\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 63, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/63\hfil Existence of positive solutions] {Existence of positive solutions for singular fractional differential equations with integral boundary conditions} \author[J. Jin, X. Liu, M. Jia \hfil EJDE-2012/63\hfilneg] {Jingfu Jin, Xiping Liu, Mei Jia} \address{Jingfu Jin \newline College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China} \email{jinjingfu2005@126.com} \address{Xiping Liu \newline College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China} \email{xipingliu@163.com} \address{Mei Jia \newline College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China} \email{jiamei-usst@163.com} \thanks{Submitted January 17, 2012. Published April 19, 2012.} \thanks{Supported by grants 10ZZ93 from Innovation Program of Shanghai Municipal Education \hfill\break\indent Commission, and 11171220 from the National Natural Science Foundation of China.} \subjclass[2000]{34B16, 34B18, 26A33} \keywords{Caputo derivative; fractional differential equations; positive solutions; \hfill\break\indent integral boundary conditions; singular differential equation} \begin{abstract} This article shows the existence of a positive solution for the singular fractional differential equation with integral boundary condition \begin{gather*} {}^C\!D^p u(t)=\lambda h(t)f(t, u(t)), \quad t\in(0, 1), \\ u(0)-au(1)=\int^1_0g_0(s)u(s)\,\mathrm{d}s, \\ u'(0)-b\,{}^C\!D^qu(1)=\int^1_0g_1(s)u(s)\,\mathrm{d}s, \\ u''(0)=u'''(0)=\dots =u^{(n-1)}(0)=0, \end{gather*} where $\lambda $ is a parameter and the nonlinear term is allowed to be singular at $t=0, 1$ and $u=0$. We obtain an explicit interval for $\lambda$ such that for any $\lambda$ in this interval, existence of at least one positive solution is guaranteed. Our approach is by a fixed point theory in cones combined with linear operator theory. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} We consider the singular integral boundary-value problem involving Caputo fractional derivative: \begin{equation}\label{eq1.5} \begin{gathered} {}^C\!D^p u(t)=\lambda h(t)f(t, u(t)), \quad t\in(0, 1), \\ u(0)-au(1)=\int^1_0g_0(s)u(s)\,\mathrm{d}s, \\ u'(0)-b\,{}^C\!D^q u(1)=\int^1_0g_1(s)u(s)\,\mathrm{d}s, \\ u''(0)=u'''(0)=\dots =u^{(n-1)}(0)=0, \end{gathered} \end{equation} where $ {}^C\!D$ is the standard Caputo derivative, $n\geq3$ is an integer, $p \in (n-1, n)$, $00$ and $\alpha-\mu\geq1$, $D^\alpha_{0+}$ is the standard Riemann-Liouville derivative. When $2<\alpha <3$, the two-point boundary-value problems \eqref{E2} and \eqref{E3} are studied in \cite{Bai} and \cite{Stanek} respectively: \begin{equation}\label{E2} \begin{gathered} D^\alpha_{0+} u(t)+f(t, u(t))=0, \quad t\in(0, 1), \\ u(0)=u'(1)=u''(0)=0, \end{gathered} \end{equation} \begin{equation}\label{E3} and \begin{gathered} D^\alpha u(t)+f(t, u(t),u'(t),D^\mu u(t))=0, \\ u(0)=0, \ u'(0)=u'(1)=0. \end{gathered} \end{equation} In \eqref{E2}, $f$ is assumed to be singular at $t=0$, and $D^\alpha_{0+}$ is the standard Caputo derivative. In \eqref{E3}, $f(t,x,y,z)$ may be singular at the value $0$ of all variables $x, y, z$ and $D^\alpha u(t)$ is the standard Riemann-Liouville fractional derivative. In the literature, results on singular integral boundary-value problems of the fractional differential equations are relatively rare. In this paper, we first give the Green function of boundary-value problem (BVP) \eqref{eq1.5} and prove some of its properties. Then, applying a fixed-point theorem with linear operator theory analysis, we obtain some sufficient conditions on the existence of positive solutions of \eqref{eq1.5}. An explicit interval for $\lambda$ is derived such that for any $\lambda$ in this interval, the existence of at least one positive solution is guaranteed. \section{Preliminaries} In this section, we introduce definitions and preliminary facts which are used throughout this paper. \begin{definition}[\cite{Podlubny}] \label{def2.1} \rm The fractional integral of order $\alpha>0$ of a function $y:(0, +\infty)\to \mathbb{R}$ is given by $$ I^\alpha y(t)=\frac{1}{\Gamma(\alpha)}\int^t_0(t-s)^{\alpha-1}y(s)\,\mathrm{d}s. $$ provided that the right side is point wise defined on $(0, +\infty)$, and $\Gamma$ denotes the Gamma function. \end{definition} \begin{definition}[\cite{Podlubny}] \label{def2.2} \rm The fractional Caputo derivative of order $\alpha>0$ for a function $x:(0, +\infty)\to \mathbb{R}$ is given by $$ {}^C\!D^\alpha x(t)=\frac{1}{\Gamma(n-\alpha)}\int^t_0\frac{x^{(n)}(s)}{(t-s)^{\alpha+1-n}} \,\mathrm{d}s, $$ where $n=[\alpha] + 1$, provided the right integral converges. \end{definition} \begin{lemma}\label{lemma1} Suppose that $y\in C[0, 1]$ and $n\geq 3$ is an integer, $p\in(n-1, n)$, $00$. \end{itemize} Then $S$ has a fixed point in $\overline{K}_{r,R}$. \end{lemma} \begin{remark}\label{remark} \rm If (i) and (ii) are satisfied for $u\in \partial K_{r}$ and $e\in \partial K_{R}$, respectively. Then Lemma \ref{lem2.3} is still true. \end{remark} Define a linear operator $A:E \to E$, by \begin{equation}\label{eq3.1} Au(t)=\int^1_0\Phi(t,s)u(s)\,\mathrm{d}s. \end{equation} \begin{lemma}\label{lemma3.1} Suppose $0\leq m_0\leq M_0<1$ holds. Then \begin{itemize} \item[(i)] $A$ is a bounded linear operator; \item[(ii)] $A(P)\subset P$; \item[(iii)] $(I-A)$ is invertible and $\|(I-A)^{-1}\|\leq\frac{1}{1-M_0}$. \end{itemize} \end{lemma} \begin{proof} (i) It is easy to see that $A$ is a linear operator with $$ |Au(t)|=\big|\int^1_0\Phi(t, s)u(s)\,\mathrm{d}s\big|\leq M_0\|u\|. $$ Therefore, $\|A\|\leq M_0<1$. It follows that $A$ is a bounded linear operator. (ii) For each $u\in P$, we have $u\in C([0,1])$, $u(t)\geq 0$. Since $\Phi(t, s)$ is continuous and nonnegative, it is easy to check that $Au\in C([0,1])$, $Au(t)\geq 0$. This implies that $A(P)\subset P$. (iii) We have proved in (i) that $\|A\|\leq M_0<1$, which implies that $(I-A)^{-1}$ is invertible. To find the expression for $(I-A)^{-1}$, we use the theory of Fredholm integral equations. We have $u(t)=(I-A)^{-1}v(t)$ if and only if $u(t)=v(t)+Au(t)$ for each $t \in [0,1]$. The definition of the operator $A$ implies that \begin{equation}\label{eq3.2} u(t)=v(t)+\int^1_0\Phi(t, s)u(s)\,\mathrm{d}s. \end{equation} The condition $\|A\|\leq M_0<1$ implies that 1 is not an eigenvalue of the kernel $\Phi(t, s)$. Hence, \eqref{eq3.2} has a unique solution $u\in E$, for each $v\in E$. By successive substitutions in \eqref{eq3.2}, we obtain \begin{equation}\label{eq3.3} u(t)=v(t)+\int^1_0 \rho(t, s)v(s)\,\mathrm{d}s, \end{equation} where the resolvent kernel $\rho(t, s)$ is given by $$ \rho(t,s)=\sum_{j=1}^{\infty} \Phi_{j}(t, s), $$ where $\Phi_{1}(t, s)=\Phi(t, s)$, $\Phi_{j}(t, s)=\int^1_0\Phi(t,\tau)\Phi_{j-1}(\tau, s)\,\mathrm{d}\tau$, $(j=2, 3, \dots)$. Since $0\leq m_0\leq \Phi(t, s)\leq M_0<1$, we have $m_0^{j}\leq\Phi_{j}(t, s)\leq M_0^{j}$, $(j=1, 2, 3, \dots)$. Hence, we have \begin{equation}\label{eq3.4} \frac{m_0}{1-m_0}\leq \rho(t, s)\leq \frac{M_0}{1-M_0}, \end{equation} and $\rho(t, s)$ is continuous on $[0,1]\times[0,1]$. In view of \eqref{eq3.3} and \eqref{eq3.4}, we obtain \begin{align*} |(I-A)^{-1}v(t)|&\leq |v(t)|+\int^1_0 |\rho(t, s)v(s)|\,\mathrm{d}s\leq(1+\frac{M_0}{1-M_0})\|v\|=\frac{1}{1-M_0}\|v\|. \end{align*} That is, $\|(I-A)^{-1}\|\leq 1/(1-M_0)$. \end{proof} Define a nonlinear operator $T: E\to E $, by \begin{equation}\label{eq3.5b} Tu(t)=\lambda\int^1_0G(t, s)h(s)f(s, u(s))\,\mathrm{d}s. \end{equation} In view of \eqref{eq3.1}, \eqref{eq3.5b}, and Lemma \ref{lemma1}, we can easily prove that the existence of solutions to \eqref{eq1.5} is equivalent to the existence of solutions to the equation \begin{equation}\label{eq3.6} u(t)=Tu(t)+Au(t),\quad t\in [0,1]. \end{equation} It follows from Lemma \ref{lemma3.1} that $u$ is a solution of \eqref{eq3.6} if and only if $u$ is a solution of $u(t)=(I-A)^{-1}Tu(t)$. That is, $u$ is a fixed point of the operator $S:=(I-A)^{-1}T$. By \eqref{eq3.3} and \eqref{eq3.5b}, we have \begin{equation}\label{eq3.7} \begin{split} (Su)(t)&=\lambda\int^1_0G(t, s)h(s)f(s, u(s))\,\mathrm{d}s\\ &\quad +\lambda\int^1_0\rho(t, s)\int^1_0 G(s, \tau)h(\tau)f(\tau, u(\tau))\,\mathrm{d}\tau\,\mathrm{d}s. \end{split} \end{equation} We can prove the following lemma. \begin{lemma}\label{lemma} A function $u$ is a solution of {\rm\eqref{eq1.5}} if and only if $u$ is a fixed point of the operator $S$. \end{lemma} We denote $$ L=\int^1_0 (1-s)^{p-q-1}h(s)\,\mathrm{d}s. $$ and assume the following conditions hold \begin{itemize} \item[(H)] $h\in C((0,1),[0,+\infty))$, $\int^1_0 h(s)\,\mathrm{d}s<+\infty$ and $00$ such that $\|u\|\leq r_1 $ for any $u\in D$. Denote $$ M_1 =\max\{f(t,\max\{1/n,u\}): (t,u)\in[0,1]\times[\frac{1}{n},\frac{1}{n}+r_1 ]\}. $$ By \eqref{eq3.4} and Lemma \ref{lem2}, for any $u\in D$ and $t\in[0,1]$, we have \begin{align*} &|S_{n}u(t)|\\ &= |\lambda \int^1_0 G(t,s)h(s)f_{n}(s,u(s))\,\mathrm{d}s +\lambda \int^1_0 \rho(t,s)\int^1_0G(s,\tau)h(\tau)f_{n}(\tau,u(\tau)) \,\mathrm{d}\tau\,\mathrm{d}s|\\ &\leq \lambda k_1 \int^1_0 (1-s)^{p-q-1}h(s)f_{n}(s,u(s))\,\mathrm{d}s\\ &\quad+\frac{M_0\lambda k_1 }{1-M_0}\int^1_0(1-s)^{p-q-1}h(s) f_{n}(s,u(s))\,\mathrm{d}s \\ &=\frac{\lambda k_1 }{1-M_0}\int^1_0(1-s)^{p-q-1}h(s) f(s,\max\{1/n,u(s)\})\,\mathrm{d}s \\ &\leq \frac{\lambda k_1 M_1 }{1-M_0}\int^1_0(1-s)^{p-q-1} h(s)\,\mathrm{d}s \\ &= \frac{\lambda k_1 M_1 L}{1-M_0}. \end{align*} Therefore, $S_{n}(D)$ is uniformly bounded. We can also prove that $S_{n}(D)$ is equicontinuous. For $t_1,t_2 \in[0,1]$ and $u\in D$, we have \begin{align*} &|(S_nu)(t_1)-(S_nu)(t_2)|\\ &= |\lambda \int^1_0 (G(t_1,s)-G(t_2,s))h(s)f_{n}(s,u(s))\,\mathrm{d}s\\ &\quad +\lambda \int^1_0 (\rho(t_1,s)-\rho(t_2,s))\int^1_0 G(s,\tau)h(\tau) f_{n}(\tau,u(\tau))\,\mathrm{d}\tau\,\mathrm{d}s| \\ &\leq \lambda M_1 \Big(\int^1_0 |G(t_1,s)-G(t_2,s)|h(s)\,\mathrm{d}s\\ &\quad +k_1 \int^1_0 |\rho(t_1,s)-\rho(t_2,s)|\int^1_0 (1-s)^{p-q-1}h(\tau) \,\mathrm{d}\tau\,\mathrm{d}s\Big) \\ &\leq \lambda M_1 \Big(\int^1_0 |G(t_1,s)-G(t_2,s)|h(s)\,\mathrm{d}s +k_1 L\int^1_0 |\rho(t_1,s)-\rho(t_2,s)|\,\mathrm{d}s\Big). \end{align*} Since $G(t,s)$ and $\rho(t,s)$ are continuous on $[0,1]\times[0,1]$, we can get $G(t,s)$ and $\rho(t,s)$ are uniformly continuous on $[0,1]\times[0,1]$, it follows that $|(S_{n}u)(t_{2})-(S_{n}u)(t_{1})|\to 0$ as $|t_{2}-t_{1}|\to 0 $. Hence, $S_{n}(D)$ is equicontinuous. Using the Ascoli-Arzela's theorem, $S_{n}(D)$ is relatively compact. Therefore, $S_{n}:\overline{K}_{r,R}\to P$ is compact. Now we show that $S_{n}$ is continuous. Suppose $u, u_{m}\in D,\;(m=1,2,3,\dots)$ with $\|u_{m}-u\|\to 0$ as $ m\to\infty $. Then there exists $r_2 >0$ such that $\|u_{m}\|0$ such that \[ f_{\infty}-\varepsilon>0, \quad \frac{1}{(f_{\infty}-\varepsilon)k_2L}\leq\lambda\leq\frac{1-M_0} {k_1 L(f^{0}+\varepsilon)}. \] By \eqref{eq3.1b}, there exist $r>0$ and $R_0>0$, such that \begin{gather}\label{3.1} f(t,u)\leq(f^{0}+\varepsilon)u,\quad \text{for } t\in[0,1], \; 0(f_{\infty}-\varepsilon)u,\quad\text{for }t\in[0,1], \; u\geq R_0. \end{gather} For any $u\in\partial K_{r}$ and $n>[\frac{k_1}{rk_2(1-M_0)}]+1=: n_0$, we have $$ r=\|u\|\geq u(t)\geq\frac{k_2(1-M_0)}{k_1}\|u\|=\frac{rk_2(1-M_0)}{k_1}>\frac{1}{n}. $$ It follows that \begin{equation} f_{n}(t,u(t))=f(t,\max\{1/n,u(t)\})=f(t,u(t))\leq(f^{0}+\varepsilon)u \end{equation} from \eqref{3.1}. Hence, \begin{align*} \|S_{n}u\| &=\max_{t\in[0,1]}|\lambda \int^1_0 G(t,s)h(s)f_{n}(s,u(s))\,\mathrm{d}s\\ &\quad +\lambda \int^1_0 \rho(t,s)\int^1_0G(s,\tau)h(\tau)f_{n}(\tau,u(\tau)) \,\mathrm{d}\tau\,\mathrm{d}s| \\ &\leq \lambda k_1 \int^1_0 (1-s)^{p-q-1}h(s)f_{n}(s,u(s))\,\mathrm{d}s\\ &\quad +\frac{M_0\lambda k_1 }{1-M_0}\int^1_0(1-s)^{p-q-1}h(s)f_{n}(s,u(s))\,\mathrm{d}s \\ &=\frac{\lambda k_1 }{1-M_0}\int^1_0(1-s)^{p-q-1}h(s)f_{n}(s, u(s))\,\mathrm{d}s\\ &\leq\frac{\lambda k_1 (f^{0}+\varepsilon)}{1-M_0}\int^1_0(1-s)^{p-q-1} h(s)u(s)\,\mathrm{d}s \\ &\leq\frac{\lambda k_1 L(f^{0}+\varepsilon)}{1-M_0}\|u\| \leq \|u\|. \end{align*} We can get $\|S_{n}u\|\leq\|u\|$, for each $u\in\partial K_{r}$. Let $R=\max\{2r,\frac{k_1 R_0}{k_2(1-M_0)}\}$ and $e(t)\equiv1$ for $t\in[0,1]$. Then $R>r$ and $e(t)\in K_{1}=\{u\in K: \|u\|<1\}$. Subsequently, we can show $u\neq S_{n}u+me$, for any $m>0$ and $u\in\partial K_{R}$. Otherwise, there exists $u_0\in \partial K_{R}$ and $m_{1}>0$ such that $u_0=S_{n}u_0+m_1e$. We notice that for any $s\in[0,1]$, \[ u_0(s)\geq\min_{s\in[0,1]}u_0(s)\geq\frac{k_2}{k_1 }(1-M_0)R\geq R_0. \] From \eqref{3.2}, it follows that \[ f_{n}(t,u_0(t))=f(t,\max\{1/n,u_0(t)\})=f(t,u_0(t)) >(f_{\infty}-\varepsilon)u_0(t)\,. \] Let $\xi=\min_{t\in[0,1]}u_0(t)$. Consequently, for any $t\in[0,1]$, we have \begin{align*} u_0(t) &=\lambda \int^1_0 G(t,s)h(s)f_{n}(s,u_0(s))\,\mathrm{d}s\\ &\quad +\lambda \int^1_0 \rho(t,s) \int^1_0G(s,\tau)h(\tau)f_{n}(\tau,u_0(\tau))\,\mathrm{d}\tau\,\mathrm{d}s +m_{1}e(t) \\ &\geq\lambda \int^1_0 G(t,s)h(s)f_{n}(s,u_0(s))\,\mathrm{d}s+m_{1}e(t)\\ &\geq \lambda k_2(f_{\infty}-\varepsilon)\int^1_0 (1-s)^{p-q-1}h(s)u_0(s)\,\mathrm{d}s+m_{1} \\ &\geq \frac{\xi}{L}\int^1_0 (1-s)^{p-q-1}h(s)\,\mathrm{d}s+m_{1} \\ &\geq \xi+m_{1}>\xi. \end{align*} This implies that $\xi>\xi$, which is a contradiction. It follows that for $n\geq n_0=[\frac{k_1}{rk_2(1-M_0)}]+1$, the operator $S_{n}$ has a fixed point $u_{n}$ in $K$ with $r<\|u_{n}\|\frac{1}{n}>0, \quad t\in[0,1], $$ and $$ f_{n}(t,u_n(t))=f(t,\max\{1/n,u_n(t)\})=f(t,u_n(t)),\quad t\in[0,1]. $$ It is easy to see that \begin{align*} &u_n(t)\\ &=\lambda\int^1_0G(t, s)h(s)f(s, u_n(s))\,\mathrm{d}s +\lambda\int^1_0\rho(t, s)\int^1_0G(s, \tau)h(\tau)f(\tau, u_n(\tau)) \,\mathrm{d}\tau\,\mathrm{d}s, \end{align*} for $t\in[0,1]$. By Lemma \ref{lemma}, we obtain that $u_{n}$ is a positive solution of \eqref{eq1.5}. \end{proof} By proof similar to the one for Theorem \ref{thm1}, we can show the following theorem. \begin{theorem}\label{thm2} Suppose $0\leq m_0\leq M_0<1$ and {\rm(H)} holds. If $$ f^{0}=0\quad\text{and}\quad f_{\infty}=+\infty, $$ then \eqref{eq1.5} has at least one positive solution for $ \lambda\in(0,+\infty)$. \end{theorem} \begin{remark}\label{remark2} \rm In Theorem \ref{thm1}, if $f^{0}=0$ or $f_{\infty}=+\infty$, we can obtain conclusions similar to Theorems \ref{thm1} and \ref{thm2}. \end{remark} \begin{theorem}\label{thm3} Suppose $0\leq m_0\leq M_0<1$ and {\rm (H)} holds. If \begin{equation}\label{eq3.5} 00$ such that \[ f_0-\varepsilon>0, \quad \frac{1}{(f_0-\varepsilon)k_2L}\leq\lambda\leq\frac{1-M_0} {k_1 L(f^{\infty}+\varepsilon)}. \] By \eqref{eq3.5}, there exist $r>0$ and $R_0>1$, such that \begin{gather}\label{3.4} f(t,u)\geq(f_0-\varepsilon)u,\quad\text{for } t\in[0,1], \; 0[\frac{k_1}{Rk_2(1-M_0)}]+1=: n_0$, we have $$ u(t)\geq\frac{k_2(1-M_0)}{k_1}\|u\|=\frac{Rk_2(1-M_0)}{k_1}\geq R_0. $$ From \eqref{3.5}, we have \[ f_{n}(t,u(t))=f(t,\max\{1/n,u(t)\})=f(t,u(t))\leq(f^{\infty}+\varepsilon)u. \] Hence, \begin{align*} \|S_{n}u\| &=\max_{t\in[0,1]}|\lambda \int^1_0 G(t,s)h(s)f_{n}(s,u(s))\,\mathrm{d}s\\ &\quad +\lambda \int^1_0 \rho(t,s)\int^1_0G(s,\tau)h(\tau)f_{n}(\tau,u(\tau))\,\mathrm{d} \tau\,\mathrm{d}s| \\ &\leq \lambda k_1 \int^1_0 (1-s)^{p-q-1}h(s)f_{n}(s,u(s))\,\mathrm{d}s\\ &\quad +\frac{M_0\lambda k_1 }{1-M_0}\int^1_0(1-s)^{p-q-1}h(s)f_{n}(s,u(s))\,\mathrm{d}s \\ &=\frac{\lambda k_1 }{1-M_0}\int^1_0(1-s)^{p-q-1}h(s)f_{n}(s, u(s))\,\mathrm{d}s\\ &\leq\frac{\lambda k_1 (f^{\infty}+\varepsilon)}{1-M_0}\int^1_0(1-s)^{p-q-1}h(s)u(s)\,\mathrm{d}s \\ &\leq\frac{\lambda k_1 L(f^{\infty}+\varepsilon)}{1-M_0}\|u\| \leq \|u\|. \end{align*} We can get $\|S_{n}u\|\leq\|u\|$, for each $u\in\partial K_{R}$. Let $e(t)\equiv 1$, $t\in[0,1]$. Then $e(t)\in\partial K_{1}$, and we can prove $u\neq S_{n}u+me$, for any $m>0, \ and \ u\in K_{r}$. Otherwise there exists $u_0\in K_{r}$ and $m_{1}>0$ such that $u_0=S_{n}u_0+m_{1}e$. Let $\eta=\min\{u_0(t):t\in[0,1]\}$, for $t\in[0,1]$, by \eqref{3.4}, we have \begin{align*} u_0(t) &= \lambda \int^1_0 G(t,s)h(s)f_{n}(s,u_0(s))\,\mathrm{d}s\\ &\quad +\lambda \int^1_0 \rho(t,s)\int^1_0G(s,\tau)h(\tau)f_{n}(\tau,u_0(\tau)) \,\mathrm{d}\tau\,\mathrm{d}s+m_{1}e(t) \\ &\geq \lambda \int^1_0 G(t,s)h(s)f_{n}(s,u_0(s))\,\mathrm{d}s+m_{1} \\ &\geq \lambda \int^1_0 k_2(1-s)^{p-q-1}h(s)(f_0-\varepsilon)u_0(s)\,\mathrm{d}s+m_{1} \\ &\geq \frac{\eta}{L}\int^1_0(1-s)^{p-q-1}h(s)\,\mathrm{d}s+m_{1} = \eta+m_{1}. \end{align*} This is a contradiction. It follows from Lemma \ref{lem2.3} that $S_{n}$ has a fixed point $u_{n}$ in $K$ with $r<\|u_{n}\|< R$. Hence, \begin{align*} u_n(t)&=\lambda\int^1_0G(t, s)h(s)f_{n}(s, u_n(s))\,\mathrm{d}s\\ &\quad +\lambda\int^1_0\rho(t, s)\int^1_0G(s, \tau)h(\tau)f_{n}(\tau, u_n(\tau)) \,\mathrm{d}\tau\,\mathrm{d}s, \end{align*} for $t\in[0,1]$. Since $u_{n}\in K$, for $n>\frac{k_1 }{rk_2(1-M_0)}$, we have $$ u_{n}(t)\geq\frac{k_2(1-M_0)}{k_1 }\|u_{n}\| =\frac{rk_2(1-M_0)}{k_1 }>\frac{1}{n}>0, \quad t\in[0,1], $$ and $$ f_{n}(t,u_n(t))=f(t,\max\{1/n,u_n(t)\})=f(t,u_n(t)),\quad t\in[0,1]. $$ It is easy to see that \begin{align*} u_n(t)&=\lambda\int^1_0G(t, s)h(s)f(s, u_n(s))\,\mathrm{d}s\\ &\quad +\lambda\int^1_0\rho(t, s)\int^1_0G(s, \tau)h(\tau)f(\tau, u_n(\tau)) \,\mathrm{d}\tau\,\mathrm{d}s, \end{align*} for $t\in[0,1]$. By Lemma \ref{lemma}, we can get $u_{n}$ is a positive solution of \eqref{eq1.5}. \end{proof} Similarly to the proof of Theorem \ref{thm1}, we can obtain the following theorem. \begin{theorem}\label{thm4} Suppose $0\leq m_0\leq M_0<1$ and {\rm (H)} holds. If $$ f^{\infty}=0\quad\text{and}\quad f_0=+\infty, $$ then \eqref{eq1.5} has at least one positive solution for $\lambda\in(0,+\infty)$. \end{theorem} \begin{remark}\label{remark3}\rm In Theorem \ref{thm3}, if $f^{\infty}=0$ or $f_0=+\infty$, we can obtain similar conclusions as those in Theorems \ref{thm3} and \ref{thm4}. \end{remark} \begin{thebibliography}{99} \bibitem{Agarwal} R. P. Agarwal, D. O'Regan, Svatoslav Stan\v{e}k; \emph{Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations}, J. Math. Anal. Appl. 371(2010) 57-68. \bibitem{Bai} Z. Bai, T. Qiu; \emph{Existence of positive solution for singular fractional differential equations}, Appl. Math. Comput. 215(2009) 2761-2767. \bibitem{Caballero} J. Caballero, J. Harjani, K. Sadarangani; \emph{Positive solutions for a class of singular fractional boundary-value problems}, Comput. Math. Appl. 62(2011) 1325-1332. \bibitem{Deimling} K. Deimling; \emph{Nonlinear functional Analysis}, Spinger, Berlin, 1985. \bibitem{Feng} W. Feng, S. Sun, Z. Han, Yige Zhao; \emph{ Existence of solutions for singular system of nonlinear fractional differential equtions}, Comput. Math. Appl. 62(2011) 1370-1378. \bibitem{Guo} D. Guo, V. Lakshmikantham; \emph{Nonlinear Problems in Abstract Cone}, Acadamic Press, Inc., New York,1998 \bibitem{Jia} M. Jia, X. Liu; \emph{Three nonnegative solutions for fractional differential equations with integral boundary conditions}, Comput. Math. Appl. 62(2011) 1405-1412. \bibitem{Jiang} J. Jiang, L. Liu, Y. Wu; \emph{Second-order nonlinear singular Sturm-Liouville problems with integral boundary conditions}, Appl. Math. Comput. 