\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 47, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/47\hfil Weighted pseudo-almost periodic solutions] {Weighted pseudo-almost periodic solutions for some neutral partial functional differential equations} \author[M. Damak, K. Ezzinbi, L. Souden \hfil EJDE-2012/47\hfilneg] {Mondher Damak, Khalil Ezzinbi, Lotfi Souden} % in alphabetical order \address{Mondher Damak \newline Universit\'e de Sfax, Facult\'e des Sciences Sfax\\ Route de Soukra, Km 3.5, B.P. 802 3018 Sfax, Tunisie} \email{Mondher.Damak@fss.rnu.tn} \address{Khalil Ezzinbi \newline Universit\'e Cadi Ayyad, Facult\'e des Sciences Semlalia\\ D\'epartement de Math\'ematiques, B.P. 2390, Marrakech, Morocco} \email{ezzinbi@ucam.ac.ma} \address{Lotfi Souden \newline D\'epartement de Math\'ematiques, Facult\'e Des Sciences De Gafsa. Cit\'e Zarroug 2121, Gafsa, Tunisie} \email{ltfsdn@gmail.com} \thanks{Submitted November 21, 2011. Published March 23, 2012.} \subjclass[2000]{34K40, 35B15, 34C27, 34K14} \keywords{Neutral equation; semigroup; mild solution; \hfill\break\indent Stepanov-weighted pseudo almost periodic functions; Banach fixed point theorem} \begin{abstract} In this article we study the existence of weighted pseudo almost periodic solutions of an autonomous neutral functional differential equation with Stepanov-Weighted pseudo almost periodic terms in a Banach space. We use the contraction mapping principle to show the existence and the uniqueness of weighted pseudo almost periodic solution of the equation. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Let $(\mathbb{X},\| \cdot\|)$ be a Banach space and $p\geq 1$. The concept of pseudo-almost periodicity, was introduced in the early nineties in \cite{Zhang,Zh} as a natural generalization of the classical almost periodicity in the sense of Bohr, the existence of pseudo-almost periodic solutions to functional differential equations has been of a great interest to several authors. We refer the reader to \cite{Kha,Kl}. The concept of weighted pseudo-almost periodic functions, which was introduced by Diagana \cite{T. Diagana}, as a natural generalization of the classical pseudo almost periodic functions. We refer to reader \cite{Kh} \cite{Khl}. The concept of Stepanov pseudo almost periodic (or $S^p$-pseudo almost periodic) was introduced and studied, in the recent years in \cite{Diagana}. In recent years Diagana \cite{T.Diagana} study the existence of pseudo-almost periodic solutions to some nonautonomous differential equations in the case when the semilinear forcing term is both continuous and $S^p$-pseudo almost periodic for $p > 1$, $$ \frac{d}{dt}u(t) = Au(t)+f(t,u(t)), \quad \text{for } t\in\mathbb{R} $$ Where $A$ is the infinitesimal generator of a $C_0$-semigroup $\{T(t)\}_{t\geq 0}$, and $f:\mathbb{R}\times \mathbb{X}\to\mathbb{X}$ is Stepanov- pseudo almost periodic functions for $p>1$. In \cite{Ngue}, the author introduced the concept of weighted pseudo-almost periodicity in the sense of Stepanov, also called $S^p$-weighted pseudo-almost periodicity and study its properties. and present a result on the existence of weighted pseudo-almost periodic solutions to the N-dimensional heat equation with $S^p$-weighted pseudo almost periodic coefficients of the form $$ u'(t) = Au(t) + f (t, Bu(t)) $$ where $A : D(A) \subset \mathbb{X} \to \mathbb{X} $ is a sectorial linear operator on a Banach space $\mathbb{X}$ whose corresponding analytic semigroup $(T (t))_{t\geq 0}$ is hyperbolic and $B$ is an arbitrary linear (possibly unbounded) operator on $\mathbb{X}$, and $f$ is $S^p$-weighted pseudo almost periodic and jointly continuous function. In \cite{MD}, the author studied the existence of almost periodic solutions of an autonomous neutral functional differential equation with Stepanov-almost periodic terms in a Banach space of the form $$ \frac{d}{dt}[u(t)-F(t,u(t-g(t)))] =Au(t)+G(t,u(t),u(t-g(t))) $$ for $t\in\mathbb{R}$ and, $A$ is the infinitesimal generator of a $C_0$-semigroup $\{T(t)\}_{t\geq 