\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 43, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/43\hfil Weak solutions] {Weak solutions for degenerate semilinear elliptic BVPs in unbounded domains} \author[R. Kar\hfil EJDE-2012/43\hfilneg] {Rasmita Kar} \address{Rasmita Kar \newline Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, 208016 India} \email{rasmi07@gmail.com} \thanks{Submitted September 17, 2011. Published March 20, 2012.} \subjclass[2000]{46E35, 35J61} \keywords{Semilinear elliptic boundary value problem; unbounded domain; \hfill\break\indent pseudomonotone operator} \begin{abstract} In this article, we prove the existence of a weak solution for the degenerate semilinear elliptic Dirichlet boundary-value problem \begin{gather*} Lu(x)+\sum_{i=1}^n g(x)h(u(x))D_iu(x)=f(x)\quad \text{in }\Omega,\\ u=0\quad \text{on }\partial\Omega, \end{gather*} in a suitable weighted Sobolev space. Here $\Omega\subset\mathbb{R}^n$, $1\leq n\leq3,$ is not necessarily bounded. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} For $1\leq n\leq3$, let $\Omega\subset\mathbb{R}^n$, be a domain (not necessarily bounded) with boundary $\partial\Omega$. We assume $\Omega =\cup^\infty_{i=1} \Omega_{i}$, $\overline{\Omega}_i\subseteq \Omega_{i+1}\subseteq \overline{\Omega}_{i+1}\subset\Omega$, each $\Omega_i\subset \mathbb{R}^n$ is a bounded domain with boundary $\partial\Omega_i$. Let $L$ be an elliptic operator in divergence form \begin{equation*} Lu(x)=-\sum_{i,j=1}^nD_j(a_{ij}(x) D_iu(x)) \text{,}\quad D_j=\frac{\partial}{\partial x_j}, \end{equation*} where the coefficients $a_{ij}$ are measurable, real valued functions, the matrix $\mathcal{A}=(a_{ij})$ is symmetric and satisfy the degenerate ellipticity condition \begin{equation}\label{eq:a1} \lambda|\xi|^2\omega(x)\leq\sum_{i,j=1}^{n}a_{ij}(x)\xi_i\xi_j \leq\Lambda|\xi|^2\omega(x),\quad \text{a.e. }x\in\Omega, \end{equation} for all $\xi\in\mathbb{R}^n$ and $\omega$ is an weight function $(\lambda>0,\Lambda>0)$. When $\omega =1$ in \eqref{eq:a1}, the condition \eqref{eq:a1} reduces to the usual ellipticity condition. However, such an ellipticity condition may not hold if $ a_{ij}$ are functions vanishing at some point $x\in \overline{ \Omega}$ leading to the degeneracy of the ellipticity condition. Let $f\in L^{2}(\Omega)$. In this paper, we study the existence of weak solutions to the degenerate semilinear elliptic BVP \begin{equation}\label{eq:a2} \begin{gathered} Lu(x)+ \sum_{i=1}^ng(x)h(u(x))D_iu(x)=f(x)\quad \text{in }\Omega,\\ u=0\quad \text{on }\partial\Omega, \end{gathered} \end{equation} where $g /\sqrt{\omega} \in L^{\infty}(\Omega)$ and $h$ is bounded and Lipschitz continuous. The tools used are pseudomonotone operators as introduced by of Br\'ezis \cite{brz}, the compact embedding theorem in weighted Sobolev spaces in a domain of $\mathbb{R}^n,n\leq3$ and a well-known technique used for unbounded domain as in Noussair and Swanson\cite{nou1}. Where as the restriction on dimension of the domain has yields us a required compactness condition. The study is inspired by a non-degenerate problem in bounded domain given in the book by Zeidler \cite{zed1}.\par In general, the Sobolev spaces $W^{k,p}(\Omega)$(without weights) occurs as spaces of solutions for elliptic and parabolic PDEs. For degenerate problems with various types of singularities in the coefficients it is natural to look for solutions in weighted Sobolev spaces; see \cite{app,wei,chi,wie2,loc,fra}. Elliptic BVPs in unbounded domains present specific difficulties, primarily due to lack of compactness. Another difficulty in the study of the elliptic BVPs is due to the non-availability of the Poincare-inequality in the Sobolev spaces $W_{0}^{1,p}(\Omega)$ for a general unbounded domain say $\Omega$. %Some of the techniques used for problems in unbounded domains by many authors are as follows. One of the classical technique employed is extracting a solution on unbounded domain $\Omega$ by solutions on bounded subdomains of $\Omega$ under the assumption the suitable upper and lower solutions exist. The related literature are found in Noussair and Swanson\cite{nou1} and Cac \cite{pac}. Secondly, the use of Sobolev spaces of highly symmetric functions, which admit compact embeddings, as in Berestycki and Lions \cite{bere3, bere4}. Thirdly, the use of weighted-norm Sobolev spaces which admit compact embeddings, as in Benci \cite{benci}, Bongers, Heinz and Kiipper \cite{bong}. In \cite{melv}, Berger and Schechter have shown that a substitute for such embedding results can be obtained when $\Omega$ is unbounded, by introducing appropriate weighted $L^p$ norms. These results are then applied by them to establish an existence theorem for the Dirichlet problem for quasilinear elliptic equations in an unbounded domain. A few references for nonlinear boundary value problems in unbounded domains with aid of pseudomonotone operators %is studied in an article by Benci and are found in \cite{brow,pavm,edm,landes}. The equation \eqref{eq:a2} considered in the present study is not a subclass of the equations studied in \cite{brow,pavm,edm,landes}. The compactness condition for weighted Sobolev spaces has been assumed in \cite{pavm}, and it is shown how the assumption of monotonicity can be weakened still guaranteeing the pseudo-monotonicity of certain nonlinear degenerated or singular elliptic differential operators. Section 2 deals with preliminaries. Section 3 deals with the existence of a solution \eqref{eq:a2} in an arbitrary bounded domain say $G$. In section 4, we obtain a uniform bound for the solutions $\{u_i\}$ of \eqref{eq:a2} in each bounded subdomains $\Omega_i$ and finally, extraction of a solution for \eqref{eq:a2} from the sequence $\{u_i\}$ has been shown. \section{Preliminaries} Let $\Omega\subset \mathbb{R}^{n}$, $1\leq n\leq3$ be an open connected set. Let $\omega:\mathbb{R}^{n}\to\mathbb{R}^{+}$ be a weight function(\emph{i.e.}\ locally integrable non negative function with $0<\omega<\infty$ a.e) in $\Omega$ satisfying the conditions \begin{equation} \omega\in L^1_{\rm loc}(\Omega),\quad {\omega}^{-1/(p-1)}\in L^1_{\rm loc}(\Omega),\quad 1 < p < \infty.\label{n} \end{equation} We denote by $L^p(\Omega)$ $(1\leq p<\infty)$ the usual Banach space of measurable real valued functions, $u$, defined in $\Omega$ for which \begin{equation} \|u\|_{p,\Omega}=\Big(\int_{\Omega} |u|^p dx\Big)^{1/p}<\infty. \end{equation} For $p\geq1$, the weighted Sobolev space $W^{1,p}(\Omega,\omega)$ is defined by \begin{equation*} W^{1,p}(\Omega,\omega):=\{u\in L^{p}(\Omega): D_{j} u\in L^{p}(\Omega,\omega),j=1,2\dots,n\} \end{equation*} with the associated norm \begin{equation}\label{n1} \|u\|_{1,p,\Omega}=\Big(\int_\Omega |u|^{p}dx+\int_\Omega|D u|^{p}\omega\, dx\Big)^{1/p}, \end{equation} where $Du=(D_1u,\dots,D_nu)$. The space $W_0^{1,p}(\Omega,\omega)$ is defined as the closure of $C^{\infty}_0(\Omega)$ with respect to the norm \eqref{n1}. We also note that $W^{1,2}(\Omega,\omega)$ and $W^{1,2}_0(\Omega,\omega)$, are Hilbert spaces. \begin{proposition}\label{prop1} For abounded domain $\Omega\subset \mathbb{R}^{n}$, we have the compact embedding \begin{equation}\label{c1} W_0^{1,p}(\Omega,\omega)\hookrightarrow\hookrightarrow L^{p+\eta}(\Omega) \quad\text{for }0\leq\eta2\Rightarrow\frac{2ns}{n(s+1)-2s}>4. \end{equation} Now, the inequality \eqref{emb4} holds, when $n\leq3$. \end{remark} \begin{example} \rm Let $\Omega=\{x\in\mathbb{R}^n,n\leq3:|x|<1\}$ and $p=2$. Then $\omega(x)=|x|^{\eta}$, $0<\eta<1$ is an admissible weight function. \end{example} For more details on weighted Sobolev spaces, we refer \cite{pav,gar,hei,pot2}. At each step, a generic constant is denoted by $c$ or ${\beta}_0$ in order to avoid too many suffices. \begin{definition} \label{def2.2} \rm Let $\Omega\subset\mathbb{R}^n$ be an open connected set. We say that $u\in W^{1,2}_0(\Omega,\omega)$ is a weak solution of \eqref{eq:a2} if \begin{align*} \int_{\Omega} \sum_{i,j=1}^na_{ij}D_iu(x)D_j\phi(x)dx+\int_\Omega\sum_{i=1}^n g(x)h(u(x))D_iu\phi(x)dx=\int_\Omega f(x)\phi(x)dx \end{align*} for every $\phi\in W^{1,2}_0(\Omega,\omega)$. \end{definition} \begin{definition}[Pseudomonotone operators]\rm Let $A:X\to X^*$ be an operator on the real reflexive Banach space $X$. The operator $A$ is called pseudomonotone if $u_n\rightharpoonup u$ as $n\to\infty$ and \begin{equation*} \limsup_{n\to\infty}\langle Au_n,u_n-u\rangle\leq 0 \end{equation*} implies \begin{equation*} \langle Au,u-w\rangle\leq\liminf_{n\to\infty}\langle Au_n,u_n-w\rangle\quad \text{for all }w\in X. \end{equation*} \end{definition} We consider the operator equation \begin{equation}\label{ps1} Au=b,\quad u\in X. \end{equation} In section 3, we use the following result. \begin{proposition}[Br\'ezis(1968)] \label{pr1} Assume that the operator $A:X\to X^*$ is pseudomonotone, bounded and coercive on the real,separable reflexive Banach space $X$. Then, for each $b\in X^*$, the equation \eqref{ps1} has a solution. \end{proposition} For a proof of the above Theorem, we refer the reader to \cite[Theorem 27.A]{zed2}. \section{Bounded domain} Let $G$ be a bounded domain in $\mathbb{R}^n$ with $1\leq n\leq3$. We consider the degenerate semilinear elliptic BVP \begin{equation}\label{eq:b1} \begin{gathered} Lu(x)+ \sum_{i=1}^n g(x)h(u(x))D_iu(x)=f(x)\quad\text{in }G,\\ u(x)=0\quad \text{on }\partial G. \end{gathered} \end{equation} We need the following hypotheses for further study. \begin{itemize} \item [(H1)] Assume $g/\sqrt{\omega}\in L^{\infty}(G)$ and $f \in L^{2}(G)$. \item [(H2)] Let $h:\mathbb{R}\to\mathbb{R}$ is a bounded ($|h(t)|\leq \mu, \forall t\in\mathbb{R}$, $\mu>0$), and Lipschitz continuous with Lipschitz constant $A>0$ (e.g., $h(t)=\sin(t),\,\forall t\in \mathbb{R}$). \end{itemize} We define the functionals $B_1,B_2: W_0^{1,2}(G,\omega)\times W_0^{1,2}(G,\omega)\to\mathbb{R}$ by \begin{gather*} B_1(u,\phi)=\int_{G} \sum_{i,j=1}^na_{ij}(x)D_iu(x)D_j\phi(x)dx\\ B_2(u,\phi)=r(u,u,\phi), \quad r(u,v,\phi):=\int_{G}\sum_{i=1}^n g(x)h(u(x))D_iv(x)\phi(x)dx. \end{gather*} Also, define the functional $T:W_0^{1,2}(G,\omega)\to\mathbb{R}$ by \begin{equation*} T(\phi)=\int_{G}f(x)\phi(x)dx. \end{equation*} A function $u\in W_0^{1,2}(G,\omega)$ is a weak solution of \eqref{eq:b1} if \begin{equation}\label{m1} B_1(u,\phi)+B_2(u,\phi)=T(\phi),\quad\text{for all }\phi\in W_0^{1,2}(G,\omega). \end{equation} \begin{theorem}\label{t1} Assume {\rm (H1)} and {\rm (H2)}. In addition, let the condition $$ \mu C_{G}\|g/\sqrt{\omega}\|_{\infty,G}<\lambda, $$ where $C_G$ is a constant (depending on $G$) arising out of weighted Fredrichs inequality. Then the BVP \eqref{eq:b1} has a weak solution. \end{theorem} \begin{proof} First we write the BVP \eqref{eq:b1} as operator equation \begin{equation}\label{bnt} u\in W_0^{1,2}(\Omega,\omega): Bu+Nu=T\quad\text{in } [W_0^{1,2}(\Omega,\omega)]^*, \end{equation} where $T\in [W_0^{1,2}(\Omega,\omega)]^*,B :W_0^{1,2}(\Omega,\omega)\to [W_0^{1,2}(\Omega,\omega)]^*$ is linear, uniformly monotone and continuous, $N :W_0^{1,2}(\Omega,\omega)\to [W_0^{1,2}(\Omega,\omega)]^*$ is strongly continuous and $B+N$ is coercive. Further we put Propositions \ref{pr1} to this