\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 88, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/88\hfil Existence of three non-negative solutions] {Existence of three non-negative solutions for a three-point boundary-value problem of nonlinear fractional differential equations} \author[H. Li, X. Kong, C. Yu \hfil EJDE-2012/88\hfilneg] {Haitao Li, Xiangshan Kong, Changtian Yu} % in alphabetical order \address{Haitao Li \newline School of Control Science and Engineering, Shandong University, Jinan 250061, China} \email{haitaoli09@gmail.com} \address{Xiangshan Kong \newline Basic Science Department, Qingdao Binhai University, Qingdao 266555, China} \email{kong\_xiangshan@126.com} \address{Changtian Yu \newline Department of Mathematics, Shandong Normal University, Jinan 250014, China} \email{yuchangtian1986@163.com} \thanks{Submitted February 14, 2012. Published June 4, 2012.} \thanks{Supported by grants G61174036 from the National Natural Science Foundation of China, \hfill\break\indent and yzc10064 from the Graduate Independent Innovation Foundation of Shandong University} \subjclass[2000]{34B10, 34A08} \keywords{Non-negative solutions; Riemann-Liouville fractional derivative; \hfill\break\indent three-point boundary-value problems; Leggett-Williams fixed point theorem} \begin{abstract} This article concerns the existence of three non-negative solutions for two kinds of three-point boundary-value problems of nonlinear fractional differential equations, where the fractional derivative is taken in the Riemann-Liouville sense. Using Leggett-Williams fixed point theorem, we present some existence criteria and then illustrate our results with examples. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} With the development of fractional calculus and its applications \cite{non1995,old1974,sam1993} in mathematics, technology, biology, chemical process etc., increasing attention has been paid to the study of fractional differential equations including the existence of solutions to fractional differential equations \cite{ahm2009, bai2010, bal2010, li2010, shi2009, wei2010, xu2012-1,xu2012-2,yang2012, zhang2006,zhao2011}, the stability analysis of fractional differential equations \cite{deng2010,khu2001,pet2000}, and so on. As a fundamental issue of the theory of fractional differential equations, the existence of (positive) solutions for kinds of boundary-value problems (BVPs) of fractional differential equations has been studied recently by many scholars, and lots of excellent results have been obtained for both two-point BVPs and nonlocal BVPs by means of fixed point index theory \cite{bai2010}, fixed point theorems \cite{ahm2009,xu2012-2,zhang2006}, mixed monotone method \cite{xu2012-1}, upper and lower solutions technique \cite{shi2009}, and so on. Xu et al \cite{xu2012-1,xu2012-2} investigated the fractional differential equation \begin{equation} \label{eq1.1} D_{0+}^{\alpha}u(t)+f(t,u(t))=0,\ t\in(0,1), \end{equation} subject to the following two kinds of three-point boundary conditions: \begin{equation} \label{eq1.2} u(0)=0,\ D_{0+}^{\beta}u(1)=m_1D_{0+}^{\beta}u(\xi), \end{equation} and \begin{equation}\label{eq1.3} u(0)=0,\ u(1)=m_2u(\xi), \end{equation} respectively, where $1<\alpha<2$, $0<\beta\leq1$, $\alpha-\beta-1\geq0$, $0\leq m_1\leq1$, $00$ of a function $y:(0,\infty)\to \mathbb{R}$ is given by \begin{equation}\label{eq2.1} I_{0+}^{\alpha}y(t)=\frac{1}{\Gamma(\alpha)}\int_0^{t}(t-s)^{\alpha-1}y(s)ds, \end{equation} provided