\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 56, pp. 1--16.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/56\hfil Existence and topological structure] {Existence and topological structure of solution sets for $\phi$-Laplacian impulsive differential equations} \author[J. Henderson, A. Ouahab, S. Youcefi \hfil EJDE-2012/56\hfilneg] {Johnny Henderson, Abdelghani Ouahab, Samia Youcefi} % in alphabetical order \address{Johnny Henderson \newline Department of Mathematics, Baylor University, Waco, TX 76798-7328, USA} \email{Johnny\_Henderson@baylor.edu} \address{Abdelghani Ouahab \newline Laboratory of Mathematics, Sidi-Bel-Abb\`es University\\ PoBox 89, 22000 Sidi-Bel-Abb\`es, Algeria} \email{agh\_ouahab@yahoo.fr} \address{Samia Youcefi \newline Laboratory of Mathematics, Sidi-Bel-Abb\`es University\\ PoBox 89, 22000 Sidi-Bel-Abb\`es, Algeria} \email{youcefi.samia@yahoo.com} \thanks{Submitted January 20, 2012. Published April 6, 2012.} \subjclass[2000]{34A37, 34K45} \keywords{ $\phi$-Laplacian; fixed point theorems; impulsive solution; \hfill\break\indent compactness} \begin{abstract} In this article, we present results on the existence and the topological structure of the solution set for initial-value problems for the first-order impulsive differential equation \begin{gather*} (\phi(y'))' = f(t,y(t)), \quad\text{a.e. } t\in [0,b],\\ y(t^+_{k})-y(t^-_k)=I_{k}(y(t_{k}^{-})), \quad k=1,\dots,m,\\ y'(t^+_{k})-y'(t^-_k)=\bar I_{k}(y'(t_{k}^{-})), \quad k=1,\dots,m,\\ y(0)=A,\quad y'(0)=B, \end{gather*} where $0=t_00$, there exists $h_{r}\in L^{1}([p,q],\mathbb{R}_{+})$ such that $|f(t,y)|\leq h_{r}(t)$ for almost each $t\in[p,q]$ and for all $|y|\leq r$. \end{itemize} \end{definition} \begin{lemma}[Gr\"{o}nwall-Bihari \cite{BaSm}] \label{l1} Let $I=[p,q]$ and let $u,g:I\to\mathbb{R}$ be positive continuous functions. Assume there exist $c>0$ and a continuous nondecreasing function $h: [0,\infty)\to(0,+\infty)$ such that $$ u(t)\leq c+g(s)h(u(s))ds,\quad \forall t\in I. $$ Then $$ u(t)\leq H^{-1}\Big(\int_{p}^tg(s)ds\Big),\quad \forall t\in I, $$ provided $$ \int_{c}^{+\infty}\frac{dy}{h(y)}>\int_{p}^{q}g(s)ds, $$ where $H^{-1}$ refers to inverse of the function $H(u)=\int_{c}^{u}\frac{dy}{h(y)}$ for $u\geq c$. \end{lemma} \section{Main results} Let $J_0=[0,t_1],\ J_{k}=(t_{k},t_{k+1}]$, $k=1,\dots,m$, and let $y_{k}$ be the restriction of a function $y$ to $J_k$. To define solutions for $\eqref{1}-\eqref{4}$, consider the space \begin{align*} PC&=\big\{y: [0,b]\to \mathbb{R},\; y_{k}\in C(J_{k},\mathbb{R}),\; k=0,\dots,m, \text{ such that}\\ &\quad \text{$y(t^{-}_{k})$ and $y(t^{+}_{k})$ exist and satisfy $ y(t^{-}_{k})=y(t_{k})$ for $ k=1,\dots,m$}\big\}. \end{align*} Endowed with the norm $$ \|y\|_{PC}=\max\{\|y_{k}\|_{\infty},\, k=0,\dots,m \},\quad \|y_k\|_{\infty}=\sup_{t\in J_k}|y(t)|, $$ $PC$ is a Banach space. \begin{align*} PC^1&=\big\{y\in PC: y'_{k}\in C(J_{k},\mathbb{R}),\; k=0,\dots,m, \text{ such that}\\ &\quad \text{$y'(t^{-}_{k})$ and $ y'(t^{+}_{k})$ exist and satisfy $ y'(t^{-}_{k})=y'(t_{k})$ for $ k=1,\dots,m$}\big\}. \end{align*} is a Banach space with the norm $$ \|y\|_{PC^1}=\max(\|y\|_{PC},\|y'\|_{PC}),\quad \text{or}\quad \|y\|_{PC^1}=\|y\|_{PC}+\|y'\|_{PC}. $$ \begin{theorem}[Nonlinear Alternative \cite{DuGr}] \label{DuGr} Let $X$ be a Banach space with $C\subset X$ closed and convex. Assume $U$ is a relatively open subset of $C$ with $0\in U$ and $G:\overline{U}\to C$ is a compact map. Then either, \begin{itemize} \item[(i)] $G$ has a fixed point in $\overline{U}$; or \item[(ii)] there is a point $u\in\partial U$ and $\lambda\in(0,1)$ with $u=\lambda G(u)$. \end{itemize} \end{theorem} \begin{theorem}\label{t1} Suppose that: \begin{itemize} \item [(H1)] $f:[0,b]\times \mathbb{R}\to\mathbb{R}$ is an Carath\'eodory function and $I_{k},\bar I_{k}\in C(\mathbb{R},\mathbb{R})$. \item [(H2)] There exist $p\in L^{1}(J,\mathbb{R}_{+})$ such that $ |f(t,u)|\leq p(t)$ for a.e. $t\in J$ \end{itemize} are satisfied. Then \eqref{1}-\eqref{4} has at least one solution and the solutions set $$ S=\{y\in PC([0,b],\mathbb{R}) : y \text{ is a solution of \eqref{1}-\eqref{4}}\} $$ is compact. \end{theorem} \begin{proof} The proof involves several steps. \textbf{Step 1:} Consider the problem \begin{equation}\label{9} \begin{gathered} (\phi(y'))'=f(t,y)\quad t\in[0,t_1], \\ y(0)=A,\quad y'(0)=B, \end{gathered} \end{equation} and the map $N_1:C([0,t_1],\mathbb{R})\to C([0,t_1],\mathbb{R})$, $$ y\mapsto (N_1y)(t)=A+\int_0^t\phi^{-1}[\phi(B)+\int_0^{s}f(\tau,y)d\tau]ds. $$ Clearly the fixed points of $N_1$ are solutions of the problem \eqref{9}. To apply the nonlinear alternative of Leray-Schauder type, we first show that $N_1$ is completely continuous. The proof will be given in several steps. \textbf{Claim 1:} $N$ sends bounded sets into bounded sets in $C([0,t_1], \mathbb{R})$. Let $$ y\in D=\{y\in C([0,t_1], \mathbb{R}):\|y\|_{\infty}\leq q\}. $$ Then for each $t\in[0,t_1]$, we have $$ |(N_1y)(t)|\leq|A|+\int_0^t|\phi^{-1}[\phi(B)+\int_0^{s}f(\tau,y)]|d\tau, $$ since \begin{align*} |\phi(B)+\int_0^{s}f(\tau,y)d\tau| &\leq |\phi(B)|+\int_0^{s}|f(\tau,y)|d\tau\\ &\leq |\phi(B)|+\int_0^{s}|p(\tau)|d\tau\\ &\leq |\phi(B)|+(\|p\|_{L^{1}})t_1, \end{align*} it follows that $$ [\phi(B)+\int_0^{s}f(\tau,y)d\tau]\in\overline{B}(0,l_1), $$ where $l_1=|\phi(B)|+(\|p\|_{L^{1}})t_1$. Since $\phi^{-1}$ is continuous, $$ \sup_{x\in\overline{B}(0,l_1)}|\phi^{-1}(x)|<\infty. $$ Thus $$ \|N_1(y)\|_{\infty}\leq |A|+t_1\sup_{x\in\overline{B}(0,l_1)}|\phi^{-1}(x)|:=r $$ \textbf{Claim 2:} $N_1$ maps bounded sets into equicontinuous sets. Let $l_1,l_2\in[0,t_1]$, $l_10$ such that $$ m(t)\leq H^{-1}(t)\leq M_{m}, $$ where $H(t)=\int_{|A_{m}|}^t\frac{d\tau}{(\phi^{-1}\circ\widetilde{\psi})(\tau)}$. Hence $$ \begin{array}{llll} \|y\|_{PC}&\leq \max(M_0,M_1,\dots,M_{m})=M. \end{array} $$ The proof is complete. \end{proof} For the next theorem we use the assumptions: \begin{itemize} \item[(H4)] $f: [0,b]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ is a continuous function. \item[(H5)] There exist a continuous nondecreasing function $\psi:\mathbb{R}_{+}\times\mathbb{R}_{+}\to(0,\infty)$ and $p\in L^{1}(J,\mathbb{R})$ such that $$ |f(t,x,y)|\leq p(t)\psi(|x|,|y|)\quad for \quad all\quad x,y\in\mathbb{R},\quad t\in J $$ with $$ \int_0^{b}p(s)ds<\int_{|A|+c|B|}^{\infty}\frac{du}{(\phi^{-1}\circ\psi)(u,u)}. $$ \end{itemize} \begin{theorem}\label{t2} Under assumptions {\rm (H4), (H5)}, problem \eqref{5}-\eqref{8} has at least one solution. \end{theorem} Prior to the proof of Theorem \ref{t2}, we present a useful lemma. \begin{lemma}\label{l2} The operator $L: D\to PC(J,\mathbb{R})$ defined by $L(y)=(\phi(y'))'$ where $ D=\{y\in PC^1(J,\mathbb{R}): y(t_{k}^{+}) =y(t_{k})+I_{k}(y(t_{k})), y'(t_{k}^{+}) =y'(t_{k})+\bar I_{k}(y(t_{k})), y(t_{k})=y(t_{k}^{-}), y'(t_{k}) =y'(t_{k}^{-}), k=1,\dots,m, y(0)=A, y'(0)=B\}. $ Assume that $L$ is well defined. Then $L$ is bijective and $L^{-1}$ is completely continuous. \end{lemma} \begin{proof} \textbf{Step 1:} $L$ is bijective. $\bullet$ $L$ is injective. Let $y_1, y_2\in D$ be such that $L(y_1)=L(y_2)$. Then $$ (\phi(y'_1(t)))'=(\phi(y'_2(t)))', t\in[0,t_1], $$ and thus \begin{gather*} \phi(y'_1(t))-\phi(y'_1(0)) = \phi(y'_2(t))-\phi(y'_2(0)),\quad t\in [0,t_1],\\ \phi(y'_1(t))-\phi(B) = \phi(y'_2(t))-\phi(B),\quad t\in[0,t_1]. \end{gather*} Hence $y'_1(t)=y'_2(t)$ for $t\in[0,t_1]$. By integration of this equality, we obtain \[ \int_0^ty'_1(s)ds = \int_0^ty'_2(s)ds, \quad t\in[0,t_1] \] which implies $y_1(t)-y_1(0)=y_2(t)-y_2(0)$, $t\in[0,t_1]$. This implies that $y_1(t)=y_2(t)$, $t\in[0,t_1]$. Next, $$ \phi(y'_1(t))-\phi(y'_1(t_1)+\bar