operator equation. The realization of this idea is split into 5 steps for convenience. \emph{Step 1:} Since $|a_{ij}(x)|\leq c \omega (x)$, we have by H\"older's inequality \begin{align*} B_1(u,v)&=\int_{G} \sum_{i,j=1}^na_{ij}(x)D_iu(x)D_jv(x)dx\\ &\leq c \int_{G} \sum_{i,j=1}^n |D_iu(x)||D_jv(x)|\omega dx\\ &\leq c \|u\|_{0,1,2,G}\|v\|_{0,1,2,G},\quad \text{for all }u,v\in W_0^{1,2}(G,\omega). \end{align*} We define the operator $B: W_0^{1,2}(G,\omega)\to [W_0^{1,2}(G,\omega)]^*$ as $$ (Bu|\phi)=B_1(u,\phi),\quad \text{for }u,\phi\in W_0^{1,2}(G,\omega). $$ Hence, the operator $B$ is well defined, linear, and continuous. It follows from \eqref{eq:a1} that \begin{align*} \hspace{-0.3em} \big(Bu-Bv|u-v\big) &=B_1(u-v,u-v) \\&=\int_{G} \sum_{i,j=1}^na_{ij}D_i(u-v)D_j(u-v)dx \\& \geq \lambda\int_{G}|D(u-v)|^2w dx \\ &= \lambda\|u-v\|_{0,1,2,G}^2 \text{ for all }u,v\in X. \end{align*} Consequently, $B$ is uniformly monotone(and hence coercive). For more details on monotone operators, we refer\cite{zed1}. \emph{Step 2:} By (H1) and (H2), it follows from H\"{o}lder's inequality, \begin{align*} &\big|\int_G g(x)~h(u(x))D_iu(x)v(x)dx\big|\\ & \leq\int_G |g/\sqrt{\omega}||h(u(x))||D_iu(x)\sqrt{\omega}||v(x)|dx \\ &\leq \mu\,\|g /\sqrt{\omega}\|_{\infty,G}\int_G |D_iu\,\omega^{1/2}||v| dx\\ &\leq \mu\,\|g / \sqrt{\omega}\|_{\infty,G}\Big(\int_G |D_iu|^2wdx\Big)^{1/2} \Big(\int_G|v|^2dx\Big)^{1/2} \end{align*} and hence, by the weighted Friedrichs inequality \cite[p.27]{pav}, \begin{equation*} |B_2(u,v)|\leq C_G\|u\|_{0,1,2,G}\|v\|_{0,1,2,G}\quad\text{for all } u,v\in W_0^{1,2}(G,\omega). \end{equation*} where $C_G>0$ is a constant(depending on domain $G$). Since $B_2(u,.)$ is linear and bounded, there exists an operator $N:W_0^{1,2}(G,\omega)\to [W_0^{1,2}(G,\omega)]^*$ such that \[ (Nu|v)=B_2(u,v)\quad\text{for all }u,v\in W_0^{1,2}(G,\omega). \] Then, problem \eqref{eq:b1} is equivalent to operator equation $$ Bu+Nu=T,~u\in W_0^{1,2}(G,\omega). $$ \emph{Step 3:} (I) By \eqref{c1}, the embedding $W_0^{1,2}(G,\omega)\hookrightarrow\hookrightarrow L^4(G)$ is compact. (II) Let $u_n\rightharpoonup u$ in $W_0^{1,2}(G,\omega)$ as $n\to\infty$. Then, the sequence $\{u_n\}$ is bounded in $W_0^{1,2}(G,\omega)$. By (I), $ u_n\to u$ in $L^4(G)$ as $n\to\infty$. We claim that \begin{equation*} Nu_n\to Nu\quad\text{in }[W_0^{1,2}(G,\omega)]^*\quad\text{as }n\to\infty. \end{equation*} or \begin{equation*} \|Nu_n-Nu\|_{[W_0^{1,2}(G,\omega)]^*}=\sup_{\|v\|_{0,1,2,G}\leq 1}|(Nu_n-Nu|v)|\to0 \quad\text{as }n\to\infty. \end{equation*} Otherwise, there exists an $\epsilon_0>0$ and a sequence $\{v_n'\}$, which we denote briefly by $\{v_n\}$, such that $\|v_n\|_{0,1,2,G}\leq 1$ for all $n$, with \[ (Nu_n-Nu|v_n)\geq\epsilon_0\quad\text{for all }n\label{s1}. \] Passing to a subsequence, if necessary, we assume that $v_n\rightharpoonup v$ in $W_0^{1,2}(G,\omega)$ and it follows that $v_n\to v$ in $L^4(G)$ as $n\to\infty$. We note that \begin{equation} \begin{aligned} &h(u_n)(D_iu_n)v_n -h(u)(D_iu)v_n\\ &= (h(u_n)- h(u))(D_iu_n)v_n+h(u)(D_iu_n)(v_n-v)\\ &\quad+h(u)(D_iu_n-D_iu)v+h(u)(D_iu)(v-v_n). \end{aligned}\label{b4} \end{equation} Since $h$ is Lipschitz, we have \begin{equation*} |h(u_n)- h(u)|\leq A|u_n- u|, \end{equation*} by (I) and by the generalized H\"{o}lder's inequality, we obtain \begin{equation} \begin{aligned} &\big|\int_G g(x)(h(u_n)- h(u))(D_iu_n)v_ndx\big|\\ &\leq \|g / \sqrt{\omega}\|_{\infty,G}\int_G|h(u_n)- h(u)||D_iu_n\omega^{1/2}||v_n|dx\\ &\leq A\|g/ \sqrt{\omega}\|_{\infty,G}\Big(\int_G{| u_n- u|^{4}dx}\Big)^{1/4} \Big(\int_G|D_iu_n|^{2}\omega dx\Big)^{1/2} \Big(\int_G|v_n|^{4}dx\Big)^{1/4}\\ &\leq C_G\| u_n- u\|_{4,G}\| u_n\|_{0,1,2,G} \| v_n\|_{0,1,2,G}, \end{aligned} \label{h1} \end{equation} where $C_G$ is a constant (depending on $G$) arising out of weighted Fredrichs inequality. We have $u_n\to u$ and $v_n\to v$ in $L^4(G)$ as $n\to\infty$; i.e., $\| u_n- u\|_{4,G}\to0$ and $\| v_n- v\|_{4,G}\to0$. Moreover, the sequences $\{u_n\}$ and $\{v_n\}$ are bounded in $W_0^{1,2}(G,\omega)$. Again, we have $u_n\rightharpoonup u \quad\text{in }W_0^{1,2}(G,\omega)$ and \begin{align*} |r(u,w,v)|&=\big|\int_{G}\sum_{i=1}^n g(x)h(u(x))D_iw(x)v(x)dx\big|\\ &\leq C_G\|w\|_{0,1,2,G}\|v\|_{0,1,2,G}\quad\text{for all }u,v,w\in W_0^{1,2}(G,\omega), \end{align*} due to the H\"{o}lder's inequality, and hence, the linear functional $w\mapsto r(u,w,v)$ is continuous on $W_0^{1,2}(G,\omega)$. Finally, we have \begin{equation}\label{r1} r(u,u_n-u,v)\to0\quad\text{as }n\to\infty. \end{equation} By \eqref{b4},\eqref{r1} and by similar arguments as in\eqref{h1}, we have \begin{equation} \begin{aligned} |(Nu_n-Nu|v_n)| &=\sum_{i=1}^n \big|\int_{G}g(x)\{h(u_n)(D_iu_n)v_n-h(u)(D_iu)v_n\}dx\big|\\ &\leq\sum_{i=1}^n \int_{G}|g / \sqrt{\omega}||h(u_n)(D_iu_n)v_n-h(u)(D_iu)v_n |\omega^\frac{1}{2}dx \\ &\leq \|g / \sqrt{\omega}\|_{\infty,G}C_G\{A\|u_n-u\|_{4} \| u_n\|_{0,1,2,G}\| v_n\|_{0,1,2,G}\\ &\quad +\mu\| v_n- v\|_{4,G}\| u_n\|_{0,1,2,G}+\mu\| v_n- v\|_{4,G}\|u\|_{0,1,2,G}\}\\ &\quad +|r(u,u_n-u,v)|\to0 \quad\text{as } n\to\infty. \end{aligned} \label{b5} \end{equation} Relation \eqref{b5} contradicts \eqref{s1} and hence, $N$ is strongly continuous. \emph{Step 4:} For all $u\in W_0^{1,2}(G,\omega)$, \begin{align*} |B_2(u,u)| &\leq \big|\int_G\sum_{i=1}^ng~{h(u)(D_iu)udx\big|}\\ &\leq \mu\|g/\sqrt{\omega}\|_{\infty,G} \int_G\sum_{i=1}^n|D_iu\,\omega^{1/2}||u|dx\\ &\leq \mu\|g/\sqrt{\omega}\|_{\infty,G}\sum_{i=1}^n \Big(\int_G|D_iu|^2\omega dx\Big)^{1/2}\Big(\int_G|u|^{2}dx\Big)^{1/2}\\ &\leq \mu C_G\|g/\sqrt{\omega}\|_{\infty,G}\|u\|_{0,1,2,G}^2, \end{align*} where $C_G$ is a constant(depending on $G$) arising out of weighted Fredrichs inequality. By \eqref{eq:a1}, there exists a constant $\lambda>0$ such that \begin{equation*} B_1(u,u)\geq \lambda\|u\|_{0,1,2,G}^2\quad\text{for all }u\in W_0^{1,2}(G,\omega). \end{equation*} This implies \begin{align*} \big(Bu+Nu|u\big)&=B_1(u,u)+B_2(u,u)\\ &\geq(\lambda-\mu C_{G}\|g/\sqrt{\omega}\|_{\infty})\|u\|_{0,1,2,G}^2\quad \text{for all }u\in W_0^{1,2}(G,\omega); \end{align*} i.e., $B+N$ is coercive if $\mu C_{G}\|g/\sqrt{\omega}\|_{\infty}<\lambda$. \emph{Step 5:} Since $B$ is uniformly monotone and continuous, $N$ is strongly continuous and $B+N$ is coercive, by \cite[Proposition 26.16, p.576]{zed1}, we note that the operator $B+N$ is pseudomonotone. Also, we have $B+N$ is continuous, and bounded. Now, for $\mu C_{G}\|g/\sqrt{\omega}\|_{\infty}<\lambda$, by Proposition \ref{pr1}, problem \eqref{eq:b1} has a weak $\text{solution in }W_0^{1,2}(G,\omega)$. \end{proof} \section{Unbounded domain} Let $\Omega$ be a domain (not necessarily bounded) in $\mathbb{R}^n$ with $1\leq n\leq3$. We consider the degenerate semilinear elliptic BVP \begin{equation}\label{u1} \begin{gathered} Lu(x)+\sum_{i=1}^n g(x)h(u(x))D_iu(x)=f(x)\quad\text{in }\Omega, \\ u(x)=0\quad \text{on }\partial \Omega, \end{gathered} \end{equation} \begin{itemize} \item [(H1')] Assume $g/\sqrt{{\omega}}\in L^{\infty}(\Omega)$ and $f \in L^{2}(\Omega)$. \end{itemize} \begin{lemma} \label{lem2.4} Assume {\rm (H1')} and {\rm (H2)}. If $\mu C_{\Omega_l}\|g/\sqrt{\omega}\|_{\infty,\Omega}<\lambda$, then the BVP \begin{equation}\label{eq:b5} \begin{gathered} Lu+ \sum_{i=1}^n g~h(u)D_iu=f\quad \text{in }\Omega_l,\\ u=0\quad \text{on }\partial \Omega_l \end{gathered} \end{equation} has a weak solution $u=u_l\in W^{1,2}_0(\Omega_l,\omega)$ for $l=1,2,3,\dots$. In addition, for $k\geq