the right side is pointwise defined on $(0,\infty)$. \end{definition} \begin{definition}[\cite{sam1993}] \label{def2.2} \rm The Riemann-Liouville fractional derivative of order $\alpha>0$ of a continuous function $y:(0,\infty)\to \mathbb{R}$ is given by \begin{equation}\label{eq2.2} D_{0+}^{\alpha}y(t)=\frac{1}{\Gamma(n-\alpha)}(\frac{d}{dt})^{n}\int_0^{t} \frac{y(s)}{(t-s)^{\alpha-n+1}}ds, \end{equation} where $n=[\alpha]+1$, $[\alpha]$ denotes the integer part of $\alpha$, provided that the right side is pointwise defined on $(0,\infty)$. \end{definition} One can easily obtain the following properties from the definition of Riemann-Liouville derivative. \begin{proposition}[\cite{sam1993}] \label{prop2.1} Let $\alpha>0$, if we assume $u\in C(0,1)\cap L(0,1)$, then, the fractional differential equation $D_{0+}^{\alpha}u(t)=0$ has $u(t)=C_1t^{\alpha-1}+C_2t^{\alpha-2}+\dots+C_{N}t^{\alpha-N}$, $C_{i}\in \mathbb{R}$, $i=1, 2, \dots, N$ as unique solution, where $N$ is the smallest integer greater than or equal to $\alpha$. \end{proposition} \begin{proposition}[\cite{sam1993}] \label{prop2.2} \rm Assume that $u\in C(0,1)\cap L(0,1)$ with a fractional derivative of order $\alpha>0$ that belongs to $C(0,1)\cap L(0,1)$. Then, \begin{equation}\label{eq2.3} I_{0+}^{\alpha}D_{0+}^{\alpha}u(t)=u(t)+C_1t^{\alpha-1} +C_2t^{\alpha-2}+\dots+C_{N}t^{\alpha-N}, \end{equation} for some $C_{i}\in \mathbb{R}$, $i=1, 2, \dots, N$, where $N$ is the smallest integer greater than or equal to $\alpha$. \end{proposition} In the following, we present some important properties of Green's functions for \eqref{eq1.1} with \eqref{eq1.2} and \eqref{eq1.1} with \eqref{eq1.3}, which have been proved in \cite{bai2010,li2010, xu2012-1,xu2012-2}. \begin{lemma}[\cite{xu2012-2}] \label{lemma2.1} $x(t)\in E$ is a solution to \eqref{eq1.1} with \eqref{eq1.2}, if and only if $x(t)=T_1x(t)$, where \begin{equation}\label{eq2.4} T_1x(t)=\int_0^{1}G_1(t,s)f(s,x(s))ds, \end{equation} \begin{equation}\label{eq2.5} G_1(t,s)=\begin{cases} \frac{Dt^{\alpha-1}(1-s)^{\alpha-\beta-1}-m_1Dt^{\alpha-1}(\xi-s)^{\alpha-\beta-1} -(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0\leq s\leq t\leq 1,\; s\leq \xi,\\ \frac{Dt^{\alpha-1}(1-s)^{\alpha-\beta-1}-(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0<\xi \leq s\leq t\leq 1,\\ \frac{Dt^{\alpha-1}(1-s)^{\alpha-\beta-1}-m_1 Dt^{\alpha-1}(\xi-s)^{\alpha-\beta-1}}{\Gamma(\alpha)}, & 0\leq t\leq s\leq \xi<1, \\ \frac{Dt^{\alpha-1}(1-s)^{\alpha-\beta-1}}{\Gamma(\alpha)}, & 0\leq t\leq s\leq 1,\; \xi\leq s, \end{cases} \end{equation} and $D=(1-m_1\xi^{\alpha-\beta-1})^{-1}$. \end{lemma} \begin{lemma}[\cite{xu2012-2}] \label{lemma2.2} The Green's function $G_1(t,s)$ given in \eqref{eq2.5} satisfies \begin{equation} \label{eq2.6} \frac{\beta t^{\alpha-1}s(1-s)^{\alpha-\beta-1}}{\Gamma(\alpha)}\leq G_1(t,s)\leq \frac{Dt^{\alpha-1}(1-s)^{\alpha-\beta-1}}{\Gamma(\alpha)},\quad \forall\ t, s\in[0,1]. \end{equation} \end{lemma} \begin{lemma}[\cite{xu2012-1}] \label{lemma2.3} $x(t)\in E$ is a solution to \eqref{eq1.1} with \eqref{eq1.3}, if and only if $x(t)=T_2x(t)$, where \begin{equation} \label{eq2.7} T_2x(t)=\int_0^{1}G_2(t,s)f(s,x(s))ds, \end{equation} and \begin{equation} \label{eq2.8} G_2(t,s)=\begin{cases} \frac{[t(1-s)]^{\alpha-1}-m_2t^{\alpha-1}(\xi-s)^{\alpha-1} -(t-s)^{\alpha-1}(1-m_2\xi^{\alpha-1})}{(1-m_2\xi^{\alpha-1}) \Gamma(\alpha)}, & 0\leq s\leq t\leq 1,\; s\leq \xi,\\ \frac{[t(1-s)]^{\alpha-1}-(t-s)^{\alpha-1}(1-m_2\xi^{\alpha-1})}{(1-m_2 \xi^{\alpha-1})\Gamma(\alpha)}, & 0<\xi \leq s\leq t\leq 1,\\ \frac{[t(1-s)]^{\alpha-1}-m_2t^{\alpha-1}(\xi-s)^{\alpha-1}}{(1-m_2 \xi^{\alpha-1})\Gamma(\alpha)}, & 0\leq t\leq s\leq \xi<1, \\ \frac{[t(1-s)]^{\alpha-1}}{(1-m_2\xi^{\alpha-1})\Gamma(\alpha)}, & 0\leq t\leq s\leq 1,\; \xi\leq s. \end{cases} \end{equation} \end{lemma} \begin{lemma}[\cite{xu2012-1}] \label{lemma2.4} The Green's function $G_2(t,s)$ given in \eqref{eq2.8} satisfies \begin{equation}\label{eq2.9} \frac{M_0 t^{\alpha-1}s(1-s)^{\alpha-1}}{(1-m_2\xi^{\alpha-1}) \Gamma(\alpha)}\leq G_2(t,s)\leq \frac{t^{\alpha-1}(1-s)^{\alpha-1}}{(1-m_2\xi^{\alpha-1})\Gamma(\alpha)}, \quad \forall\ t,\; s\in[0,1], \end{equation} where $00$ be constants. Define $P_{d}=\{x\in P: \|x\|0$ be a constant. Suppose there exists a concave non-negative continuous functional $\omega$ on $P$ with $\omega(x)\leq\|x\|$ for all $x\in\overline{P_{c}}$. Let $T: \overline{P_{c}}\to\overline{P_{c}}$ be a completely continuous operator. Assume that there are numbers $a$, $b$ and $d$ with $0a\}\neq\emptyset$ and $\omega(Tx)>a$ for all $x\in P(\omega, a, b)$; \item[(ii)] $\|Tx\|a$ for all $x\in P(\omega, a, c)$ with $\|Tx\|>b$. \end{itemize} Then, $T$ has at least three fixed points $x_1$, $x_2$ and $x_3$ in $\overline{P_{c}}$. Furthermore, $x_1\in P_{a}$; $x_2\in\{x\in P(\omega, a, c): \omega(x)>a\}$; $x_3\in \overline{P_{c}}\setminus(P(\omega, b, c)\cup \overline{P_{a}})$. \end{lemma} \section{Main Results} In this section, we investigate the existence of triple non-negative solutions for \eqref{eq1.1} with \eqref{eq1.2} and \eqref{eq1.1} with \eqref{eq1.3}, and present some existence criteria. Denote \begin{gather*} \Phi_1=\frac{\Gamma(\alpha)(\alpha-\beta)}{D},\quad \Phi_2=\alpha(1-m_2\xi^{\alpha-1})\Gamma(\alpha), \\ \Psi_1=\frac{\Gamma(\alpha)(\alpha-\beta)(\alpha-\beta+1)}{\beta \xi^{\alpha-1}(1-\xi)^{\alpha-\beta}(\alpha \xi-\beta \xi+1)},\quad \Psi_2=\frac{\alpha(\alpha+1)(1-m_2\xi^{\alpha-1})\Gamma(\alpha)}{M_0 \xi^{\alpha-1}(1-\xi)^{\alpha}(\alpha \xi+1)}, \\ \Pi_1=\frac{\Gamma(\alpha)(\alpha-\beta)(\alpha-\beta+1)}{\beta \xi^{\alpha-1}}, \quad \Pi_2=\frac{\alpha(\alpha+1)(1-m_2\xi^{\alpha-1})\Gamma(\alpha)}{M_0 \xi^{\alpha-1}},\\ \overline{f_0}=\limsup_{x\to 0^{+}}\sup_{t\in [0,1]}\frac{f(t,x)}{x}, \end{gather*} where $D$ and $M_0$ are given in Lemmas \ref{lemma2.1} and \ref{lemma2.4}, respectively. To use Lemma \ref{lemma2.5}, we define a cone $P=\{x\in E: x(t)\geq0, \forall t\in [0,1]\}$ and a functional $\omega : P\to [0, +\infty)$ by \begin{equation}\label{eq3.1} \omega(x)=\min_{t\in [\xi,1]}x(t), \end{equation} then, one can easily see that $\omega$ is a concave non-negative continuous functional on $P$, and satisfies $\omega(x)\leq\|x\|$ for all $x\in P$. We first consider \eqref{eq1.1} with \eqref{eq1.2} and obtain the following result. \begin{theorem} \label{th3.1} Consider \eqref{eq1.1} with \eqref{eq1.2}. Assume that there exist two constants $a$ and $c$ with $0\Psi_1a$, for all $(t,x)\in [\xi,1]\times [a,c]$. \end{itemize} Then \eqref{eq1.1} with \eqref{eq1.2} has at least three non-negative solutions. \end{theorem} \begin{proof} Let us divide the proof into 4 steps. Step1. From (H1) and Lemma \ref{lemma2.2}, for all $x\in \overline{P_{c}}$, we have \begin{align*} \|T_1x\| &= \max_{t\in[0,1]}\int_0^{1}G_1(t,s)f(s,x(s))ds\\ &\leq \Phi_1c\max_{t\in [0,1]}\int_0^{1}G_1(t,s)ds\\ &\leq \Phi_1c\max_{t\in [0,1]}\int_0^{1}\frac{Dt^{\alpha-1}(1-s) ^{\alpha-\beta-1}}{\Gamma(\alpha)}ds \\ &\leq