0}$, $F:\mathbb{R}\times\mathbb{X}\to\mathbb{X}$, and $G:\mathbb{R}\times \mathbb{X}\times\mathbb{X}\to\mathbb{X}$ are Stepanov almost periodic functions. In this article, we study the existence of weighted pseudo almost periodic solutions of an autonomous neutral functional differential equation \begin{equation}\label{e1} \frac{d}{dt}[u(t)-F(t,u(t-r))] = A[u(t)-F(t,u(t-r))]+G(t,u(t),u(t-r)), \end{equation} for $t \in \mathbb{R}$, Where $A$ is the infinitesimal generator of a $C_0$-semigroup $\{T(t)\}_{t \geq 0}$, and $F:\mathbb{R}\times\mathbb{X}\to\mathbb{X}$, is Weighted pseudo almost periodic and $G:\mathbb{R}\times \mathbb{X}\times\mathbb{X}\to\mathbb{X}$ is Stepanov-weighted pseudo almost periodic functions. The rest of this article is organized as follows: In Section 2, we introduce the basic notations and recall the definitions and lemmas. In Section 3, we study the existence of weighted pseudo almost periodic solutions of \eqref{e1}. In section 4 we give an example to illustrate our result. \section{Preliminaries} In this section we give some basic results that will be used in the next. In the rest of this paper, $(\mathbb{X},\|\cdot\|)$ stands for a complex Banach space. \begin{definition} \label{def2.1}\rm A continuous function $f : \mathbb{R} \to \mathbb{X}$ is said to be almost periodic if for every $\epsilon>0$ there exists a positive number $l$ such that every interval of length $l$ contains a number $\tau$ such that $$ \|f(t+\tau)-f(t)\|<\epsilon, \quad \text{for } t\in \mathbb{R}. $$ \end{definition} Let $AP(\mathbb{R};\mathbb{X})$ be the set of all almost periodic functions from $\mathbb{R}$ to $\mathbb{X}$. Then $(AP(\mathbb{R};\mathbb{X}),\|\cdot\|_{\infty})$ is a Banach space with supremum norm given by $$ \|u\|_{\infty} = \sup_{t\in \mathbb{R}}\|u(t)\|. $$ \begin{definition} \label{def2.1b}\rm A continuous function $f : \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ is said to be almost periodic in $t$ uniformly for $y \in \mathbb{Y}$, if for every $\epsilon>0$ and any compact subset $K$ of $\mathbb{Y}$, there exists a positive number $l$ such that every interval of length $l$ contains a number $\tau$ such that $$ \|f(t+\tau,y)-f(t,y)\|<\epsilon, \quad \text{for } (t,y) \in \mathbb{R}\times K. $$ we denote the set of such functions as $AP(\mathbb{R}\times \mathbb{Y}; \mathbb{X})$. \end{definition} \begin{lemma}[\cite{Amir}] \label{prop2.7} If $f\in AP(\mathbb{R}\times \mathbb{Y};\mathbb{X})$ and $h\in AP(\mathbb{R};\mathbb{Y})$, then the function $f(.,h(.))\in AP(\mathbb{R};\mathbb{X})$. \end{lemma} Now, let $\mathbb{U}$ be the collection of function (weights) $\rho :\mathbb{R} \to (0,\infty)$, which are locally integrable over $\mathbb{R}$ such that $\rho(x)>0$ almost everywhere. Set For $T>0$, \begin{gather*} \operatorname{meas}(T,\rho):=\int_{-T}^T \rho(t) dt, \\ \mathbb{U}_{\infty};=\{\rho \in \mathbb{U}: \lim_{T \to \infty} m(T,\rho)=\infty \text{ and } \liminf_{t \in \mathbb{R}} \rho(t)>0 \},\\ \mathbb{U}_B:=\{\rho \in \mathbb{U}_{\infty}: \rho \text{ is bounded} \}. \end{gather*} Obviously, $\mathbb{U}_B \subset \mathbb{U}_{\infty} \subset \mathbb{U}$, with strict inclusions. For each $\rho \in \mathbb{U}_{\infty}$, define $$ PAP_0(X,\rho)=\{\phi \in BC(\mathbb{R},\mathbb{X}): \lim_{T \to +\infty} \frac{1}{\operatorname{meas}(T,\rho)} \int_{-T}^{T} \|\phi(s)\|\rho(s)ds=0\} $$ similarly, $PAP_0(\mathbb{R}\times \mathbb{Y};\mathbb{X},\rho)$ denote the collection of all function, $\phi: \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$, jointly continuous, and $\phi(.,y)$, bounded for each $y \in \mathbb{Y}$, and $$ \lim_{T \to +\infty} \frac{1}{\operatorname{meas}(T,\rho)} \int_{-T}^{T} \|\phi(s,y)\|\rho(s)ds=0 $$ uniformly for any $y$ in any compact subset of $\mathbb{Y}$. \begin{definition} \label{def2.8}\rm Let $\rho \in \mathbb{U}_{\infty}$. A function $f \in BC(\mathbb{R}; \mathbb{X})$ is called weighted pseudo almost periodic or $\rho$-pseudo almost periodic if it can be expressed as $f=g+h$ where $g \in AP(\mathbb{R};\mathbb{X})$ and $h \in