l$, $\|u_k\|_{0,1,2,\Omega_l}\leq {\beta}_0$, where ${\beta}_0$ is independent of $k$. \end{lemma} \begin{proof} We use arguments similar to those in Theorem \ref{t1}, Let $u_k\in W_0^{1,2}(\Omega_k,\omega)$ be the solutions of \eqref{eq:b5} in each bounded subdomains $\Omega_k$. Also $B_1,B_2$ and $T$ are defined in a similar way as in section-3. Then, from the hypotheses and relation \eqref{c1}, we note that for $k\geq l$, \begin{gather*} |B_1(u_k,u_k)|\leq c \|u_k\|_{0,1,2,\Omega_l}^2\\ |B_2(u_k,u_k)| \leq \mu C_{\Omega_l}\|{\frac{g}{\sqrt{\omega}}}\|_{\infty,\Omega_l} \|u_k\|_{0,1,2,\Omega_l}^2\\ |T(u_k)|\leq C_{\Omega_{l}}\|f\|_{2,\Omega_l} \|u_k\|_{0,1,2,\Omega_l}, \end{gather*} where $C_{\Omega_l}$ (is the constant depending on the domain $\Omega_l$) independent of $k$. Also, we have for $k\geq l$ \begin{align*} B_1(u_k,u_k) \geq\lambda\int_{\Omega_l}|Du_k|^2\omega dx =\lambda \|u_k\|^2_{0,1,2,\Omega_l}. \end{align*} We obtain \begin{equation}\label{e:m1} \|u_k\|^2_{0,1,2,\Omega_l}\leq\frac{1} {\lambda} B_1(u_k,u_k) \end{equation} Also, we note that \begin{align*} (Bu_k+Nu_k|u_k) &=B_1(u_k,u_k)+B_2(u_k,u_k)\\ &\geq (\lambda-\mu C_{\Omega_l}\|\frac{g}{\sqrt{\omega}}\|_{\infty,\Omega_l}) \|u_k\|^2_{0,1,2,\Omega_l} \end{align*} As, $T(u_k)= B_1(u_k,u_k)+B_2(u_k,u_k)$, we have \begin{equation}\label{e:m2} (\lambda-\mu C_{\Omega_l}\|\frac{g}{\sqrt{\omega}}\|_{\infty,\Omega_l}) \|u_k\|^2_{0,1,2,\Omega_l} \leq C_{\Omega_l} \|{f}\|_{2,\Omega_l}\|u_k\|_{0,1,2,\Omega_l}. \end{equation} Since $\lambda> \mu C_{\Omega_l}\|\frac{g}{\sqrt{\omega}}\|_{\infty,\Omega_l}$, By \eqref{e:m1} and \eqref{e:m2}, we have \begin{align*} \|u_k\|_{0,1,2,\Omega_l} &\leq \frac{{C_{\Omega_l}}\|{f}\|_{2,\Omega_l}} {(\lambda-\mu C_{\Omega_l}\|\frac{g}{\sqrt{\omega}}\|_{\infty,\Omega_l})}\\ &\leq \frac{{C_{\Omega_l}}\|{f}\|_{2,\Omega}} {(\lambda-\mu C_{\Omega_l}\|\frac{g}{\sqrt{\omega}}\|_{\infty,\Omega})}={\beta}_0, \end{align*} where ${\beta}_0$ is independent of $k$. Hence, \begin{equation}\label{e:uni} \|u_k\|_{0,1,2,\Omega_l}\leq {\beta}_0,\quad \text{for all }k\geq l \end{equation} \end{proof} \begin{theorem}\label{thm3.5} Let $\Omega = \cup^\infty_{l=1}{\Omega_l}$, $\Omega_l\subseteq\overline{ \Omega}_{l}\subseteq\Omega_{l+1}\subseteq \overline{\Omega}_{l+1}$ be bounded domains in $\Omega$, for $l\geq1$ and let the condition $\mu C_{\Omega_l}\|\frac{g}{\sqrt{\omega}}\|_{\infty,\Omega}<\lambda$ be fulfilled. Under the hypotheses {\rm (H1')} and \rm{(H2)}, \eqref{u1} has a weak solution $u \in W^{1,2}_{0}(\Omega,\omega)$. \end{theorem} \begin{proof} A part of this proof follows from \cite{eag,nou1,nou2}. Let $\{u_k\}$ be the sequence of solutions of \eqref{eq:b5} in $W^{1,2}_{0}(\Omega_k,\omega),(k\geq 1)$. Let $\tilde{u}_k$, for $k\geq 1$, denote the extension of $u_k$ by zero outside $\Omega_k$, which we continue to denote it by $u_k$. From \eqref{e:uni}, we have \[ \|u_k\|_{0,1,2,\Omega_l}\leq {\beta}_0, \quad \text{for }k\geq l. \] Then, $\{u_k\}$ has a subsequence $\{u_{k_m^1}\}$ which converges weakly to $u^1$, as $m\to\infty$, in $W^{1,2}_{0}(\Omega_1,\omega)$. Since $\{u_{k_m^1}\}$ is bounded in $W^{1,2}_{0}(\Omega_2,\omega)$, it has a convergent subsequence $\{u_{k_m^2}\}$ converging weakly to $u^2$ in $W^{1,2}_{0}(\Omega_2,\omega)$. By induction, we have $\{u_{k_m^{l-1}}\}$ has a subsequence $\{u_{k_m^l}\}$ which weakly converges to $u^l$ in $W^{1,2}_{0}(\Omega_l,\omega)$; i.e., in short, we have $u_{k_m^l}\rightharpoonup u^l$ in $W^{1,2}_{0}(\Omega_l,\omega),~l\geq 1$. Define $u:\Omega\to\mathbb{R}$ by $$ u(x):= {u}^l(x),\quad\text{for }x\in\Omega_l. $$ (Here, there is no confusion since ${u}^l(x)={u}^m(x)$, $x\in\Omega$, for any $m\geq l$). Let $M$ be any fixed (but arbitrary) bounded domain such