c(\alpha-\beta)\int_0^{1}(1-s)^{\alpha-\beta-1}ds =c. \end{align*} Thus, $T_1:\overline{P_{c}}\to \overline{P_{c}}$. Now, let us show that $T_1:\overline{P_{c}}\to \overline{P_{c}}$ is completely continuous. Let $x_{n}, x_0\in \overline{P_{c}}$ with $\|x_{n}-x_0\|\to0$ as $n\to+\infty$. Then, \begin{align*} \|T_1x_{n}-T_1x_0\| &= \max_{t\in [0,1]}|\int_0^{1}G_1(t,s)f(s,x_{n}(s))ds -\int_0^{1}G_1(t,s)f(s,x_0(s))ds|\\ &\leq \max_{t\in [0,1]}\int_0^{1}G_1(t,s)|f(s,x_{n}(s))-f(s,x_0(s))|ds\\ &\leq \frac{D}{\Gamma(\alpha)}\int_0^{1}(1-s)^{\alpha-\beta-1} |f(s,x_{n}(s))-f(s,x_0(s))|ds \to0, \end{align*} as $n\to +\infty$. Hence, $T_1:\overline{P_{c}}\to \overline{P_{c}}$ is continuous. In addition, for any $t_1,\ t_2\in[0, 1]$ and $x\in \overline{P_{c}}$, we have \begin{equation} \label{eq3.2} |(T_1x)(t_1)-(T_1x)(t_2)|\leq\Phi_1c\int_0^{1}|G_1(t_1,s)-G_1(t_2,s)|ds. \end{equation} Since $G_1(t, s)$ is uniformly continuous on $(t, s)\in[0,1]\times[0, 1]$, it is easy to see that $|(T_1x)(t_1)-(T_1x)(t_2)|\to0$ as $|t_1-t_2|\to0$. Moreover, $T_1(\overline{P_{c}})$ is bounded. Thus, the Arzela-Ascoli theorem guarantees that $T_1:\overline{P_{c}}\to \overline{P_{c}}$ is compact. Therefore, $T_1:\overline{P_{c}}\to \overline{P_{c}}$ is completely continuous. Step2. Choose a constant $b\in(a,c]$. Let $x_0(t)=\frac{a+b}{2},\ \forall\ t\in [0,1]$. Then, $\omega(x_0)=\frac{a+b}{2}>a$ and $\|x_0\|=\frac{a+b}{2}a\}\neq \emptyset$. Now, let us prove that $\omega(T_1x)>a$ holds for all $x\in P(\omega, a, b)$. In fact, $x\in P(\omega, a, b)$ implies that $a\leq x(t)\leq b$, for all $t\in [\xi,1]$. One can obtain from (H3) and Lemma \ref{lemma2.2} that \begin{align*} \omega(T_1x)&= \min_{t\in [\xi,1]}(T_1x)(t)=\min_{t\in [\xi,1]}\int_0^{1}G_1(t,s)f(s,x(s))ds\\ &>\Psi_1a \min_{t\in [\xi,1]}\int_{\xi}^{1}G_1(t,s)ds\\ &\geq \Psi_1a \min_{t\in [\xi,1]}\int_{\xi}^{1}\frac{\beta t^{\alpha-1}s(1-s)^{\alpha-\beta-1}}{\Gamma(\alpha)}ds\\ &\geq \Psi_1a\frac{\beta\xi^{\alpha-1}}{\Gamma(\alpha)} \int_{\xi}^{1}s(1-s)^{\alpha-\beta-1}ds=a. \end{align*} Hence, the condition (i) of Lemma \ref{lemma2.5} holds. Step3. It is easy to see from (H2) that for all $t\in [0,1]$, $\forall\ 0<\varepsilon\leq \frac{\alpha-\beta}{D}\Gamma(\alpha)-\eta$, there exists $\delta>0$, such that for $0\leq x<\delta$, we have \begin{equation} \label{eq3.3} f(t,x)<(\eta+\varepsilon)x. \end{equation} Let $0a$ holds for all $x\in P(\omega, a, c)$ with $\|T_1x\|>b$. For $x\in P(\omega, a, c)$ with $\|T_1x\|>b$, we have $a\leq x(t)\leq c$, for all $t\in [\xi,1]$. From (H3) and Lemma \ref{lemma2.2}, one can see that \begin{align*} \omega(T_1x) &= \min_{t\in [\xi,1]}(T_1x)(t)\\ &= \min_{t\in[\xi,1]}\int_0^{1}G_1(t,s)f(s,x(s))ds\\ &\geq \min_{t\in [\xi,1]}\int_0^{1}\frac{\beta t^{\alpha-1}s(1-s)^{\alpha-\beta-1}}{\Gamma(\alpha)}f(s,x(s))ds\\ &\geq \frac{\beta \xi^{\alpha-1}}{\Gamma(\alpha)} \int_{\xi}^{1}s(1-s)^{\alpha-\beta-1}f(s,x(s))ds\\ &> \frac{\beta \xi^{\alpha-1}}{\Gamma(\alpha)}\Psi_1 a \int_{\xi}^{1}s(1-s)^{\alpha-\beta-1}ds=a. \end{align*} Therefore, the condition (iii) of Lemma \ref{lemma2.5} is satisfied. To summing up, all conditions of Lemma \ref{lemma2.5} hold; therefore, BVP \eqref{eq1.1} with \eqref{eq1.2} has at least three non-negative solutions. \end{proof} Next, we study \eqref{eq1.1} with \eqref{eq1.3} and establish a sufficient condition for the existence of triple non-negative solutions of \eqref{eq1.1} with \eqref{eq1.3}. \begin{theorem} \label{th3.2} Consider \eqref{eq1.1} with \eqref{eq1.3}. Assume that there exist two constants $a$ and $c$ with $0\Psi_2a$ for all $(t,x)\in [\xi,1]\times [a,c]$. \end{itemize} Then \eqref{eq1.1} with \eqref{eq1.3} has at least three non-negative solutions. \end{theorem} \begin{proof} By (H4) and Lemma \ref{lemma2.4}, for all $x\in \overline{P_{c}}$, we have \begin{align*} \|T_2x\| &= \max_{t\in [0,1]}\int_0^{1}G_2(t,s)f(s,x(s))ds\\ &\leq \Phi_2c\max_{t\in [0,1]}\int_0^{1}G_2(t,s)ds \\ &\leq \Phi_2c\max_{t\in [0,1]}\int_0^{1}\frac{t^{\alpha-1} (1-s)^{\alpha-1}}{(1-m_2\xi^{\alpha-1})\Gamma(\alpha)}ds \\ &\leq \Phi_2c\frac{1}{(1-m_2\xi^{\alpha-1})\Gamma(\alpha)}\int_0^{1}(1-s)^{\alpha-1}ds =c. \end{align*} Thus, $T_2:\overline{P_{c}}\to \overline{P_{c}}$. Similar to the proof of Theorem \ref{th3.1}, it is easy to see that $T_2:\overline{P_{c}}\to \overline{P_{c}}$ is completely continuous. Choose a constant $b\in(a,c]$. Denote by $x_0(t)=\frac{a+b}{2}$ for all$ t\in [0,1]$. Then, $\omega(x_0)=\frac{a+b}{2}>a$ and $\|x_0\|=\frac{a+b}{2}a\}\neq \emptyset$. Next, let us prove that $\omega(T_2x)>a$ holds for all $x\in P(\omega, a, b)$. In fact, $x\in P(\omega, a, b)$ implies that $a\leq x(t)\leq b$ for all $t\in [\xi,1]$. One can obtain from (H6) and Lemma \ref{lemma2.4} that \begin{align*} \omega(T_2x) &= \min_{t\in [\xi,1]}(T_2x)(t)=\min_{t\in [\xi,1]}\int_0^{1}G_2(t,s)f(s,x(s))ds\\ &> \Psi_2a \min_{t\in [\xi,1]}\int_{\xi}^{1}G_2(t,s)ds\\ &\geq \Psi_2a \min_{t\in [\xi,1]}\int_{\xi}^{1} \frac{M_0}{(1-m_2\xi^{\alpha-1})\Gamma(\alpha)} t^{\alpha-1}s(1-s)^{\alpha-1}ds\\ &\geq \Psi_2a\frac{M_0\xi^{\alpha-1}}{(1-m_2\xi^{\alpha-1})\Gamma(\alpha)} \int_{\xi}^{1}s(1-s)^{\alpha-1}ds=a. \end{align*} Hence, the condition (i) of Lemma \ref{lemma2.5} holds. Next, we prove that the condition (ii) of Lemma \ref{lemma2.5} holds. (H5) implies that for all $t\in [0,1]$, and all $0<\varepsilon\leq \Phi_2-\mu$, there exists $\delta>0$, such that for $0\leq x<\delta$, we have \begin{equation}\label{eq3.4} f(t,x)<(\mu+\varepsilon)x. \end{equation} Let $0a$ holds for all $x\in P(\omega, a, c)$ with $\|T_2x\|>b$. For $x\in P(\omega, a, c)$ with $\|T_2x\|>b$, we have $a\leq x(t)\leq c,\ \forall\ t\in [\xi,1]$. From (H6) and Lemma \ref{lemma2.4}, it is easy to see \begin{align*} \omega(T_2x) &= \min_{t\in [\xi,1]}(T_2x)(t)\\ &= \min_{t\in[\xi,1]}\int_0^{1}G_2(t,s)f(s,x(s))ds\\ &\geq \min_{t\in [\xi,1]}\int_0^{1}\frac{M_0}{(1-m_2\xi^{\alpha-1})\Gamma(\alpha)} t^{\alpha-1}s(1-s)^{\alpha-1}f(s,x(s))ds \\ &\geq \frac{M_0}{(1-m_2\xi^{\alpha-1})\Gamma(\alpha)} \xi^{\alpha-1}\int_{\xi}^{1}s(1-s)^{\alpha-1}f(s,x(s))ds\\ &> \frac{M_0}{(1-m_2\xi^{\alpha-1})\Gamma(\alpha)} \xi^{\alpha-1}\Psi_2a\int_{\xi}^{1}s(1-s)^{\alpha-1}ds=a. \end{align*} Therefore, condition (iii) of Lemma \ref{lemma2.5} is satisfied. Hence, all conditions of Lemma \ref{lemma2.5} hold; therefore, \eqref{eq1.1} with \eqref{eq1.3} has at least three non-negative solutions. \end{proof} \begin{remark}\label{rem3.1} \rm It is noted that in the proof of Theorems \ref{th3.1} and \ref{th3.2}, the condition $\|T_{i}x\|>b$, $i=1,2$ is not applied in Step 4. This is because (H3) or (H6) is sufficient for the proof, which makes (H3) or (H6) strong. \end{remark} In the following, to apply the condition $\|T_{i}x\|>b$, $i=1,2$ in the proof and relax (H3) or (H6), we study \eqref{eq1.1} with \eqref{eq1.2} and \eqref{eq1.1} with \eqref{eq1.3} by constructing the following two cones: \begin{gather}\label{eq3.5} P_1=\{x\in E: x(t)\geq0,\,\forall t\in [0,1];\ x(t)\geq \gamma_1\|x\|,\, \forall