well-posedness for KdV in Sobolev spaces of negative index}, Electron. J. Differential Equations, (2001) No. 26, 1-7. \bibitem{CKSTT-2} J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao; \emph{Sharp global well-posedness for KdV and modified KdV on $\mathbb{R}$ and $\mathbb{T}$}, Jr. Amer. Math. Soc., \textbf{16} (2003) 705--749. \bibitem{JC} J. C. Cordero; \emph{ Problema de Cauchy para la ecuaci\'on de Korteweg-de Vries (KdV) en espacios de baja regularidad}, unpublished master's thesis, Universidad Nacional de Colombia-Sede Medellin (2001), 1--41. \bibitem{Axel} A. Gr\"unrock; \emph{A bilinear Airy-estimate with application to gKdV-3}, Differential Integral Equations 18 (2005), no. 12, 1333--1339. \bibitem{kpv1:kpv1} C. E. Kenig, G. Ponce, L. Vega; \emph{Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle}, Comm. Pure Appl. Math. \textbf{46 4} (1993) 527--620. \bibitem{kpv2:kpv2} C. E. Kenig, G. Ponce, L. Vega; \emph{A bilinear estimate with applications to the KdV equation}, J. Amer. Math. Soc. \textbf{9 2} (1996) 573--603. \bibitem{MSYG} C. Miao, S. Shao, Y. Wu, G. Xu; \emph{The low regularity global solutions for the critical generalized KdV equation}, arXiv:0908.0782v3 (2009). \bibitem{O:O} L. A. Ostrovsky, Yu. A. Stepanyants, L. Sh. Tsimring; \emph{Radiation instability in a stratified shear flow}, Int. J. Non-Linear Mech. \textbf{19} (1984) 151--161. \bibitem{Tao} T. Tao; \emph{Multilinear weighted convolution of $L^2$ functions, and applications to nonlinear dispersive equations}, American J. of Math, \textbf{123} (2001) 839--908. \bibitem{TK} J. Topper, T. Kawahara; \emph{Approximate equations for long nonlinear waves on a viscous fluid}, J. Phys. Soc. Japan, \textbf{44} (1978) 663--666. \end{thebibliography} \end{document}