that ${M }\subseteq\Omega$. Then, there exists an integer $l$ such that $M\subseteq \Omega_l$. We note that, the diagonal sequence $\{u_{k_m^m};m\geq l\}$ converges weakly to $u=u^l$ in $W^{1,2}_{0}(M,\omega)$, as $m\to\infty$. We still need to show that $u$ is the required weak solution. It is sufficient to show that $u$ is a weak solution of \eqref{u1} for an arbitrary bounded domain $M$ in $\Omega$. Since $u_{k_m^m}\rightharpoonup u^l$ in $W^{1,2}_{0}(M,\omega)$, we have \[ \int_M D(u_{k_m^m}-u).D\phi \,\omega dx\to0,\quad \text{as } m\to\infty, \] implies \[ \int_M{D_i(u_{k_m^m}-u)}D_j\phi \omega dx\to0,\quad\text{as } m\to\infty. \] From \eqref{eq:a1}, for a constant $c$, we have $|a_{ij}|\leq c \omega$. We observe that \begin{equation}\label{e:d0} \int_M{\sum_{i,j=1}^na_{ij}D_i(u_{k_m^m}-u)}D_j\phi\,dx \leq c\sum_{i,j=1}^n \int_MD_i(u_{k_m^m}-u)D_j\phi w\,dx \to 0, \end{equation} as $m\to\infty$. Also, by \eqref{c1}, $u_{k_m^m}$ $\to u$ in $L^4(M)$. We have, by the generalized H\"{o}lder's inequality \begin{equation} \label{d1} \begin{aligned} &\big|\int_M{g}(h(u_{k_m^m})-h(u))D_i(u_{k_m^m}-u)\phi dx\big|\\ &\leq A\int_M|{{g}}/{\sqrt{\omega}}||(u_{k_m^m}-u)||D_i(u_{k_m^m}-u) \sqrt{\omega}||\phi|dx \\ &\leq A\|\frac{{g}}{\sqrt{\omega}}\|_{\infty,M}\int_M|(u_{k_m^m}-u)||D_i(u_{k_m^m}-u) \sqrt{\omega}||\phi|dx\\ &\leq A\|\frac{{g}}{\sqrt{\omega}}\|_{\infty,M} \Big(\int_M|(u_{k_m^m}-u)|^{4}dx\Big)^{1/4} \Big(\int_M|D_i(u_{k_m^m}-u)|^{2}{\omega}dx\Big)^{1/2}\\ &\quad\times\Big(\int_M|\phi|^4dx\Big)^{1/4}\\ &\leq AC_M\|\frac{g}{\sqrt{\omega}}\|_{\infty,M}\|u_{k_m^m}-u\|_{4,M} \|u_{k_m^m}-u\|_{0,1,2,M} \|\phi\|_{2,M}\to0, \end{aligned} \end{equation} as $m\to\infty$. Since $M$ is an arbitrary bounded domain in $\Omega$, it follows from \eqref{e:d0} and \eqref{d1}, \begin{align*} &\int_\Omega \sum_{i,j=1}^na_{ij}(x)D_iu(x)D_j\phi(x)dx +\int_\Omega \sum_{i=1}^ng(x)h(u(x))D_iu(x) \phi(x)dx \\ &=\int_\Omega f(x)\phi(x)dx \end{align*} for every $\phi\in W^{1,2}_0(\Omega,\omega)$, which completes the proof. \end{proof} \begin{remark} \rm The above results still hold if $h$ is a bounded and continuous (not necessarily Lipschitz). We have to slightly modify the argument used in the inequalities \eqref{h1} and \eqref{d1} and the rest of the proof remains same. For a bounded domain $G$ and bounded function $h$, if $u\in L^2(G)$, we have $h(u)\in L^{4}(G)$. Define the Nemytskii operator %\label{eq:h1} $h_u:L^2(G)\to L^{4}(G)$ by $h_u(x)=h(u(x))$; we have $h_u$ is continuous \cite[Theorem 2.1]{kra}. Let $u_n\rightharpoonup u$ in $W^{1,2}_0(G,\omega)$, then \begin{align*} &\big|\int_G g(x)(h(u_n)- h(u))(D_iu_n)v_ndx\big|\\ &\leq \|g / \sqrt{\omega}\|_{\infty,G}\int_G|h(u_n)- h(u)||D_iu_n\omega^{1/2}||v_n|dx\\ &\leq C_G\|g / \sqrt{\omega}\|_{\infty,G}\|h(u_n)- h(u)\|_{4,G} \|u_n\|_{0,1,2,G}\|v_n\|_{0,1,2,G}\to0, \quad\text{as } m\to\infty. \end{align*} Similar argument can be use to prove the inequality \eqref{d1} in section 4. \end{remark} \begin{thebibliography}{00} \bibitem{benci} Benci, V.; Fortunato, D.; \emph{Weighted sobolev spaces and the nonlinear Dirichlet problem in unbounded domains,} Ann. Mat. Pura Appl. (4) 121, (1979), 319-336. \bibitem{bere3} Berestycki, H.; Lions, P. L.; \emph{Nonlinear scalar field equations, I existence of a ground state}, Arch. Rational Mech. Anal. 82, (1983), 313-345. \bibitem{bere4} Berestycki, H.; Lions, P. L.; \emph{Nonlinear scalar field equations, II existence of infinitely many solutions}, Arch. Rational Mech. Anal. 82, (1983), 346-375. \bibitem{melv} Berger, M. S.; Schechter, M.; \emph{Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains,} Trans. Amer. Math. Soc. 172, (1972), 261-278. \bibitem{bong} Bongers, A.; Heinz, H. P.; Kiipper, T.; \emph{Existence