t\in[\xi,1]\},\\ P_2=\{x\in E: x(t)\geq0,\, \forall t\in [0,1];\, x(t)\geq \gamma_2\|x\|,\, \forall t\in [\xi,1]\}, \end{gather} where $0<\gamma_i<\min\{1, \frac{\Phi_{i}}{\Pi_{i}}, \frac{\Psi_{i}}{\Pi_{i}}\},\ i=1,2$. In this case, $\omega : P_{i}\to [0, +\infty)$, $i=1,2$. We first consider \eqref{eq1.1} with \eqref{eq1.2} by using the cone $P_1$, and obtain the following result. \begin{theorem} \label{th3.3} Consider \eqref{eq1.1} with \eqref{eq1.2}. Assume that there exist constants $a$, $b$, $c$ and $d$ with $0<\frac{\gamma_1\Pi_1}{\Phi_1}c\Psi_1a$ for all $(t,x)\in [\xi,1]\times [a,b]$. \end{itemize} Then, \eqref{eq1.1} with \eqref{eq1.2} has at least three non-negative solutions. \end{theorem} \begin{proof} Let us divide the proof into 4 steps. Step 1. By (H1') and Lemma \ref{lemma2.2}, for any $x\in\overline{P_{c}}=\{x\in P_1: \|x\|\leq c\}$ we have \begin{align*} \|T_1x\| &= \max_{t\in [0,1]}\int_0^{1}G_1(t,s)f(s,x(s))ds\\ &\leq \Phi_1 c\max_{t\in [0,1]}\int_0^{1}\frac{Dt^{\alpha-1}(1-s) ^{\alpha-\beta-1}}{\Gamma(\alpha)}ds \\ &\leq \frac{D}{(\alpha-\beta)\Gamma(\alpha)}\Phi_1 c=c, \end{align*} and \begin{align*} \min_{t\in [\xi,1]}(T_1x)(t) &= \min_{t\in [\xi,1]}\int_0^{1}G_1(t,s)f(s,x(s))ds\\ &\geq \gamma_1\Pi_1c \min_{t\in [\xi,1]}\int_0^{1}G_1(t,s)ds\\ &\geq \gamma_1\Pi_1c \min_{t\in [\xi,1]}\int_0^{1}\frac{\beta t^{\alpha-1}s(1-s)^{\alpha-\beta-1}}{\Gamma(\alpha)}ds\\ &\geq \gamma_1\Pi_1c\frac{1}{\Pi_1} =\gamma_1c\geq\gamma_1\|T_1x\|. \end{align*} Thus, $T_1:\overline{P_{c}}\to \overline{P_{c}}$. Next, let us show that $T_1:\overline{P_{c}}\to \overline{P_{c}}$ is completely continuous. Let $x_{n},\ x_0\in \overline{P_{c}}$ with $\|x_{n}-x_0\|\to0$ as $n\to+\infty$. Then \begin{align*} \|T_1x_{n}-T_1x_0\| &= \max_{t\in [0,1]}|\int_0^{1}G_1(t,s)f(s,x_{n}(s))ds -\int_0^{1}G_1(t,s)f(s,x_0(s))ds|\\ &\leq \max_{t\in [0,1]}\int_0^{1}G_1(t,s)|f(s,x_{n}(s))-f(s,x_0(s))|ds\\ &\leq \frac{D}{\Gamma(\alpha)}\int_0^{1}(1-s)^{\alpha-\beta-1} |f(s,x_{n}(s))-f(s,x_0(s))|ds \to0, \end{align*} as $n\to+\infty$. Hence, $T_1:\overline{P_{c}}\to \overline{P_{c}}$ is continuous. In addition, for any $t_1, t_2\in[0, 1]$ and $x\in \overline{P_{c}}$, we have \begin{equation} \label{eq3.2b} |(T_1x)(t_1)-(T_1x)(t_2)|\leq \Phi_1 c\int_0^{1}|G_1(t_1,s)-G_1(t_2,s)|ds. \end{equation} Since $G_1(t, s)$ is uniformly continuous on $(t, s)\in[0,1]\times[0, 1]$, it is easy to see that $|(T_1x)(t_1)-(T_1x)(t_2)|\to0$ as $|t_1-t_2|\to0$. Moreover, $T_1(\overline{P_{c}})$ is bounded. Thus, the Arzela-Ascoli theorem guarantees that $T_1:\overline{P_{c}}\to \overline{P_{c}}$ is compact. Therefore, $T_1:\overline{P_{c}}\to \overline{P_{c}}$ is completely continuous. Step 2. Let $x_0(t)=\frac{a+b}{2}$ for all $t\in [0,1]$. Then $\omega(x_0)=\frac{a+b}{2}>a$ and $\|x_0\|=\frac{a+b}{2}a\}\neq \emptyset$. Now, let us prove that $\omega(T_1x)>a$ holds for all $x\in P(\omega, a,b)$. In fact, $x\in P(\omega, a, b)$ implies that $a\leq x(t)\leq b$ for all $t\in [\xi,1]$. One can obtain from (H3') and Lemma \ref{lemma2.2} that \begin{align*} \omega(T_1x) &= \min_{t\in [\xi,1]}(T_1x)(t)=\min_{t\in [\xi,1]}\int_0^{1}G_1(t,s)f(s,x(s))ds\\ &> \Psi_1a \min_{t\in [\xi,1]}\int_{\xi}^{1}G_1(t,s)ds\\ &\geq \Psi_1a \min_{t\in [\xi,1]}\int_{\xi}^{1}\frac{\beta t^{\alpha-1}s(1-s)^{\alpha-\beta-1}}{\Gamma(\alpha)}ds\\ &\geq \Psi_1a\frac{\beta\xi^{\alpha-1}}{\Gamma(\alpha)} \int_{\xi}^{1}s(1-s)^{\alpha-\beta-1}ds=a. \end{align*} Hence, condition (i) of Lemma \ref{lemma2.5} holds. Step 