PAP_0(\mathbb{R};\mathbb{X},\rho)$. The collection of such function will be denoted by $PAP(\mathbb{R};\mathbb{X},\rho)$. \end{definition} \begin{definition} \label{def2.9}\rm Let $\rho \in \mathbb{U}_{\infty}$. A function $f \in BC(\mathbb{R} \times \mathbb{Y}; \mathbb{X})$ is called weighted pseudo almost periodic or $\rho$-pseudo almost periodic if it can be expressed as $f=g+h$ where $g \in AP(\mathbb{R} \times \mathbb{Y}; \mathbb{X})$ and $h \in PAP_0(\mathbb{R} \times \mathbb{Y}; \mathbb{X},\rho)$. The collection of such function will be denoted by $PAP(\mathbb{R} \times \mathbb{Y}; \mathbb{X},\rho)$ \end{definition} \begin{definition} \label{def2.9b}\rm Let $\rho \in \mathbb{U}_{\infty}$. A function $f \in BC(\mathbb{R} \times \mathbb{W} \times \mathbb{Y}; \mathbb{X})$ is called weighted pseudo almost periodic or $\rho$-pseudo almost periodic if it can be expressed as $f=g+h$ where $g \in AP(\mathbb{R} \times \mathbb{W} \times \mathbb{Y}; \mathbb{X})$ and $h \in PAP_0(\mathbb{R} \times \mathbb{W} \times \mathbb{Y}; \mathbb{X},\rho)$. The collection of such function will be denoted by $PAP(\mathbb{R} \times \mathbb{W} \times \mathbb{Y}; \mathbb{X},\rho)$ \end{definition} \begin{remark} \rm (1) The weight $\rho(t)=1$, is called pseudo-almost periodic functions.\\ (2) Clearly that $PAP_0(\mathbb{R};\mathbb{X},\rho)$ is a linear subspace of $BC(\mathbb{R}, \mathbb{X})$.\\ (3) Let $\rho \in \mathbb{U}_{\infty}$, and assume that $$ \limsup_{t \to \infty}\frac{\rho(t+\tau)}{\rho(t)}<\infty, \quad \limsup_{T \to \infty}\frac{\operatorname{meas}(T+\tau,\rho)}{\operatorname{meas}(T,\rho)} <\infty $$ for all $\tau \in \mathbb{R}$. In that case, the space $PAP(\mathbb{R};\mathbb{X}, \rho)$ is translation invariant. In this article, all weights $\rho \in \mathbb{U}_{\infty}$ for which $PAP(\mathbb{R};\mathbb{X}, \rho)$ is translation invariant will be denoted $\mathbb{U}_{\rm inv}$. \end{remark} \begin{theorem}[\cite{J. Liang}] Fix $\rho \in U_{\rm inv}$, the decomposition of weighted pseudo almost periodic function $f=g+h$, where $g \in AP(\mathbb{R};\mathbb{X})$ and $h \in PAP_0(\mathbb{R};\mathbb{X},\rho)$, is unique. \end{theorem} \begin{theorem}[\cite{Diag}] Fix $\rho \in U_{\rm inv}$, then the space $(PAP(\mathbb{R};\mathbb{X},\rho),\|\cdot\|_{\infty})$ is a Banach space. \end{theorem} \begin{lemma}[\cite{Xiaoxing Chen}] \label{prop65} Let $\rho \in U_{\rm inv}$. If $f \in PAP_0(\mathbb{R};\mathbb{X}, \rho)$, then for all $r \in \mathbb{R}$, $f(. - r) \in PAP_0(\mathbb{R};\mathbb{X}, \rho)$. \end{lemma} \begin{lemma}[\cite{T.Diagana}] \label{lemma23} Let $\{f_n\}_{n \in \mathbb{N}} \subset PAP(\mathbb{R};\mathbb{X},\rho)$ be a sequence of functions. If $f_n$ converges uniformly to some $f$, then $f \in PAP(\mathbb{R};\mathbb{X},\rho)$. \end{lemma} \begin{theorem}[\cite{Tok}] \label{thm2.12} Let $\rho \in \mathbb{U}_{\infty}$, $F \in PAP(\mathbb{R}\times \mathbb{Y};\mathbb{X},\rho)$ and $h \in PAP(\mathbb{R};\mathbb{Y},\rho)$. Assume that there exists $L$ such that $$ \|F(t,x)-F(t,y)\|\leq L\|x-y\| $$ for all $t \in \mathbb{R}$ and for each $x, y \in \mathbb{X}$. Then $F(.,h(.)) \in PAP(\mathbb{R};\mathbb{X},\rho)$ \end{theorem} \begin{definition} \label{def2.10}\rm The Bochner transform $f^b(t,s), t \in \mathbb{R}, s \in [0,1]$, of a function $f(t)$ on $\mathbb{R}$, with value in $\mathbb{X}$, is defined by $$f^b(t,s)=f(t+s).$$ \end{definition} \begin{definition} \label{def2.11}\rm Let $1 \leq p <\infty$. The space $BS^p(\mathbb{R};\mathbb{X})$ of all Stepanov bounded functions, with the exponent $p$, consists of all measurable functions $f$ on $\mathbb{R}$ with value in $\mathbb{X}$ such that $f^b \in L^{\infty}(\mathbb{R}, L^p(0,1);\mathbb{X})$. This is a Banach space with the norm $$ \|f\|_{S^{p}} = \|f^b\|_{L^{\infty}(\mathbb{R}, L^p)}= \sup_{t\in\mathbb{R}} \Big(\int_{t}^{t+1}\|f(s)\|^{p}ds\Big)^{1/p}<\infty. $$ A function, $f\in L^{p}_{\rm loc}(\mathbb{R};\mathbb{X})$ is $p$-Stepanov bounded ($S^{p}$-bounded) if $ \|f\|_{S^{p}}<\infty$. It is obvious that $L^p(\mathbb{R}; \mathbb{X}) \subset