and bifurcation theorems for nonlinear elliptic eigenvalue problems on unbounded domains}, J. Diff. Equations, 47, (1983), 327-357. \bibitem{brz} Brezis, H.; \emph{Equations et inequations non lineaires dans les espaces vectoriels en dualite}, Ann. Inst. Fourier, Grenoble, 18, 1, (1968), 115-175. \bibitem{brow} Browder, F. E.; \emph{Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains,} Proc. Nat. Acad. Sci. 74, 7 (1977), 2659-2661. \bibitem{pac} Cac, N.P.; \emph{Nonlinear elliptic boundary value problems for unbounded domains}, J. Diff. Eqns. 45 (1982), 191-198. \bibitem{app} Cavalheiro, A. C.; \emph{An approximation theorem for solutions of degenerate elliptic equations}, Proc. of the Edinburgh Math. Soc. 45, 363-389, (2002). \bibitem{wei} Chanillo, S.; Wheeden, R. L.; \emph{Weighted Poincar\'e and Sobolev inequalities and estimates for the Peano maximal functions}, Am. J. Math. 107, 1119-1226, (1985). \bibitem{chi} Chiad\`{o} Piat, V.; Serra Cassano, F.; \emph{Relaxation of degenerate variational integrals}, Nonlinear Anal. 22, 409-429, (1994). \bibitem{pavm} Drabek, P., Kufner, A.; Mustonen, V.; \emph{Pseudo-monotonicity and degenerated or singular elliptic operators,} Vol. 58, Bull. Austral. Math. Soc. (1998), 213-221. \bibitem{pav} Drabek, P.; Kufner, A.; F. Nicolosi, \emph{Quasilinear Elliptic Equations with Degenerations and Singularities,} de Gruyter Series in Nonlinear Analysis and Applications, Vol. 5, Berlin, New York, (1997). \bibitem{edm} Edmunds, D. E.; Webb, J. R. L.; \emph{Quasilinear Elliptic Problems in Unbounded Domains}, Proc. R. Soc. Lond. A.334, (1973), 397-410. \bibitem{wie2} Fabes, E.; Jerison, D.; Kenig, C.; \emph{The Wiener test for degenerate elliptic equations}, Ann. Inst. Fourier (Grenoble), 32(3), 151-182, (1982). \bibitem{loc} Fabes, E.; Kenig, C.; Serapioni, R; \emph{The local regularity of solutions of degenerate elliptic equations}, Comm. in P.D.E, 7(1), 77-116, (1982). \bibitem{fra} Franchi, B.; Serapioni, R.; \emph{Pointwise estimates for a class of strongly degenerate elliptic operators: A geometrical approach}, Ann. Scuola Norm. Sup. Pisa, 14, 527-568, (1987). \bibitem{gar} Garcia-Cuerva, J.; Rubio de Francia, J. L.; \emph{Weighted norm inequalities and related topics}, North-Holland Mathematics Studies, Amsterdam, 116, (1985). \bibitem{eag} Graham-Eagle, J.; \emph{Monotone methods for semilinear elliptic equations in unbounded domains}, J. Math. Anal. Appl. 137, 122-131, (1989). \bibitem{hei} Heinonen, J.; Kilpel\"{a}inen, T.; Martio, O.; \emph{Nonlinear Potential Theory of Degenerate Elliptic Equations}, Oxford Math. Monographs, Clarendon Press, (1993). \bibitem{kra} Krasnolsel'skii, M. A.; \emph{Topological Methods in the Theory of Nonlinear Integral Equations}, GITTL, Moscow, (1956). \bibitem{landes} Landes, R.; Mustonen, V.; \emph{On pseudo-monotone operators and nonlinear noncoercive variational problems on unbounded domains}, Math. Ann. 248, (1980), 241-246. \bibitem{nou1} Noussair, E. S.; Swanson, C. A.; \emph{Global positive solutions of semilinear elliptic problems}, Pacific J. Math. 115, 177-192, (1984). \bibitem{nou2} Noussair, E. S.; Swanson, C. A.; \emph{Positive solutions of quasilinear elliptic equations in exterior domains}, J. Math. Anal. Appl. 75, 121-133, (1980). \bibitem{pot2} Turesson, B. O.; \emph{Nonlinear Potential Theory and Weighted Sobolev Spaces}, Lec. Notes in Math. 1736, Springer-Verlag (2000), Berlin. \bibitem{zed2} Zeidler, E.; \emph{Nonlinear Functional anlysis and its Applications}, Part II/A, Springer-Verlag, New York (1990). \bibitem{zed1} Zeidler, E.; \emph{Nonlinear Functional anlysis and its Applications}, Part II/B, Springer-Verlag, New York, (1990). \end{thebibliography} \end{document}