\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 90, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/90\hfil Existence of solutions] {Existence of solutions for a fractional neutral integro-differential equation with unbounded delay} \author[B. de Andrade, J. P. C. dos Santos \hfil EJDE-2012/90\hfilneg] {Bruno de Andrade, Jos\'e Paulo Carvalho dos Santos} % in alphabetical order \address{Bruno de Andrade \newline Departamento de Matem\'atica, ICMC, Universidade de S\~ao Paulo\\ S\~ao Carlos-SP, CEP. 13569-970, Brazil} \email{bruno00luis@gmail.com} \address{Jos\'e Paulo Carvalho dos Santos\newline Instituto de Ci\^encias Exatas, Universidade Federal de Alfenas\\ Alfenas-MG, CEP. 37130-000, Brazil} \email{zepaulo@unifal-mg.edu.br} \thanks{Submitted December 12, 2011. Published June 5, 2012.} \subjclass[2000]{34K30, 35R10, 47D06} \keywords{Integro-differential equations; resolvent of operators; unbounded delay} \begin{abstract} In this article, we study the existence of mild solutions for fractional neutral integro-differential equations with infinite delay. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In this article, we study the existence of mild solutions for the neutral fractional integral evolutionary equation \begin{gather}\label{eqf1} D^{\alpha}_t( x(t)+f(t,x_t)) = Ax(t)+ \int_0^{t} B(t-s)x(s)ds+ g(t,x_t), \quad t>0, \\ \label{eqf2} x_0=\varphi , \quad x'(0)=x_1, \end{gather} where $ \alpha \in (1,2)$; $A, (B(t))_{t\geq0}$ are closed linear operators defined on a common domain which is dense in a Banach space $X$, $D^{\alpha}_t h(t)$ represent the Caputo derivative of $\alpha>0$ defined by $$ D^{\alpha}_t h(t) := \int_0^{t} g_{n-\alpha}(t-s) \frac{d^{n}}{ds^{n}} h(s) ds, $$ where $n$ is the smallest integer greater than or equal to $\alpha$ and $g_{\beta}(t):= \frac{t^{\beta-1}}{\Gamma(\beta)}, t>0, \beta\geq0$. The history $x_{t}: (-\infty,0] \to X$ given by $x_{t}(\theta)=x(t+\theta)$ belongs to some abstract phase space $\mathcal{B}$ defined axiomatically and $ f,g:I\times \mathcal{B}\to X $ are appropriate functions. The literature related to ordinary neutral functional differential equations is very extensive and we refer the reader to the Hale and Lunel book \cite{HA1} and the references therein. Partial neutral differential equations arise, for instance, in the transmission line theory, see Wu and Xia \cite{wu4} and the study of material with fanding memory, see \cite{Gurtin1,Nunziato1}. In the paper \cite{HH2}, Hernandez and Henriquez, study the existence of mild and strong solutions for the partial neutral system \begin{gather} \label{e3} \frac{d}{d t} \big(x(t) + g(t,x_{t})\big) = Ax(t)+ f(t,x_t), \quad t \in I=[0,a], \\ \label{e4} x_0 = \varphi , \end{gather} where $A:D(A)\subset X\to X $ is a generator of analytic semigroup and the history $x_{t}: (-\infty,0] \to X$ given by $x_{t}(\theta)=x(t+\theta)$ belongs to some abstract phase space $\mathcal{B}$ defined axiomatically and $ f,g:I\times \mathcal{B}\to X $ are appropriate functions. Very recently, Hernandez et al, \cite{Jose3}, study the existence of mild, strong and classical solutions for the integro-differential neutral systems \begin{gather} \label{eq1} \frac{d}{dt} (x(t) + f(t,x_t))= Ax(t)+ \int_0^{t} B(t-s)x(s) ds + g(t,x_{t}), \quad t \in I=[0,b], \\ x_0 = \varphi,\quad \varphi \in \mathcal{B} , \end{gather} where $ A:D(A)\subset X\to X$ and $B(t):D(B(t))\subset X\to X$, $t\geq 0$, are closed linear operators; $(X, \| \cdot\| ) $ is a Banach space; the history $x_{t}: (-\infty,0] \to X$, defined by $x_t(\theta) := x(t +\theta)$ belongs to an abstract phase space $\mathcal{B}$ defined axiomatically and $ f,g : I \times \mathcal{B} \to X$ are appropriated functions. In the paper \cite{DosSantos}, Dos Santos et al. study the existence of mild and classical solutions for the partial neutral systems with unbounded delay \begin{gather} \label{e1} \frac{d}{d t}[x(t) + \int_{-\infty}^{t} N(t-s)x(s) ds ] = Ax(t)+ \int_{-\infty}^{t} B(t-s)x(s) d s + f(t,x_t), \; t \in [0,a], \\ \label{e2} x_0 = \varphi, \quad \varphi\in \mathcal{B} , \end{gather} where $ A, B(t)$ for $t \geq 0$ are closed linear operators defined on a common domain $D(A)$ which is dense in $X$, $N(t)$ ($t \geq 0$) are bounded linear operators on $X$, without to use many of the strong restrictions considered in the literature. To the best of our knowledge, the existence of mild solutions for abstract fractional partial evolutionary integral equations with unbounded delay is an untreated topic in the literature and this fact is the main motivation of the present work. \section{Preliminaries}\label{preliminaries} In what follows we recall some definitions, notation and results that we need in the sequel. Throughout this paper, $(X, \| \cdot\| ) $ is a Banach space and $A, B(t)$, $t\geq 0$, are closed linear operators defined on a common domain $\mathcal{D}=D(A)$ which is dense in $X$. The notation $[D(A)]$ represents the domain of $A$ endowed with the graph norm. Let $(Z,\| \cdot\| _{Z})$ and $(W,\| \cdot \| _{W})$ be Banach spaces. In this paper, the notation $\mathcal{L}(Z,W)$ stands for the Banach space of bounded linear operators from $Z$ into $W$ endowed with the uniform operator topology and we abbreviate this notation to $\mathcal{L}(Z)$ when $Z = W$. Furthermore, for appropriate functions $K :[0,\infty)\to Z$ the symbol $\widehat{K}$ denotes the Laplace transform of $K$. Thesymbol $B_r(x,Z)$ stands for the closed ball with center at $x$ and radius $r>0$ in $Z$. On the other hand, for a bounded function $\gamma :[0,a]\to Z$ and $ t\in [0,a]$, the symbol $\|\gamma \|_{Z,t}$ is given by \begin{equation} \label{notation1} \|\gamma\|_{Z,t} =\sup\{\| \gamma(s)\|_{Z} : s \in [0,t]\}, \end{equation} and we simplify this notation to $\|\gamma\|_{t}$ when no confusion about the space $Z$ arises. To obtain our results, we assume that the abstract fractional integro-differential problem \begin{gather} \label{eqa1} D^{\alpha}_t x(t) = Ax(t)+ \int_0^{t} B(t-s)x(s)ds, \\ \label{eqa2} x(0) = z\in X, \quad x'(0)=0, \end{gather} has an associated $\alpha$-resolvent operator of bounded linear operators $(\mathcal{R}_{\alpha}(t))_{t\geq 0}$ on $X$. \begin{definition}\label{D3} \rm A one parameter family of bounded linear operators $(\mathcal{R}_{\alpha}(t))_{t\geq 0} $ on $X$ is called a $\alpha$-resolvent operator of \eqref{eqa1}-\eqref{eqa2} if the following conditions are satisfied. \begin{itemize} \item [(a)] The function $\mathcal{R}_{\alpha}(\cdot): [0, \infty) \to \mathcal{L}(X)$ is strongly continuous and $\mathcal{R}_{\alpha}(0)x=x$ for all $x\in X$ and $\alpha \in (1,2)$. \item [(b)] For $x \in D(A) $, $\mathcal{R}_{\alpha}(\cdot)x \in C([0,\infty), [D(A)]) \bigcap C^{1}((0,\infty),X)$, and \begin{gather}\label{eqrp1} D^{\alpha}_t \mathcal{R}_{\alpha}(t) x = A \mathcal{R}_{\alpha}(t)x + \int_0^{t} B(t-s) \mathcal{R}_{\alpha} (s) x d s, \\ \label{eqrp2} D^{\alpha}_t \mathcal{R}_{\alpha}(t)x = \mathcal{R}_{\alpha}(t) A x + \int_0^{t} \mathcal{R}_{\alpha}(t-s) B(s)x d s, \end{gather} for every $t\geq 0 $. \end{itemize} \end{definition} The existence of a $\alpha$-resolvent operator for problem \eqref{eqa1}-\eqref{eqa2} was studied in \cite{ACJ}. In this work we consider the following conditions. \begin{itemize} \item[(P1)] The operator $A : D(A)\subseteq X \to X $ is a closed linear operator with $[D(A)]$ dense in $X$. Let $\alpha \in (1,2)$, for some $\phi_0 \in (0, \frac{\pi}{2}]$ for each $\phi<\phi_0$ there is positive constants $C_0=C_0(\phi)$ such that $ \lambda \in \rho(A) $ for each $$ \lambda \in \Sigma_{ 0,\alpha \vartheta } = \{ \lambda \in \mathbb{C}: \lambda\neq 0, \, | \arg(\lambda) | < \alpha \vartheta \}, $$ where $\vartheta=\phi+ \frac{\pi}{2}$ and $ \| R(\lambda,A) \| \leq \frac{C_0}{| \lambda |} $ for all $\lambda \in \Sigma_{0,\alpha \vartheta }$. \item[(P2)] For all $t\geq 0$, $B(t):D(B(t)) \subseteq X \to X $ is a closed linear operator, $D(A) \subseteq D(B(t)) $ and $B(\cdot)x $ is strongly measurable on $(0,\infty) $ for each $x \in D(A)$. There exists $b(\cdot) \in L_{\rm loc}^{1}(\mathbb{R}^{+}) $ such that $\widehat{b}(\lambda)$ exists for $Re(\lambda) > 0$ and $\| B(t) x \| \leq b(t) \| x \|_1 $ for all $t>0 $ and $x \in D(A)$. Moreover, the operator valued function $\widehat{B} : \Sigma_{0, \pi/2} \to \mathcal{L}([D(A)],X)$ has an analytical extension (still denoted by $\widehat{B}$) to $\Sigma_{ 0,\vartheta }$ such that $\| \widehat{B}(\lambda) x \| \leq \|\widehat{B}(\lambda)\| \, \|x\|_1$ for all $x \in D(A)$, and $\|\widehat{B}(\lambda)\| = O(\frac{ 1}{| \lambda | })$, as $|\lambda | \to \infty$. \item[(P3)] There exists a subspace $D \subseteq D(A) $ dense in $[D(A)] $ and positive constants $C_{i}$, $i=1,2$, such that $A(D) \subseteq D(A) $, $\widehat{B}(\lambda)(D) \subseteq D(A) $, $\|A \widehat{B}(\lambda) x \| \leq C_1 \|x\|$ for every $x\in D$ and all $ \lambda \in \Sigma_{0, \vartheta}$. \end{itemize} In the sequel, for $r>0$ and $ \theta \in (\frac{\pi}{2}, \vartheta )$, $$ \Sigma_{r, \theta}= \{ \lambda \in \mathbb{C}: \lambda\neq 0, | \lambda| >r, \,| arg(\lambda) | < \theta \} , $$ for $\Gamma_{r,\theta },\Gamma^{i}_{r,\theta }$, $i=1,2,3$, are the paths \begin{gather*} \Gamma^{1}_{r,\theta }=\{ t e^{i\theta}: t \geq r \},\\ \Gamma^{2}_{r,\theta }=\{ re^{i\xi}: -\theta \leq \xi \leq \theta \},\\ \Gamma^{3}_{r,\theta }=\{ t e^{-i\theta}: t \geq r\}, \end{gather*} and $\Gamma_{r,\theta }=\bigcup_{i=1}^{3}\Gamma^{i}_{r,\theta }$ oriented counterclockwise. In addition, $\rho_{\alpha}(G_{\alpha})$ are the sets \[ \rho_{\alpha}(G_{\alpha})=\{ \lambda \in \mathbb{C}: G_{\alpha}(\lambda):= \lambda^{\alpha-1}(\lambda^{\alpha} I - A - \widehat{B}(\lambda) )^{-1} \in \mathcal{L}(X)\}. \] We now define the operator family $(\mathcal{R}_{\alpha}(t))_{t\geq 0} $ by \begin{equation}\label{defnresolv1} \mathcal{R}_{\alpha}(t) = \begin{cases} \frac{1}{2\pi i } \int_{\Gamma_{r,\theta}} e^{\lambda t} G_{\alpha}(\lambda) d\lambda, & t>0, \\ I, & t=0. \end{cases} \end{equation} \begin{lemma}[{\cite[Lemma 2.2]{ACJ}}] \label{lemacd} There exists $r_1>0$ such that $\Sigma_{r_1, \vartheta} \subseteq \rho_{\alpha}(G_\alpha) $ and the function $G_{\alpha}:\Sigma_{r_1,\vartheta} \to \mathcal{L}(X)$ is analytic. Moreover, \begin{equation} G_{\alpha}(\lambda) = \lambda^{\alpha-1}R(\lambda^{\alpha},A)[ I - \widehat{B}(\lambda)R(\lambda^{\alpha},A)]^{-1}, \label{eq1b} \end{equation} and there exist constants $M_{i}$ for $i=1,2$ such that \begin{gather} \| G_{\alpha}(\lambda) \| \leq \frac{M_1}{| \lambda |} , \label{eq2} \\ \| A G_{\alpha}(\lambda) x \| \leq \frac{M_2}{| \lambda |} \| x \|_1, \,\, x \in D(A), \label{eq3} \\ \| A G_{\alpha}(\lambda) \| \leq \frac{M_4}{| \lambda |^{1-\alpha}}, \label{eq4} \end{gather} for every $\lambda \in \Sigma_{r_1 , \vartheta}$. \end{lemma} The following result was established in \cite[Theorem 2.1]{ACJ}. \begin{theorem} \label{teo2} Assume that conditions {\rm (P1)--(P3)} are fulfilled. Then there exists a unique $\alpha$-resolvent operator for problem \eqref{eqa1}-\eqref{eqa2}. \end{theorem} \begin{theorem}[{\cite[Lemma 2.5]{ACJ} }] The function $\mathcal{R}_{\alpha} :[0, \infty) \to \mathcal{L}(X)$ is strongly continuous and $\mathcal{R}_{\alpha} :(0, \infty) \to \mathcal{L}(X)$ is uniformly continuous. \end{theorem} In what follows, we assume that the conditions (P1)--(P3) are satisfied. We consider now the non-homogeneous problem \begin{gather} \label{eh1} D^{\alpha}_t x(t) = Ax(t)+ \int_0^{t} B(t-s)x(s) ds+ f(t), \quad t \in [0,a], \\ \label{eh2} x(0) = x_0, \quad x'(0)=0, \end{gather} where $\alpha \in (1,2) $ and $f\in L^{1}([0,a], X) $. In the sequel, $\mathcal{R}_{\alpha}(\cdot)$ is the operator function defined by \eqref{defnresolv1}. We begin by introducing the following concept of classical solution. \begin{definition}\label{D1}\rm A function $x : [0,a] \to X $, $0 0$. \end{lemma} We will herein define the phase space $\mathcal{B}$ axiomatically, using ideas and notations developed in~\cite{HMN}. More precisely, $\mathcal{B}$ will denote the vector space of functions defined from $(-\infty,0]$ into $X$ endowed with a seminorm denoted $\|\cdot\|_{\mathcal{B}}$ and such that the following axioms hold: \begin{itemize} \item[(A)] If $x:(-\infty,\sigma+b)\to X$, $b>0,\sigma\in \mathbb{R}$, is continuous on $[\sigma,\sigma +b)$ and $x_{\sigma}\in \mathcal{B}$, then for every $t\in [\sigma,\sigma+b)$ the following conditions hold: \begin{itemize} \item[(i)] $x_{t}$ is in $\mathcal{B}$. \item[(ii)] $\|x(t)\| \leq H \| x_{t}\|_{\mathcal{B}}$. \item[(iii)] $\| x_{t}\|_{\mathcal{B}} \leq K(t-\sigma) \sup\{\| x(s)\|:\sigma\leq s\leq t\}+ M(t-\sigma)\| x_{\sigma}\|_{\mathcal{B}}$, \end{itemize} where $H>0$ is a constant; $ K,M:[0,\infty) \to [1,\infty)$, $K(\cdot)$ is continuous, $M(\cdot)$ is locally bounded and $H,K,M$ are independent of $x(\cdot)$. \item[(A1)] For the function $x(\cdot)$ in $(\mathbf{A})$, the function $t\to x_{t}$ is continuous from $[\sigma,\sigma+b)$ into $\mathcal{B}$. \item[(B)] The space $\mathcal{B}$ is complete. \end{itemize} \begin{example} \label{example1} \rm (The phase space $C_r \times L^p(g,X)$) Let $r \geq 0$, $1 \leq p < \infty$ and let $g:(-\infty,-r] \to \mathbb{R}$ be a nonnegative measurable function which satisfies the conditions (g-5), (g-6) in the terminology of \cite{HMN}. Briefly, this means that $g$ is locally integrable and there exists a non-negative, locally bounded function $\gamma$ on $(- \infty, 0]$ such that $g(\xi+\theta) \leq \gamma(\xi) g(\theta)$, for all $ \xi \leq 0$ and $ \theta \in (- \infty , -r) \setminus N_{\xi }$, where $N_{\xi} \subseteq (- \infty, -r)$ is a set with Lebesgue measure zero. The space $\; C_r \times L^p(g,X)$ consists of all classes of functions $\; \varphi : (- \infty , 0] \to X $ such that $ \varphi $ is continuous on $[- r,0]$, Lebesgue-measurable, and $\; g \| \varphi \| ^p $ is Lebesgue integrable on $ (- \infty , -r )$. The seminorm in $\; C_r\times L^p(g,X)$ is defined by $$ \| \varphi \|_{\mathcal{B}} : = \sup \{ \| \varphi (\theta ) \| : -r\leq \theta \leq 0 \} +\Big( \int_{- \infty }^{-r} g(\theta ) \| \varphi (\theta ) \|^p d \theta \Big)^{1/p}. $$ The space $\;\mathcal{B} = C_r \times L^p(g;X) $ satisfies axioms (A), (A-1), (B). Moreover, when $ r=0$ and $p=2$, we can take $H = 1$, ${ M(t) = \gamma(-t)^{1/2}}$ and ${K(t) = 1 + \left(\int_{-t}^{0} g(\theta) \,d \theta \right)^{1/2}}$, for $t \geq 0$. (see \cite[Theorem 1.3.8]{HMN} for details). \end{example} For additional details concerning phase space we refer the reader to \cite{HMN}. \section{Neutral problem} In the next result we denote by $(-A)^{\vartheta}$ the fractional power of the operator $-A$, (see \cite{PA} for details). \begin{lemma}\label{estpr1} Suppose that the conditions {\rm (P1)--(P3)} are satisfied. Let $\alpha \in (1,2)$ and $\vartheta \in (0,1)$ such that $\alpha \vartheta \in (0,1)$, then there exists positive number $C$ such that \begin{gather}\label{10} \| (-A)^{\vartheta}\mathcal{R}_{\alpha}(t) \| \leq Ce^{rt}t^{- \alpha \vartheta}, \\ \label{desps} \| (-A)^{\vartheta}\mathcal{S}_{\alpha}(t) \| \leq Ce^{rt} t^{ \alpha( 1-\vartheta)-1}, \end{gather} for all $ t>0$. \end{lemma} \begin{proof} Let $\vartheta \in (0,1)$. From \cite[Theorem 6.10]{PA}, there exist $C_{\vartheta}>0$ such that $$ \| (-A)^{\vartheta} x \| \leq C_{\vartheta} \| Ax \|^{\vartheta} \| x \|^{1-\vartheta}, \quad x \in D(A). $$ From $G_{\alpha}(\cdot)$ is valued $D(A)$, for all $ x \in X$ \begin{equation} \label{despontencia} \begin{aligned} \| (-A)^{\vartheta}G_{\alpha}(\lambda)x \| &\leq C_{\vartheta}\| AG_{\alpha}(\lambda)x \|^{\vartheta} \| G_{\alpha}(\lambda)x \|^{1-\vartheta} \\ & \leq C_{\vartheta}\frac{M_3^{\vartheta}}{| \lambda |^{\vartheta - \alpha \vartheta}} \| x \|^{\vartheta} \frac{M_1^{1-\vartheta}}{ | \lambda |^{1-\vartheta}} \| x \|^{1-\vartheta} \\ & \leq \frac{M_{\vartheta}}{ | \lambda |^{1-\alpha \vartheta}} \| x \|, \end{aligned} \end{equation} where $M_{\vartheta}$ is independent of $\lambda$. From \eqref{despontencia}, we obtain for $t \geq 1$, make the change $\lambda t = \gamma$. From the Cauchy's theorem we obtain that \begin{align*} \| (-A)^{\vartheta} \mathcal{R}(t) \| &\leq \|\frac{1}{2\pi i } \int_{ \Gamma_{r,\theta}} e^{ \gamma} (-A)^{\vartheta}G (t^{-1}\gamma ) t^{-1} d\gamma \| \\ &\leq \frac{M_{\vartheta}}{\pi } \int_r^{\infty} e^{s \cos{\theta}} \frac{t^{-1} d s } {(t^{-1}s)^{1-\alpha\vartheta}} + \frac{M_{\vartheta}}{2\pi } \int_{-\theta}^{\theta} e^{ r \cos{\xi}} \frac{t^{-1}r d \xi}{(t^{-1} r)^{1-\alpha \vartheta}} \\ &\leq \Big( \frac{M_{\vartheta}}{\pi r^{1-\alpha \vartheta} |\cos{\theta}|} + \frac{ M_{\vartheta} \theta r^{\alpha \vartheta} }{\pi} \Big) \frac{e^{r t}}{t^{\alpha \vartheta}} \\ &\leq C \frac{e^{r t}}{t^{\alpha \vartheta}}. \end{align*} On the other hand, using that $G(\cdot)$ is analytic on $\Sigma_{r, \theta}$, for $t\in (0,1)$ we obtain \begin{align*} \| (-A)^{\vartheta} \mathcal{R}(t)\| &= \| \frac{1}{2\pi i } \int_{\Gamma_{\frac{r}{t},\theta}} e^{\lambda t} (-A)^{\vartheta}G (\lambda) d\lambda \| \\ &\leq \frac{M_{\vartheta}}{\pi} \int_{ \frac{r}{t} }^{\infty} e^{ts \cos{\theta}} \frac{d s }{s^{1-\alpha \vartheta}} + \frac{M_{\vartheta}}{2\pi} \int_{-\theta}^{\theta} e^{r \cos{\xi}} \frac{ r t^{-1} d \xi}{r^{1- \alpha \vartheta}t^{\alpha \vartheta -1}} \\ &\leq \frac{M_{\vartheta}}{\pi} \int_r^{\infty} e^{u \cos{\theta}} \frac{ t^{-1}d u }{u^{1- \alpha \vartheta}t^{\alpha \vartheta-1}} + \frac{M_{\vartheta}}{2\pi } \int_{-\theta}^{\theta} e^{r \cos{\xi}} \frac{ r t^{-1} d \xi}{r^{1-\alpha \vartheta}t^{\alpha \vartheta -1} }\\ &\leq \Big( \frac{M_{\vartheta}}{\pi r^{1-\alpha \vartheta} |\cos{\theta}|} + \frac{ M_{\vartheta} \theta r^{\alpha \vartheta} }{\pi} e^{r} \Big) \frac{1}{t^{\alpha \vartheta}} \\ &\leq C \frac{e^{r t}}{t^{\alpha \vartheta}}. \end{align*} By the definition of $(\mathcal{S}_{\alpha} (t))_{t\geq 0}$, we obtain \begin{align*} \| (-A)^{\vartheta} \mathcal{S}_{\alpha}(t)\| &\leq \int_0^t g_{\alpha-1}(t-s) \| (-A)^{\vartheta} \mathcal{R}_{\alpha}(s) \| ds \\ &\leq \int_0^t g_{\alpha-1}(t-s) C e^{rs}s^{-\alpha \vartheta} ds \\ &\leq e^{rt} \int_0^t \frac{(t-s)^{\alpha -2}}{\Gamma(\alpha-1)} C s^{-\alpha \vartheta} ds \\ &\leq \frac{e^{rt}}{\Gamma(\alpha-1)} \int_0^t (t-s)^{\alpha -2} C s^{-\alpha \vartheta} ds \\ &\leq \frac{e^{rt}}{\Gamma(\alpha-1)} \int_0^t (t-s)^{(\alpha -1)-1} C s^{(1-\alpha \vartheta)-1} ds. \end{align*} From inequality \cite[ 6.24]{PA}, we obtain \[ \| (-A)^{\vartheta} \mathcal{S}_{\alpha}(t)\| \leq \frac{e^{rt} \Gamma(1-\alpha\vartheta)}{\Gamma(\alpha-\alpha \vartheta)}C t^{\alpha(1- \vartheta)-1} \leq C e^{rt} t^{\alpha(1- \vartheta)-1} . \] \end{proof} \begin{remark} \label{rmk1} \rm If $ \widehat{B}(\lambda)(-A)^{-\vartheta} y = (-A)^{-\vartheta} \widehat{B}(\lambda) y$ for $y \in [D(A)]$. We can see that for $\vartheta \in (0,1)$ and $x \in [D((-A)^{\vartheta})]$ \begin{align*} (-A)^{\vartheta}G_{\alpha}(\lambda)x &= \lambda^{\alpha-1}(-A)^{\vartheta} R(\lambda^{\alpha},A)[ I - \widehat{B}(\lambda)R(\lambda^{\alpha},A)]^{-1}x \\ &= \lambda^{\alpha-1}(-A)^{\vartheta} R(\lambda^{\alpha},A)[ I - \widehat{B}(\lambda)R(\lambda^{\alpha},A)]^{-1}(-A)^{-\vartheta} (-A)^{\vartheta}x. \end{align*} Since $$ \widehat{B}(\lambda)R(\lambda^{\alpha},A)(-A)^{-\vartheta}(-A)^{\vartheta}x = (-A)^{-\vartheta} \widehat{B}(\lambda)R(\lambda^{\alpha},A)(-A)^{-\vartheta}x, $$ we obtain \begin{align*} (-A)^{\vartheta}G_{\alpha}(\lambda)x &= \lambda^{\alpha-1}(-A)^{\vartheta} R(\lambda^{\alpha},A)(-A)^{-\vartheta}[ I - \widehat{B}(\lambda)R(\lambda^{\alpha},A)]^{-1} (-A)^{\vartheta}x \\ &= G_{\alpha}(\lambda)(-A)^{\vartheta}x. \end{align*} As consequences of before it is easy to see that $$ (-A)^{\vartheta}\mathcal{R}_{\alpha}(t)x=\mathcal{R}_{\alpha}(t)(-A)^{\vartheta}x \quad\text{and}\quad (-A)^{\vartheta}\mathcal{S}_{\alpha}(t)x=\mathcal{S}_{\alpha}(t)(-A)^{\vartheta}x, $$ if $x \in [D((-A)^{\vartheta})]$. \end{remark} If $x \in C(I;X)$ we define $\overline{x}:(-\infty,b] \to X$ is the extension of $x$ to $(-\infty,b]$ such that $\overline{x}_0=\varphi$. In the sequel we introduce the following conditions: \begin{itemize} \item [(H1)] The following conditions are satisfied. \begin{itemize} \item[(a)] $ B(\cdot )x\in C(I,X)$ for every $ x \in [D((-A)^{1-\vartheta})]$. \item[(b)] There is function $\mu (\cdot) \in L^1(I;\mathbb{R}^{+})$, such that \[ \| B(s)\mathcal{S}_{\alpha}(t)\|_{\mathcal{L}([D((-A)^{\vartheta})],X)} \leq M \mu(s) t ^{\alpha \vartheta -1}, \quad 0 \leq s0$ such that $\Gamma (B_r(\bar{\varphi}|_{I},S(b)))\subseteq B_r(\bar{\varphi}|_{I},S(b))$. If this property is false, then for every $r>0$ there exist $x^r\in B_r(\bar{\varphi}|_{I},S(b))$ and $t^r\in I$ such that $r<\|\Gamma x^r(t^r)-\varphi(0)\|$. Then, we find that \begin{align*} &\| \Gamma x^r(t^r)-\varphi(0) \| \\ & \leq \| \mathcal{R}_{\alpha}(t^r)(\varphi(0)+f(0,\varphi)) \| + \| f(t^r,\overline{x^r}_{t^r}) \| \\ &\quad + \int_0^{t^r}\| (-A)^{1- \vartheta}\mathcal{S}_{\alpha}(t^r-s) \| \| (-A)^{ \vartheta}f(s,\overline{x^r}_s)\| ds \\ &\quad + \int_0^{t^r} \int_0^{s} \| B(s- \xi)\mathcal{S}_{\alpha}(t^r-s)f(\xi, \overline{x^r}_{\xi}) \| d\xi ds + \int_0^{t} \| \mathcal{S}_{\alpha}(t-s) \| \| g(s,\overline{x}_s)\| ds \\ &\leq \| \mathcal{R}_{\alpha}(t^r)\varphi(0)-\varphi(0) \| + \| \mathcal{R}_{\alpha}(t^r)f(0,\varphi) - f(0,\varphi)\| \\ &\quad + \| (-A)^{- \vartheta }\| \|(-A)^{ \vartheta } f(t^r, \overline{(x^r)}_{t^r}) - (-A)^{ \vartheta } f(0,\varphi) \|\\ &\quad + \int_0^{t^r} M(t^r-s)^{\alpha \vartheta-1} \| (-A)^{\vartheta } f(s^r, \overline{(x^r)}_{s}) - (-A)^{ \vartheta } f(0,\varphi) \| ds \\ &\quad + \int_0^{t^r} M(t^r-s)^{\alpha \vartheta-1} \| (-A)^{ \vartheta } f(0,\varphi) \| ds \\ &\quad + \int_0^{t^r} \int_0^s \mu(s-\xi) M(t^r-s)^{\alpha \vartheta-1} \| (-A)^{ \vartheta } f({\xi}^r, \overline{(x^r)}_{{\xi}}) - (-A)^{ \vartheta } f(0,\varphi) \| d\xi ds \\ &\quad + \int_0^{t^r} \int_0^s \mu(s-\xi)M(t^r-s)^{\alpha \vartheta-1} \| (-A)^{ \vartheta } f(0,\varphi) \| d\xi ds \\ &\quad + M \int_0^{t^r} m_g(t^r-s)\Omega_{g}(\|\overline{x^r}_{s}\|_{\mathcal{B}}) ds \\ & \leq (M+1)H \| \varphi\|_{\mathcal{B}} + \| \mathcal{R}_{\alpha}(t^r)f(0,\varphi) - f(0,\varphi)\| \\ &\quad+ \Big( \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta} + \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta} \int_0^b \mu(\xi)d\xi \Big) \| (-A)^{ \vartheta } f(0,\varphi)\| \\ &\quad + \| (-A)^{ -\vartheta }\| L_f \left( t^r + \| \overline{(x^r)}_{t^r} - \varphi \|_{\mathcal{B}} \right) \\ & \quad + \int_0^{t^r} M(t^r-s)^{\alpha \vartheta-1} L_f\left( s + \| \overline{(x^r)}_{s} - \varphi \|_{\mathcal{B}} \right) ds \\ &\quad + \int_0^{t^r} \int_0^s \mu(s-\xi)M(t^r-s)^{\alpha \vartheta-1} L_f\left( \xi + \| \overline{(x^r)}_{{\xi}^r} - \varphi \|_{\mathcal{B}} \right) d\xi ds \\ &\quad + \Omega_g \left(K_br+ (M_b+ HK_b+1)\|\varphi\|_{\mathcal{B}} \right)\int_0^{b}m_g(s)ds \\ &\leq (M+1)H \| \varphi\|_{\mathcal{B}} + \| R(t^r)f(0,\varphi) - f(0,\varphi)\| \\ &\quad + \Big( \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta} + \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta} \int_0^b \mu(\xi)d\xi \Big) \| (-A)^{ \vartheta } f(0,\varphi)\| \\ &\quad + \Big( \| (-A)^{- \vartheta}\| + \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta} + \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta} \int_0^b \mu(\xi)d\xi \Big) ( L_f (b+ (M_b +HK_b +1) \| \varphi\|_{_{\mathcal{B}}}) ) \\ &\quad + \Big( \| (-A)^{- \vartheta}\| + \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta} + \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta} \int_0^b \mu(\xi)d\xi \Big) L_f K_br \\ &\quad + \Omega_g \left(K_br+ (M_b+ HK_b+1)\|\varphi\|_{\mathcal{B}}\right)\int_0^{b}m_g(s)ds, \end{align*} where $i_c:Y \to X$ represents the continuous inclusion of $Y$ on $X$. Therefore \[ 1\leq K_b \Big[ L_f\Big( \| (-A)^{- \vartheta }\| + \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta} + \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta} \int_0^b \mu(\xi)d\xi \Big) + M \liminf_{\xi \to \infty} \frac{\Omega_g(\xi)}{\xi} \int_0^b m_g(s)ds\Big], \] which contradicts our assumption. Let $r>0$ be such that $\Gamma(B_r(\bar{\varphi}|_{I},S(b)))\subseteq B_r(\bar{\varphi}|_{I},S(b))$. In the sequel, $r^{*}$ and $r^{**}$ are the numbers defined by $r^*:=(K_br+ (M_b+ HK_b+1)\|\varphi\|_{\mathcal{B}})$ and $r^{**}:=\Omega_g(r^*)\int_0^{b}m_g(s)ds$. To prove that $ \Gamma$ is a condensing operator, we introduce the decomposition $\Gamma=\Gamma_1+\Gamma_2$, where, for $ t \in I$, \begin{gather*} \begin{aligned} \Gamma_1 x(t) &=\mathcal{R}_{\alpha}(t)(\varphi(0)+f(0,\varphi)) -f(t,\overline{x}_t) -\int_0^{t}A \mathcal{S}_{\alpha}(t-s)f(s,\overline{x}_s)ds \\ &\quad - \int_0^{t} \int_0^{s}B(s- \xi)\mathcal{S}_{\alpha}(t-s)f(\xi, \overline{x}_{\xi}) d\xi ds, \end{aligned} \\ \Gamma_2 x (t) = \int_0^{t}\mathcal{S}_{\alpha}(t-s)g(s,\overline{x}_{s})ds\,. \end{gather*} On the other hand, for $ u, v \in B_r(\bar{\varphi}|_{I},S(b))$ and $t\in [0,b]$ we see that \begin{align*} & \| \Gamma_1 u(t)- \Gamma_1 v(t) \| \\ &\leq \| (-A)^{- \vartheta }\| \| (-A)^{ \vartheta } f(t,\overline{u}_t) - (-A)^{ \vartheta } f(t, \overline{v}_t) \| \\ &\quad + \int_0^{t} \| (-A)^{1-\vartheta}\mathcal{S}_{\alpha}(t-s) \| \| (-A)^{ \vartheta } f(s,\overline{u}_s) - (-A)^{ \vartheta } f(s, \overline{v}_s) \|_{Y} ds \\ &\quad + \int_0^{t} \int_0^{s} \| B(s- \xi)\mathcal{S}_{\alpha}(t-s) f(\xi,\overline{u}_\xi) - f(\xi, \overline{v}_\xi) \| d\xi ds \\ & \leq \| (-A)^{ -\vartheta } \| L_{f}K_b \| u - v \|_{b} + L_{f} K_b \int_0^t M(t-s)^{\alpha \upsilon -1} ds \| u - v \|_{b} \\ & \quad + L_{f} K_b \int_0^t \int_0^s \mu(s-\xi) M(t-s)^{\alpha \vartheta -1} d \xi ds \| u - v \|_{b}, \\ &\leq L_{f} K_b \left( \| (-A)^{ -\vartheta } \| + \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta } + \frac{Mb^{\alpha \vartheta}}{\alpha \vartheta } \int_0^b \mu(\xi)d\xi \right) \| u - v \|_{b}, \end{align*} which show that $\Gamma_1(\cdot) $ is a contraction on $B_r(\bar{\varphi}|_{I},S(b))$. Next we prove that $\Gamma_2(\cdot)$ is a completely continuous function from $B_r(\bar{\varphi}|_{I},S(b))$ to $B_r(\bar{\varphi}|_{I},S(b))$. \noindent\textbf{Step 1.} The set $\Gamma_2(B_r(\bar{\varphi}|_{I},S(b))(t)$ is relatively compact on $X$ for every $t\in [0,b]$. The case $t=0$ is trivial. Let $0< \epsilon < t