BS^p(\mathbb{R};\mathbb{X}) \subset L^{p}_{\rm loc}(\mathbb{R};\mathbb{X})$ \end{definition} \begin{definition} \label{stepanovap}\rm A function $f\in BS^p(\mathbb{R};\mathbb{X})$ is said to be almost periodic in the sense of Stepanov ($S^{p}$-almost periodic) if for every $\epsilon>0$ there exists a positive number $l$ such that every interval of length $l$ contains a number $\tau$ such that $$ \sup_{t\in\mathbb{R}}\Big(\int_{t}^{t+1}\|f(s+\tau)-f(s)\|^{p}ds \Big)^{1/p}<\epsilon. $$ \end{definition} Let $S^{p}-AP(\mathbb{R};\mathbb{X})$ be the set of all $S^{p}$-almost periodic functions. It is clear that, if $f$ is almost periodic implies $f$ is $S^{p}$-almost periodic; that is, $AP(\mathbb{R};\mathbb{X})\subset S^{p}-AP(\mathbb{R};\mathbb{X})$. Moreover, if $1\leq m0$ and $M\geq1$ such that \begin{equation} \|T(t)\|\leq Me^{-\omega t}\quad \text{for } t \in \mathbb{R} \label{e3.1} \end{equation} \item[(H1)] The function $F$ belong to $PAP(\mathbb{R}\times \mathbb{X};\mathbb{X},\rho)$ satisfy the property that there exists $L_F>0$ such that $$ \|F(t,u)-F(t,v)\|\leq L_F\|u-v\| $$ for all $t \in\mathbb{R}$ and for each $u,v\in \mathbb{X}$. \item[(H2)] The function $G$ belong $S^{p}-PAP(\mathbb{R}\times \mathbb{X} \times \mathbb{X};\mathbb{X},\rho)$ and satisfy the followings property that there exists $L_G>0$ such that $$ \|G(t,x_1,y_1)-G(t,x_2,y_2)\| \leq L_G(\|x_1-x_2\|+\|y_1-y_2\|) $$ for all $t\in\mathbb{R}$ and for $(x_{1},y_1),(x_2,y_2)\in \mathbb{X} \times \mathbb{X}$. \end{itemize} \begin{definition} \label{prop1} \rm Let $u: \mathbb{R} \to \mathbb{X}$ be an integral solution of \eqref{e1}. Then for any $t \geq \sigma$ and any $\sigma \in \mathbb{R}$, \begin{equation} \begin{split} &u(t)-F(t,u(t-r))\\ &=T(t-\sigma)[u(\sigma)-F(\sigma,u(\sigma-r))]+\int_{\sigma}^tT(t-s)G(s,u(s),u(s-r))ds, \quad t\in\mathbb{R}. \end{split} \label{sol1} \end{equation} \end{definition} \begin{theorem} Assume that {\rm (H0)--(H2)} hold. Let $u$ be a bounded integral solution of \eqref{e1} on $\mathbb{R}$ then, for all $t \in \mathbb{R}$ \begin{equation} u(t)=F(t,u(t-r))+ \int_{-\infty}^tT(t-s)G(s,u(s),u(s-r))ds. \end{equation} \end{theorem} \begin{proof} For any $\sigma \in \mathbb{R}$, we have for all $t > \sigma$, $$ u(t)-F(t,u(t-r))=T(t-\sigma)[u(\sigma)-F(\sigma,u(\sigma-r))] +\int_{\sigma}^tT(t-s)G(s,u(s),u(s-r))ds $$ Since $u$ is bounded and $F$ is lipschitz continuous with respect the second argument, then there exists a constant $M$ such that $\|u(t)\|\leq M$ for all $t \in \mathbb{R}$, we have $$ \|T(t-\sigma)[u(\sigma)-F(\sigma,u(\sigma-r))]\| \leq Me^{-\omega(t-\sigma)}(M+2ML_F+\|F(0,u(-r))\|) $$ and $\lim_{\sigma \to -\infty}T(t-\sigma)[u(\sigma)-F(\sigma,u(\sigma-r))]=0$. Hence we have $$ u(t)=F(t,u(t-r))+ \int_{-\infty}^tT(t-s)G(s,u(s),u(s-r))ds, \quad t\in\mathbb{R}. $$ Conversely if $u$ belongs to $BC(\mathbb{R},\mathbb{X})$, it is easy to see that the operator $\Gamma u(t)= F(t,u(t-r))+ \int_{-\infty}^tT(t-s)G(s,u(s),u(s-r))ds$ defined on $BC(\mathbb{R},\mathbb{X})$ into itself, if $u$ is given by $u(t)=F(t,u(t-r))+ \int_{-\infty}^tT(t-s)G(s,u(s),u(s-r))ds, \quad t\in\mathbb{R} $ then for any $t \geq \sigma$, \begin{align*} u(t) &=F(t,u(t-r))+ \int_{-\infty}^{\sigma}T(t-s)G(s,u(s),u(s-r))ds \\ &\quad + \int_{\sigma}^tT(t-s)G(s,u(s),u(s-r))ds\\ &=F(t,u(t-r)) +T(t-\sigma)[u(\sigma)-F(\sigma,u(\sigma-r))]\\ &\quad +\int_{\sigma}^tT(t-s)G(s,u(s),u(s-r))ds \end{align*} \end{proof} \begin{theorem} Assume that {\rm (H0)--(H2)} hold. If $(L_F+\frac{2ML_G}{\omega}<1)$ then there exists a unique bounded solution of \eqref{e1} on $\mathbb{R}$. \end{theorem} \begin{proof} We consider $\Gamma: BC(\mathbb{R};\mathbb{X}) \to BC(\mathbb{R};\mathbb{X})$ defined by, $\Gamma u(t)= F(t,u(t-r))+ \int_{-\infty}^tT(t-s)G(s,u(s),u(s-r))ds$. Let $u,v\in BC(\mathbb{R};\mathbb{X})$. We observed that \begin{align*} &\|(\Gamma u)(t)-(\Gamma v)(t)\|\\ &\leq \|F(t,u(t-r))-F(t-v(t-r))\|\\ &\quad +\int_{-\infty}^t\|T(t-s)\|\|G(s,u(s),u(s-r))-G(s,v(s),v(s-r))\|ds\\ &\leq L_F\|u(t-r)-v(t-r)\|\\ &\quad + ML_G\int_{-\infty}^te^{-\omega(t-s)}(\|u(s)-v(s)\| +\|u-v\|_{\infty})ds\\ &\leq L_F\|u-v\|_{\infty}+2ML_G \Big(\int_{-\infty}^te^{-\omega(t-s)}ds\Big)\|u-v\|_{\infty}\\ &\leq \big(L_F+\frac{2M}{\omega}L_G\big)\|u-v\|_{\infty}. \end{align*} Thus \[ \|\Gamma u-\Gamma v)\|_{\infty}\leq \big(L_F+\frac{2M}{\omega}L_G\big) \|u-v\|_{\infty}. \] Thus $\Gamma$ is a contraction map on $BC(\mathbb{R};\mathbb{X})$. Therefore, $\Gamma$ has unique fixed point in $BC(\mathbb{R};\mathbb{X})$, therefore the equation \eqref{e1} has unique mild solution. \end{proof} \begin{theorem}[\cite{Tok}] \label{thm3.4} Let $\rho \in \mathbb{U}_{\infty}$. If $G \in PAP^p(\mathbb{R}\times \mathbb{W}\times \mathbb{Y}; \mathbb{X},\rho)$ satisfies the Lipschitz condition $$ \|G(t,x_1,y_1)-G(t,x_2,y_2) \|_X \leq L_G(\|x_1-x_2 \|_W+\|y_1-y_2 \|_Y) $$ for all $t \in \mathbb{R}$ and $ x_1,x_2 \in \mathbb{W}$ and $y_1,y_2 \in \mathbb{Y}$. If $h\in PAP(\mathbb{R}; \mathbb{Y},\rho)$ and $\phi \in PAP(\mathbb{R};\mathbb{W},\rho)$, then $G(.,\phi(.), h(.))\in PAP^p(\mathbb{R};\mathbb{X},\rho)$. \end{theorem} We define two mappings $\Gamma$ and $\Lambda$ by \begin{gather} (\Gamma u)(t)= F(t,u(t-r))+\int_{-\infty}^tT(t-s)G(s,u(s), u(s-r))ds, \label{3.1}\\ (\Lambda f)(t)= \int_{-\infty}^tT(t-s)f(s)ds,\quad t\in\mathbb{R}. \label{3.2} \end{gather} \begin{proposition} \label{prop3.5} Let $\rho \in \mathbb{U}_{\rm inv}$. If $u \in PAP(\mathbb{R};\mathbb{X},\rho)$ and $r \in \mathbb{R}$, then $u(.-r)\in PAP(\mathbb{R};\mathbb{X},\rho)$. \end{proposition} \begin{proof} We have $u(.)=x(.)+y(.)$, where $x(.) \in AP(\mathbb{R};\mathbb{X})$ and $y(.) \in PAP_0(\mathbb{R};\mathbb{X},\rho)$. It is easy to see that $x(t-r)$ belong to $AP(\mathbb{R};\mathbb{X})$ and from lemma \ref{prop65}, we have $y(.-r)\in PAP_0(\mathbb{R};\mathbb{X},\rho)$ \end{proof} \begin{lemma} \label{lemma31} Let $\rho \in \mathbb{U}_{\infty}$. If $f$ is an $S^{p}$-weighted pseudo almost periodic function, then the function $(\Lambda f) \in PAP(\mathbb{R};\mathbb{X},\rho)$. \end{lemma} \begin{proof} Since $f \in S^pPAP(\mathbb{R};\mathbb{X},\rho)$, then $f=g+h$ where $g \in S^p AP(\mathbb{R};\mathbb{X})$ and $h \in S^pPAP_0(\mathbb{R};\mathbb{X},\rho)$. We consider \[ (\Lambda g)(t)= \int_{-\infty}^tT(t-s)g(s)ds,\quad (\Lambda h)(t)= \int_{-\infty}^tT(t-s)h(s)ds,\quad t\in\mathbb{R}. \] The conjugate of $p$ is denoted by $q$; that is, $\frac{1}{p} + \frac{1}{q} = 1$. We divide the proof onto several steps: \noindent\textbf{Step 1:} $\bullet$ If $p>1$ then $11$, We prove that $(\Lambda g)(.) \in AP(\mathbb{R};\mathbb{X})$. Since $g \in S^p AP(\mathbb{R};\mathbb{X})$, then for each $\epsilon > 0$ there exists $l(\epsilon) > 0$ such that every interval of length $l(\epsilon)$ contains a $\tau$ with the property $$ \sup_{t \in \mathbb{R}}[\int_{t}^{t+1}\|g(s+\tau)-g(s)\|^pds^{1/p}] <\epsilon_1 \epsilon $$ where $\epsilon_1= \sqrt[q]{q \omega}(e^{\omega}-1)/\big(M(e^{q \omega}-1)\big)$, \begin{equation} \begin{split} &\|(\Lambda g)_n(t+\tau)-(\Lambda_1g)_n(t)\|\\ &=\| \int_{t+\tau-n}^{t+\tau-n+1}T(t+\tau-s)g(s)ds - \int_{t-n}^{t-n+1}T(t-s)g(s)ds\| \\ & \leq \int_{t-n}^{t-n+1}\|T(t-s)\|\|g(s+\tau)-g(s)\|ds\\ &\leq M [\int_{t-n}^{t-n+1}e^{-q\omega(t-s)}ds]^{1/q}[\int_{t-n}^{t-n+1}\|g(s+\tau)-g(s)\|^pds]^{1/p}\\ & \leq \frac{M(e^{q \omega}-1)}{\sqrt[q]{q \omega}}e^{-n \omega} \epsilon_1 \epsilon. \end{split} \end{equation} Therefore, $$\sum_{n=1}^{\infty}\|(\Lambda g)_n(t+\tau)-(\Lambda g)_n(t)\| < \epsilon \epsilon_1 \frac{M(e^{q \omega}-1)}{\sqrt[q]{q \omega}} \sum_{n=1}^{\infty}e^{-n \omega}=\epsilon , $$ hence $ \sum_{n=1}^{\infty}(\Lambda g)_n(.) \in AP(\mathbb{R},\mathbb{X})$ for any $n \in \mathbb{N}$ and $(\Lambda g)(.) \in AP(\mathbb{R};\mathbb{X})$. $\bullet$ If $p=1$ then $q=\infty$. We prove that $(\Lambda g)(.) \in AP(\mathbb{R};\mathbb{X})$. Since $g \in S^1 AP(\mathbb{R};\mathbb{X})$, then for each $\epsilon > 0$ there exists $l(\epsilon) > 0$ such that every interval of length $l(\epsilon)$ contains a $\tau$ with the property $$ \sup_{t \in \mathbb{R}}\int_{t}^{t+1}\|g(s+\tau)-g(s)\|ds<\epsilon_1 \epsilon $$ where $\epsilon_1= (1-e^{-\omega})/M$, \begin{equation} \begin{split} &\|(\Lambda g)_n(t+\tau)-(\Lambda_1g)_n(t)\|\\ &=\| \int_{t+\tau-n}^{t+\tau-n+1}T(t+\tau-s)g(s)ds - \int_{t-n}^{t-n+1}T(t-s)g(s)ds\| \\ & \leq \int_{t-n}^{t-n+1}\|T(t-s)\|\|g(s+\tau)-g(s)\|ds\\ &\leq M \sup_{t-n \leq s \leq t-n+1}e^{\omega(t-s)} \int_{t-n}^{t-n+1}\|g(s+\tau)-g(s)\|ds\\ & \leq Me^{ -\omega (n-1)} \epsilon_1 \epsilon. \end{split} \end{equation} Therefore, $$ \sum_{n=1}^{\infty}\|(\Lambda g)_n(t+\tau)-(\Lambda g)_n(t)\| < \epsilon \epsilon_1 M \sum_{n=1}^{\infty}e^{ -\omega (n-1)}=\epsilon , $$ hence $ \sum_{n=1}^{\infty}(\Lambda g)_n(.) \in AP(\mathbb{R},\mathbb{X})$ for any $n \in \mathbb{N}$ and $(\Lambda g)(.) \in AP(\mathbb{R};\mathbb{X})$. \noindent\textbf{Step 3:} We show that $(\Lambda h)(.) \in PAP_0(\mathbb{R};\mathbb{X},\rho)$. $\bullet$ If $p>1$. Let $T>0$, $h \in S^pPAP_0(\mathbb{R};\mathbb{X},\rho)$ we have that \begin{equation} \lim_{T \to +\infty}\frac{1}{\operatorname{meas}(T,\rho)} \int^T_{-T}(\int_s^{s+1} \| h(\sigma)\|^pd\sigma)^{1/p}\rho(s)ds=0 \end{equation} First we prove that $\Lambda h \in BC(\mathbb{R};\mathbb{X})$. Indeed it is similar to previous works of $\Lambda g$. Next we prove that $\Lambda h \in PAP_0(\mathbb{R};\mathbb{X},\rho)$. we consider $$ (\Lambda h)_{n}(t)= \int_{t-n}^{t-n+1}T(t-s)h(s)ds,\quad n\in\mathbb{N},\;t\in\mathbb{R}. $$ Using the Holder inequality and the estimate \ref{e3.1}, it follows that \begin{equation} \begin{split} \|(\Lambda h)_n(t)\| &=\| \int_{t-n}^{t-n+1}T(t-s)h(s)ds \| \\ & \leq \int_{t-n}^{t-n+1}\|T(t-s)\|\|h(s)\|ds\\ &\leq M [\int_{t-n}^{t-n+1}e^{-q\omega(t-s)}ds]^{1/q}[\int_{t-n}^{t-n+1}\|h(s)\|^pds]^{1/p}\\ & \leq \frac{M(e^{q \omega}-1)}{\sqrt[q]{q \omega}}e^{-n \omega} \|h\|_{S^p}. \end{split} \end{equation} It follows that \begin{align*} &\frac{1}{\operatorname{meas}(T,\rho)} \int^T_{-T}\| (\Lambda h)_n(t)\|\rho(t)dt \\ &\leq \frac{M(e^{q \omega}-1)}{\sqrt[q]{q \omega}}e^{-n \omega} \frac{1}{\operatorname{meas}(T,\rho)} \int^T_{-T}\|h(t)\|_{S^p}\rho(t)dt \end{align*} and \begin{align*} &\lim_{T \to +\infty}\frac{1}{\operatorname{meas}(T,\rho)} \int^T_{-T}\| (\Lambda h)_n(t)\|\rho(t)dt\\ &\leq \frac{M(e^{q \omega}-1)}{\sqrt[q]{q \omega}}e^{-n \omega}. \lim_{T \to +\infty}\frac{1}{\operatorname{meas}(T,\rho)} \int^T_{-T}\|h(t)\|_{S^p}\rho(t)dt=0 \end{align*} hence $(\Lambda h)_n \in PAP_0(\mathbb{R},X,\rho)$. On the other hand, using the assumption that $ \sum_{n=1}^{\infty}e^{-\omega n}$ is convergent, we then deduce from the well-known Weirstrass theorem that the series $\sum_{n=1}^{\infty} (\Lambda h)_n(t)$ is uniformly convergent on $\mathbb{R}$, furthermore $ \sum_{n=1}^{\infty} (\Lambda h)_n(t)=(\Lambda h)(t)$. Consequently $ \sum_{n=1}^{\infty} (\Lambda h)_n(t) \in PAP_0(\mathbb{R},X,\rho)$ and so $(\Lambda h)(t)$ from lemma \ref{lemma23}. $\bullet$ If $p=1$, Let $T>0$, $h \in S^pPAP_0(\mathbb{R};\mathbb{X},\rho)$ we have that \begin{equation} \lim_{T \to +\infty}\frac{1}{\operatorname{meas}(T,\rho)} \int^T_{-T} \Big(\int_s^{s+1} \| h(\sigma)\|d\sigma\Big) \rho(s)ds=0 \end{equation} Using the Holder inequality and the estimate \ref{e3.1}, it follows that \begin{equation} \begin{split} \|(\Lambda h)_n(t)\| &=\| \int_{t-n}^{t-n+1}T(t-s)h(s)ds \| \\ & \leq \int_{t-n}^{t-n+1}\|T(t-s)\|\|h(s)\|ds\\ &\leq M \sup_{t-n \leq s \leq t-n+1}e^{-\omega(t-s)}\int_{t-n}^{t-n+1}\|h(s)\|ds\\ & \leq Me^{-\omega(n-1)} \|h\|_{S^1}. \end{split} \end{equation} We have \begin{align*} &\lim_{T \to +\infty} \frac{1}{\operatorname{meas}(T,\rho)} \int^T_{-T}\| (\Lambda h)_n(t)\|\rho(t)dt \\ &\leq Me^{-\omega(n-1)}\lim_{T \to +\infty}\frac{1}{\operatorname{meas}(T,\rho)} \int^T_{-T}\|h(t)\|_{S^1}\rho(t)dt=0 \end{align*} hence $(\Lambda h)_n \in PAP_0(\mathbb{R},X,\rho)$. On the other hand, using the assumption that $ \sum_{n=1}^{\infty}e^{-\omega (n-1)}$ is convergent, we then deduce from the well-known Weirstrass theorem that the series $\sum_{n=1}^{\infty} (\Lambda h)_n(t)$ is uniformly convergent on $\mathbb{R}$, furthermore $ \sum_{n=1}^{\infty} (\Lambda h)_n(t)=(\Lambda h)(t)$. Consequently $ \sum_{n=1}^{\infty} (\Lambda h)_n(t) \in PAP_0(\mathbb{R},X,\rho)$ and so $(\Lambda h)(t)$ from lemma \ref{lemma23}. \end{proof} \begin{lemma} \label{lem3.7} Let $\rho \in \mathbb{U}_{\rm inv}$. The operator $\Gamma u$ is weighted pseudo almost periodic for $u$ is weighted pseudo almost periodic. \end{lemma} \begin{proof} For $u(t)$ being weighted pseudo almost periodic, from Proposition \ref{prop3.5}, we see that $u(t-r)$ as weighted pseudo almost periodic, and from (H1) and theorem \ref{thm2.12}, it is easy to see that $F(t,u(t-r))$ belong to $PAP(\mathbb{R};\mathbb{X},\rho)$. Now we will show that $\int_{-\infty}^tT(t-s)G(s,u(s),u(s-r))ds$ beongs to $PAP(\mathbb{R};\mathbb{X},\rho)$, indeed from Theorem \ref{thm3.4} and assumption (H2), it is easy to see that $G(s,u(s),u(s-r))$ belongs to $PAP^p(\mathbb{R};\mathbb{X},\rho)$. The proof of lemma is completed using the previous lemma. \end{proof} \begin{theorem} \label{thm35} Let $\rho \in U_{\rm inv}$ and assume that {\rm (H0)--(H2)} hold. If $(L_F+\frac{2M}{\omega}L_G)<1$. Then \eqref{e1} has unique weighted pseudo almost periodic mild solution. \end{theorem} \begin{proof} Let $u,v\in PAP(\mathbb{R};\mathbb{X},\rho)$. We observed that \begin{align*} &\|(\Gamma u)(t)-(\Gamma v)(t)\|\\ &\leq \|F(t,u(t-r))-F(t-v(t-r))\|\\ &\quad +\int_{-\infty}^t\|T(t-s)\|\|G(s,u(s),u(s-r))-G(s,v(s),v(s-r))\|ds\\ &\leq L_F\|u(t-r)-v(t-r)\|\\ &\quad + ML_G\int_{-\infty}^te^{-\omega(t-s)}(\|u(s)-v(s)\| +\|u-v\|_{\infty})ds\\ &\leq L_F\|u-v\|_{\infty}+2ML_G \Big(\int_{-\infty}^te^{-\omega(t-s)}ds\Big)\|u-v\|_{\infty}\\ &\leq \big(L_F+\frac{2M}{\omega}L_G\big)\|u-v\|_{\infty}. \end{align*} Thus \[ \|\Gamma u-\Gamma v)\|_{\infty}\leq \big(L_F+\frac{2M}{\omega}L_G\big) \|u-v\|_{\infty}. \] Then $\Gamma$ is a contraction map on $PAP(\mathbb{R};\mathbb{X},\rho)$. Therefore, $\Gamma$ has unique fixed point in $PAP(\mathbb{R};\mathbb{X},\rho)$, that is, there exist unique $u \in PAP(\mathbb{R};\mathbb{X},\rho)$ such that $\Gamma u=u$. Therefore, \eqref{e1} has a unique weighted pseudo almost periodic mild solution. \end{proof} \section{Application} To illustrate the above results we examine the existence of weighted pseudo almost periodic solution to the differential equation \begin{equation} \label{eqn2} \begin{gathered} \begin{aligned} &\frac{d}{dt}[u(t,x)-F(t,u(t-r,x))]\\ &=\frac{d^2}{dx^2}[u(t,x)-F(t,u(t-r,x))]+ G(t,u(t,x),u(t-r,x)), \quad t \in \mathbb{R}, \; x \in [0,\pi] \end{aligned}\\ u(t,0)-F(t,u(t-r,0))= u(t,\pi)-F(t,u(t-r,\pi))=0, \quad t \in \mathbb{R} \end{gathered}\ \end{equation} Set $(\mathbb{X}, \|.\|)=(L^2[0,\pi], \|.\|_2)$, and define \begin{gather*} D(A)=\{u \in L^2[0,\pi], u'' \in L^2[0,\pi], u((0)=u(\pi)=0 \},\\ Au=\Delta u=u'' \ \ \ \text{for all } \ \ t \in \mathbb{R} \end{gather*} It is well known that $A$ is the infinitesimal generator of an exponentially stable $C_0$-semigroup $\{T(t)\}_{t\geq 0}$, with $M=\omega=1$ in \eqref{e3.1}. Let $\rho(t) = 1 + t^ 2$. It can be easily shown that $\rho \in \mathbb{U}_{\rm inv}$. Let $F:\mathbb{R}\times \mathbb{X} \to \mathbb{X}$ defined by $$ F(t,x)=\sin(t)+\sin(\sqrt{2}t)+\gamma e^{-|t|}\sin(u) $$ it is checked that $F$ belong to $PAP(\mathbb{R}\times \mathbb{X}, \rho)$ and satisfy $$ \|F(t,u)-F(t,v)\|\leq \mid \gamma \mid \|u-v\|, \quad \text{for all } t \in \mathbb{R} \text{ and } u,v \in \mathbb{X} $$ Let $G:\mathbb{R}\times \mathbb{X} \times \mathbb{X} \to \mathbb{X}$ defined by $$ G(t,u,v)=\cos(t)+\cos(\sqrt{2}t)+\theta(u,v)+\lambda e^{-|t|} $$ Furthermore, it can be easily checked that $g(t)=\cos(t)+\cos(\sqrt{2}t)+\lambda e^{-|t|}$ belong to $S^p-PAP(\mathbb{R}, \rho)$. If we suppose that the function $\theta$ satisfying $$ \|\theta(u,v)-\theta(u',v')\| \leq |\beta| (\| u-u'\|+\| v-v'\|) \quad \text{for all } u,v,u',v' \in \mathbb{X} $$ then there exists $|\beta|>0$ such that $$ \|G(t,u,v)-G(t,u',v')\| \leq |\beta| (\| u-u'\|+\|v-v'\|) \quad \text{for all } \ u,u',v,v' \in \mathbb{X} $$ Consequently