215(2009) 1573-1582. \bibitem{Li} X. Li, B. Wu; \emph{A novel method for nonlinear singular fourth order four-point boundary-value problems}, Comput. Math. Appl. 62(2011) 27-31. \bibitem{Liu1} B. Liu, L. Liu, Y. Wu; \emph{ Positive solutions for singular second-order three-point boundary-value problem}, Appl. Math. Comput. 196(2008) 532-541. \bibitem{Liu2} B. Liu, L. Liu, Y. Wu; \emph{ Positive solutions for singular second order three-point boundary-value problems}, Nonlinear Analysis. 66(2007) 2756-2766. \bibitem{Liu5} L. Liu, B. Liu, Y. Wu; \emph{Positive solutions of singular boundary-value problems for nonlinear differential systems}, Appl. Math. Comput. 186(2007) 1163-1172. \bibitem{Liu4} W. Liu, L. Liu, Y. Wu; \emph{Positive solutions of a singular boundary-value problem for systems of second-order differential equations}, Appl. Math. Comput. 208(2009) 511-519. \bibitem{LXP} X. Liu, M. Jia; \emph{Multiple solutions for fractional differential equations with nonlinear boundary conditions}, Comput. Math. Appl. 59 (2010) 2880-2886. \bibitem{LXP2} X. Liu, M. Jia; \emph{Multiple solutions of nonlocal boundary-value problems for fractional differential equations on the half-line}, Electron. J. Qual. Theory Differ. Equ. No. 56, (2011) 1-14. \bibitem{LXP3} X. Liu, M. Jia, Baofeng Wu; \emph{Existence and Uniqueness of Solution for Fractional Differential Equations with Integral Boundary Conditions}, Electron. J. Qual. Theory Differ. Equ. No. 69, (2009) 1-10. \bibitem{Liu6} X. Liu, Y. Xiao, J. Chen; \emph{Positive solutions for singular Sturm-Liouville boundary-value problems with integral conditions}, Electron. J. Qual. Theory Differ. Equ. No. 77,(2010) 1-15. \bibitem{Liu3} Z. Liu, J.S. Ume, S.M. Kang; \emph{Positive solutions of a singular nonliear third order two-point boundary-value problem}, J. Math. Anal. Appl. 326(2007) 589-601. \bibitem{Podlubny} I. Podlubny; \emph{Fractional Differential Equations}, Mathematics in Science and Engineering 198. New York, 1999. \bibitem{Stanek} S. Stan\v{e}k; \emph{The existence of positive solutions of singular fractional boundary-value problems}, Comput. Math. Appl. 62(2011) 1379-1388. \bibitem{Zhang} S. Zhang; \emph{Positive solutions to singular boundary-value problem for nonlinear fractional differential equation}, Comput. Math. Appl. 59(2010) 1300-1309. \end{thebibliography} \end{document}