I_1(y_1(t_1)))=\phi(y'_2(t))-\phi(y'_2(t_1) +\bar I_1(y_2(t_1))),\quad t\in (t_1,t_2]$$ implies $y'_1(t)=y'_2(t)$, $t\in(t_1,t_2]$, and so $$ \int_{t_1}^ty'_1(s)ds=\int_{t_1}^ty'_2(s)ds,\quad t\in(t_1,t_2] $$ implies $ y_1(t)-(y_1(t_1)+I_1(y_1(t_1)))=y_2(t)-(y_2(t_1)+I_1(y_2(t_1)))$, $t\in (t_1,t_2]$, and then $$ y_1(t)=y_2(t),\quad t\in(t_1,t_2]. $$ Continuing this pattern, $$ \phi(y'_1(t))-\phi(y'_1(t_{m})+\bar I_{m}(y_1(t_{m})))=\phi(y'_2(t))-\phi(y'_2(t_{m}) +\bar I_{m}(y_2(t_{m}))),\quad t\in(t_{m},b] $$ implies $y'_1(t)=y'_2(t)$, $t\in(t_{m},b]$, and so $$ \int_{t_{m}}^ty'_1(s)ds=\int_{t_{m}}^ty'_2(s)ds,\quad t\in(t_{m},b] $$ implies $y_1(t)-(y_1(t_{m})+I_{m}(y_1(t_{m})))=y_2(t)-(y_2(t_{m})+I_{m}(y_2(t_{m})))$, $t\in (t_{m},b]$, and hence $y_1(t)=y_2(t)$, $t\in(t_{m},b]$. This implies that $y_1=y_2$. $\bullet$ $L$ is surjective. Let $h\in PC(J,\mathbb{R})$, then we define \begin{equation} \label{12} y(t)= \begin{cases} L_0(h)(t),&\text{if } t\in[0,t_1] ,\\ L_1(h)(t),&\text{if } t\in(t_1,t_2] ,\\ \dots\\ L_{m-1}(h)(t),&\text{if } t\in(t_{m},b], \end{cases} \end{equation} where \begin{gather*} L_0(h)(t)= A+\int_0^t\phi^{-1}\Big[\phi(B)+\int_0^{s}h(\tau)d\tau\Big]ds,\quad t\in[0,t_1], \\ \begin{aligned} L_1(h)(t)&= L_0(h)(t_1)+I_1(L_0(h)(t_1))\\ &\quad+\int_{t_1}^t\phi^{-1}\Big[\phi(L'_0(h)(t_1)+\bar I_1(L_0(h)(t_1))) +\int_{t_1}^{s}h(\tau)d\tau\Big]ds,\quad t\in(t_1,t_2], \end{aligned}\\ \begin{aligned} L_2(h)(t)&= L_1(h)(t_2)+I_2(L_1(h)(t_2))\\ &\quad+\int_{t_2}^t\phi^{-1}\Big[\phi(L'_1(h)(t_2)+\bar I_2(L_1(h)(t_2))) +\int_{t_2}^{s}h(\tau)d\tau\Big]ds,\quad t\in(t_2,t_{3}], \end{aligned}\\ \dots\\ \begin{aligned} L_{m}(h)(t)&= L_{m-1}(h)(t_{m})+I_{m}(L_{m-1}(h)(t_{m})) +\int_{t_{m}}^t\phi^{-1}\Big[\phi(L'_{m-1}(h)(t_{m})\\ &\quad +\bar I_{m}(L_{m-1}(h)(t_{m}))) +\int_{t_{m}}^{s}h(\tau)d\tau\Big]ds, \quad t\in(t_{m},b]. \end{aligned} \end{gather*} From \eqref{12} we can easily check that \begin{align*} y(t)&= A+\sum_{00$ such that $$ \|y_n\|_{\infty}, \|y'_n\|_{\infty}\leq M_0,\quad \text{for all } n\in\mathbb{N}. $$ $\bullet$ Let $l_1,l_2\in [0,t_1]$, $l_10$ such that $$ \|y_n\|_{\infty}, \|y'_n\|_{\infty}\leq M_1,\ \text{for all}\ n\in\mathbb{N}. $$ $\bullet$ Let $l_1,l_2\in (t_1,t_2]$, $l_10$ such that $m(t)\leq H^{-1}(t)\leq M_{m}$, where $$ H(t)=\int_{M^{\ast\ast}}^t\frac{d\tau}{(\phi^{-1}\circ\widetilde{\psi})(\tau)} $$ and $$ M^{\ast\ast}=(1+b)M_{m-1}+\sup_{z\in \overline{B}(0,M_{m-1})}|I_{m}(z)|. $$ Hence $$ \|y\|_{\infty}\leq \max(M_0,M_1,\dots,M_{m}):=M. $$ Let $$ U=\{y\in PC^1(J,\mathbb{R}):\|y\|_{PC^1}