all assumption (H0), (H1) and (H2) are satisfied then by theorem \ref{thm35}; we deduce the following result. In conclusion, under the above assumption, if $$ |\gamma|+2|\beta |<1, $$ then \eqref{eqn2} has a unique weighted pseudo almost periodic mild solution on $\mathbb{R}$. \begin{thebibliography}{00} \bibitem{Khl} M. Adimy, K. Ezzinbi, A. Ouhinou; \emph{Variation of constants formula and almost periodic solutions for some partial functional differential equations with infinite delay} Journal of Mathematical Analysis and Applications, Volume 317, Issue 2, 15 May 2006, Pages 668-689. \bibitem{Khl2} E. Ait Dads, P. Cieutat, K. Ezzinbi; \emph{The existence of pseudo-almost periodic solutions for some nonlinear differential equations in Banach spaces} Nonlinear Analysis: Theory, Methods and Applications, Volume 69, Issue 4, 15 August 2008, Pages 1325-1342. \bibitem{Amir} B. Amir and L. Maniar; \emph{Composition of pseudo almost periodic functions and Cauchy problems with operator of non dense domain}, Ann. Math. Blaise Pascal, 6 (1) (1999), 1-11. \bibitem{Kha} R. Benkhalti, H. Bouzahir and K. Ezzinbi; \emph{ Existence of a Periodic Solution for Some Partial Functional Differential Equations with Infinite Delay} Journal of Mathematical Analysis and Applications, Volume 256, Issue 1, 1 April 2001, Pages 257-280. \bibitem{Kl} N. Boukli-Hacene and K. Ezzinbi; \emph{Weighted pseudo almost periodic solutions for some partial functional differential equations} Nonlinear Analysis: Theory, Methods and Applications, Volume 71, Issue 9, 1 November 2009, Pages 3612-3621. \bibitem{Xiaoxing Chen} X. Chen and X. Hu; \emph{Weighted pseudo almost periodic solutions of neutral functional differential equations} Nonlinear Analysis: RealWorld Applications 12 (2011) 601-610. \bibitem{T.Diagana} T. Diagana; \emph{Stepanov-like pseudo-almost periodicity and its applications to some nonautonomous differential equations} Nonlinear Analysis 69 (2008) 4277-4285. \bibitem{Ngue} T. Diagana, G. Mophou and G. M. N'Gu\'er\`ekata; \emph{Existence of weighted pseudo almost periodic solutions to some classes of differential equations with $S^p$-weighted pseudo almost periodic coefficients} Nonlinear Analysis 72 (2010) 430-438 \bibitem{Diagana} T. Diagana; \emph{stepanov -like pseudo almost periodicity and its application to some nonautonomes differential equation}, Commun. Math. Anal.3 (2007)no1 pp 9-18 \bibitem{T. Diagana} T. Diagana; \emph{Existence of weighted pseudo almost periodic solutions to some classes of hyperbolic evolution equations.} J. Math. Anal. Appl. 350 (2009) 18-28. \bibitem{Toka} T. Diagana; \emph{Weighted pseudo almost periodic functions and applications} C.R.A.S 343 (10) (2006) 643-646. \bibitem{Diag} T. Diagana; \emph{Existence of weighted pseudo-almost periodic solutions to some classes of nonautonomous partial evolution equations} Nonlinear Analysis 74 (2011) 600-615 \bibitem{Tok} T. Diagana; \emph{Weighted pseudo-almost periodic solutions to some differential equations} Nonlinear Analysis 68 (2008) 2250-2260. \bibitem{Kh} K. Ezzinbi, S. Fatajou and G. M. N'gu\'ere\`ekata; \emph{Massera-type theorem for the existence of C(n)-almost-periodic solutions for partial functional differential equations with infinite delay} Nonlinear Analysis: Theory, Methods and Applications, Volume 69, Issue 4, 15 August 2008, Pages 1413-1424. \bibitem{J. Liang} J. Liang, T.J. Xiao, J. Zhang; \emph{Decomposition of weighted pseudo almost periodic functions}, Nonlinear Anal. 73 (10) (2010) 3456-3461. \bibitem{MD} M. Maqbul; \emph{Almost periodic solutions of neutral functional differential equation with Stepanov-Almost periodic terms} Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 72, pp. 1-9. \bibitem{Zhang} C. Y. Zhang; \emph{Pseudo almost periodic solutions of some differential equations}, J. Math. Anal. Appl. 151 (1994), 62-76. \bibitem{Zh} C. Y. Zhang; \emph{Pseudo almost periodic solutions of some differential equations II}, J. Math. Anal. Appl. 192 (1995), 543-561. \end{thebibliography} \end{document}