3. It is easy to see from (H2') that for all $x\in \overline{P_{d}}$, we have \begin{align*} \|T_1x\|&= \max_{t\in [0,1]}\int_0^{1}G_1(t,s)f(s,x(s))ds\\ &< \Phi_1d\max_{t\in [0,1]}\int_0^{1}G_1(t,s)ds \\ &\leq \Phi_1d\max_{t\in [0,1]}\int_0^{1}\frac{Dt^{\alpha-1} (1-s)^{\alpha-\beta-1}}{\Gamma(\alpha)}ds \\ &\leq \Phi_1d\frac{D}{\Gamma(\alpha)}\int_0^{1}(1-s)^{\alpha-\beta-1}ds=d. \end{align*} Thus, $\|T_1x\|a$ holds for all $x\in P(\omega, a, c)$ with $\|T_1x\|>b$. For $x\in P(\omega, a, c)$ with $\|T_1x\|>b$, we have $a \leq x(t)\leq c$ for all $t\in [\xi,1]$. Then, one can see that $$ \omega(T_1x)=\min_{t\in [\xi,1]}(T_1x)(t) \geq \gamma_1\|T_1x\|>\gamma_1b \geq a. $$ Therefore, condition (iii) of Lemma \ref{lemma2.5} is satisfied. By Lemma \ref{lemma2.5}, \eqref{eq1.1} with \eqref{eq1.2} has at least three non-negative solutions. \end{proof} Next, we study \eqref{eq1.1} with \eqref{eq1.3} in the cone $P_2$ and establish the following result. \begin{theorem} \label{th3.4} Consider \eqref{eq1.1} with \eqref{eq1.3}. Assume that there exist constants $a$, $b$, $c$ and $d$ with $0<\frac{\gamma_2\Pi_2}{\Phi_2}c\Psi_2a$ for all $(t,x)\in [\xi,1]\times [a,b]$. \end{itemize} Then \eqref{eq1.1} with \eqref{eq1.3} has at least three non-negative solutions. \end{theorem} The proof of the above theorem is similar to that of Theorem \ref{th3.3}; thus we omit it. \begin{remark} \label{rem3.2}\rm From the proof of Theorems \ref{th3.1}-\ref{th3.4}, one can see that at least two of the three non-negative solutions are positive. \end{remark} \begin{remark} \label{rem3.3} \rm Comparing Theorem \ref{th3.1} and Theorem \ref{th3.3}, one can see that (H1) and (H2) are weaker than (H1') and (H2'), while (H3) is stronger than (H3'). Similarly, for Theorem \ref{th3.2} and Theorem \ref{th3.4}: (H4) and (H5) are weaker than (H4') and (H5'), while (H6) is stronger than (H6'). \end{remark} \section{Examples} In this section, we give two illustrative examples to support our new results. \begin{example} \label{ex4.1}\rm Consider the fractional order three-point BVP \begin{equation}\label{eq4.1} \begin{gathered} D_{0+}^{3/2}u(t)+f(t,u(t))=0,\quad t\in(0,1),\\ u(0)=0,\quad D_{0+}^{1/2}u(1)=\frac{1}{2}D_{0+}^{1/2}u(\frac{1}{2}), \end{gathered} \end{equation} where \begin{equation}\label{eq4.2} f(t,x)=\begin{cases} \frac{1}{5}(1+t)x,& 0\leq t\leq 1,\, 0\leq x\leq 0.5,\\ \frac{99}{5}(1+t)x-\frac{49}{5}(1+t), & 0\leq t\leq 1,\, 0.5 \Psi_1a,\quad \forall (t,x)\in[\frac{1}{2},1]\times[1,50], $$ and $$ f(t,x)\leq20\leq\Phi_1c,\quad \forall (t,x)\in[0,1]\times[0,50]. $$ Thus, (H1) and (H3) hold. Since $\overline{f_0}=\overline{\lim}_{x\to 0^{+}}\sup_{t\in [0,1]}\frac{f(t,x)}{x} =0.4<\Phi_1$, we conclude that (H2) holds. By Theorem \ref{th3.1}, \eqref{eq4.1} has at least three non-negative solutions. \end{example} \begin{example} \label{ex4.2} \rm Consider the fractional order three-point BVP \begin{equation} \label{eq4.3} \begin{gathered} D_{0+}^{3/2}u(t)+f(t,u(t))=0,\quad t\in(0,1),\\ u(0)=0,\quad u(1)=\frac{1}{2}u(\frac{1}{2}), \end{gathered} \end{equation} where \begin{equation} \label{eq4.4} f(t,x)=\begin{cases} \frac{1}{4}(1+t)x, & 0\leq t\leq 1,\, 0\leq x\leq 0.05,\\ \frac{239}{4}(1+t)x-\frac{119}{40}(1+t), & 0\leq t\leq 1,\ 0.05 \Psi_2a,\quad \forall (t,x)\in[\frac{1}{2},1]\times[0.1,10], $$ and $$ f(t,x)\leq6\leq\Phi_2c,\quad \forall (t,x)\in[0,1]\times[0,10]. $$ Thus, (H4) and (H6) are satisfied. A straightforward computation implies that $\overline{f_0}=\limsup_{x\to 0^{+}}\sup_{t\in [0,1]}\frac{f(t,x)}{x}=0.5<\Phi_2$, and thus (H5) holds. By Theorem \ref{th3.2}, \eqref{eq4.3} has at least three non-negative solutions. \end{example} \begin{thebibliography}{00} \bibitem{ahm2009} B. Ahmad, J. J. Nieto; Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, \emph{Comput. Math. Appl.}, 58: 1838-1843, 2009. \bibitem{bai2010} Z. Bai; On positive solutions of a nonlocal fractional boundary-value problem, \emph{Nonlinear Analysis}, 72: 916-924, 2010. \bibitem{bal2010} D. Baleanu, O. G. Mustafa, R. P. Agarwal; An existence result for a superlinear fractional differential equation, \emph{Appl. Math. Lett.}, 23(9): 1129-1132, 2010. \bibitem{deng2010} W. Deng; Smoothness and stability of the solutions for nonlinear fractional differential equations, \emph{Nonlinear Analysis}, 31(3): 1768-1777, 2010. \bibitem{guo1988} D. Guo, V. Lakshmikantham; \emph{Nonlinear Problems in Abstract Cones}, Academic Press, New York, 1988. \bibitem{khu2001} T. D. Khusainov; Stability analysis of a linear-fractional delay system, \emph{Differential Equations}, 37(8): 1184-1188, 2001. \bibitem{li2010} C. Li, X. Luo, Y. Zhou; Existence of positive solutions of the boundary-value problem for nonlinear fractional differential equations, \emph{Comput. Math. Appl.}, 59: 1363-1375, 2010. \bibitem{non1995} T. F. Nonnenmacher, R. Metzler; On the Riemann-Liouvile fractional calculus and some recent applications, \emph{Fractals}, 3: 557-566, 1995. \bibitem{old1974} K. B. Oldham, J. Spanier; \emph{The Fractional Calculus}, Academic Press, New York/London, 1974. \bibitem{pet2000} H. Petzeltova, J. Pruss; Global stability of a fractional partial differential equation, \emph{Journal of Integral Equations and Applications}, 12(3): 323-347, 2000. \bibitem{sam1993} S. G. Samko, A. A. Kilbas, O. I. Marichev; \emph{Fractional Integrals and Derivatives (Theory and Applications)}, Gordon and Breach, Switzerland, 1993. \bibitem{shi2009} A. Shi, S. Zhang; Upper and lower solutions method and a fractional differential equation boundary-value problem, \emph{Electron. J. Quali. Theo. Diff. Equa.}, 2009(30): 1-13, 2009. \bibitem{wei2010} Z. Wei, W. Dong, J. Che; Periodic boundary-value problems for fractional differential equations involving a Riemann-Liouville fractional derivative, \emph{Nonlinear Analysis}, 73(10): 3232-3238, 2010. \bibitem{xu2012-1} X. Xu, D. Jiang, W. Hu, D. O'Regan, R. P. Agarwal; Positive properties of Green's function for three-point boundary-value problems of nonlinear fractional differential equations and its applications, \emph{Applicable Analysis}, 91(2): 323-343, 2012. \bibitem{xu2012-2} X. Xu, X. Fei; The positive properties of Green's function for three point boundary-value problems of nonlinear fractional differential equations and its applications, \emph{Commun. Nonlinear Sci. Numer. Simulat.}, 17: 1555-1565, 2012. \bibitem{yang2012} X. Yang, Z. Wei, W. Dong; Existence of positive solutions for the boundary-value problem of nonlinear fractional differential equations, \emph{Commun. Nonlinear Sci. Numer. Simulat.}, 17(1): 85-92, 2012. \bibitem{zhang2006} S. Zhang; Positive solutions for boundary-value problems of nonlinear fractional differential equations, \emph{Electron. J. Diff. Equa.}, 2006 (36): 1-12, 2006. \bibitem{zhao2011} Y. Zhao, S. Sun, Z. Han, M. Zhang; Positive solutions for boundary-value problems of nonlinear fractional differential equations, \emph{Appl. Math. Comput.}, 217(16): 6950-6958, 2011. \end{thebibliography} \end{document}