\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 94, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/94\hfil Growth of entire solutions] {Growth of entire solutions of algebraic differential equations} \author[W. Yuan, Y. Li, J. Lin \hfil EJDE-2012/94\hfilneg] {Wenjun Yuan, Yezhou Li, Jianming Lin} \address{Wenjun Yuan \newline School of Mathematics and information Science, Guangzhou University Guangzhou 510006, China \newline Key Laboratory of Mathematics and Interdisciplinary Sciences, Guangdong Higher Education Institutes\\ Guangzhou 510006, China} \email{wjyuan1957@126.com} \address{Yezhou Li \newline School of science, Beijing University of Posts and Telecommunications\\ Beijing 100876, China} \email{yiyexiaoquan@yahoo.com.cn} \address{Jianming Lin \newline School of Economic and Management, Guangzhou University of Chinese Medicine\newline Guangzhou 510006, China} \email{ljmguanli@21cn.com} \thanks{Submitted April 14, 2012. Published June 10, 2012.} \thanks{Supported by grants 11101048 and 10771220 from the NSF of China, 200810780002 from \hfill\break\indent the Doctorial Point Fund of National Education Ministry of China, and 020586 from the \hfill\break\indent NSF of Guangdong} \subjclass[2000]{34A20, 30D35} \keywords{Entire function; normal family; algebraic differential equations} \begin{abstract} In this article, by means of the normal family theory, we estimate the growth order of entire solutions of some algebraic differential equations and extend the result by Qi et al \cite{QLY}. We also give some examples to show that our results occur in some special cases. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction and main results} Let $f(z)$ be a holomorphic function on the complex plane. We use the standard notation of Nevanlinna theory and denote the order of $f(z)$ by $\rho(f)$ (see Hayman \cite{s7}, He \cite{s8}, Laine \cite{s9} and Yang \cite{s10}). Let $D$ be a domain in the complex plane. A family $\mathcal{F}$ of meromorphic functions in $D$ is normal, if each sequence $\{f_n\}\subset \mathcal{F}$ contains a subsequence which converges locally uniformly by spherical distance to a function $g(z)$ meromorphic in $D$ ($g(z)$ is permitted to be identically infinity). We define spherical derivative of the meromorphic function $f(z)$ as follows $$ f^{\sharp}(z):=\frac{|f'(z)|}{1+|f(z)|^2}. $$ An algebraic differential equation for $w(z)$ is of the form \begin{equation} P(z,w,w',\dots,w^{(k)})=0, \label{e1.1} \end{equation} where $P$ is a polynomial in each of its variables. It is one of the important and interesting subjects to study the growth of meromorphic the solution $w(z)$ of differential equation \eqref{e1.1} in the complex plane. In 1956, Goldberg \cite{s6} proved that the meromorphic solutions have finite growth order when $k=1$. Some alternative proofs of this result have been given by Bank and Kaufman \cite{s1}, by Barsegian \cite{s2}. In 1998, Barsegian \cite{B1,s3} introduced an essentially new type of weight for differential monomial below and gave the estimates first time for the growth order of meromorphic solutions of large classes of complex differential equations of higher degrees by using his initial method \cite{B2}. Later Bergweiler \cite{s4} reproved Barsegian's result by using Zalcman's Lemma. To state the result, we first introduce some notation \cite{B1}: $n\in \mathbb{N}=\{1,2,3,\dots \}$, $t_j\in \mathbb{N}_0=\mathbb{N}\bigcup \{0\}$ for $j=1,2,\dots,n$, and put $t=(t_1,t_2,\dots,t_n)$. Define $M_t[w]$ by $$ M_t[w](z):=[w'(z)]^{t_1}[w''(z)]^{t_2}\dots [w^{(n)}]^{t_n}, $$ with the convention that $M_{\{0\}}[w]=1$. We call $p(t):=t_1+2t_2+\dots +nt_n$ the weight of $M_t[w]$. A differential polynomial $P[w]$ is an expression of the form \begin{equation} P[w](z):=\sum_{t\in I}a_t(z,w(z))M_t[w](z), \label{e1.2} \end{equation} where the $a_{t}$ are rational in two variables and $I$ is a finite index set. The total weight $W(P)$ of $P[w]$ is given by $W(P):=\max_{t\in I}p(t)$. \begin{definition} \label{def1} \rm $\deg_{z,\infty} a_t$ denotes the degree at infinity in variable $z$ concerning $a_t(z,w)$. $\deg_{z,\infty} a:=\max_{t\in I}\max\{\deg_{z,\infty} a_t,0\}$. \end{definition} In 2009, the general estimates of growth order of meromorphic solutions $w(z)$ of the same equations, which depend on the degrees at infinity of coefficients of differential polynomial in $z$, by Yuan et al \cite{s11,s12}. \begin{theorem}[\cite{s11}] \label{thmA} Let $w(z)$ be meromorphic in the complex plane and let $P[w]$ be a differential polynomial. If $w(z)$ satisfies the differential equation $ [w'(z)]^n=P[w] $ where $n\in \mathbb{N}$ and $n > W(P)$, then the growth order $\rho:=\rho(w)$ of $w(z)$ satisfies $$ \rho \leq 2+\frac{2\deg_{z,\infty} a}{n-W(P)}. $$. \end{theorem} Barsegian \cite{s3} and Bergweiler \cite{s4} proved $\rho < \infty$ under the same conditions as Theorem \ref{thmA}. Gu et al \cite{GLY} considered the case of entire solutions. In 2012, Qi et al \cite{QLY} gave a small upper bound of the growth order of the entire solutions. \begin{theorem} \label{thmB} Let $k, q, n\in \mathbb{N}$, and $P[w]$ be a differential polynomial with the form \eqref{e1.2}. Suppose that $w(z)$ is an entire function whose all zeros have multiplicity at least and $nkq>W(P)$. If $w(z)$ satisfies the differential equation $[Q(w^{(k)}(z))]^n=P[w]$, then the growth order $\rho:=\rho(w)$ of $w(z)$ satisfies $$ \rho \leq 1+\frac{\deg_{z,\infty} a}{nqk-W(P)}, $$ where $Q(z)$ is a polynomial of degree $q$. \end{theorem} In 2011, Gu et al \cite{GLY} obtained Theorem \ref{thmB} when $k=1, q=1$. In this article, we extend Theorem \ref{thmB}, and obtain the following result. \begin{theorem} \label{thm1} Let $k, m, n, q\in \mathbb{N}$, and let $P[w]$ be a differential polynomial. If an entire function $w(z)$ whose all zeros have multiplicities at least $k$ satisfies the differential equation $[([Q(w^{(k-1)}(z))]^n)']^m=P[w]$ and $(nqk-nq+1)m> W(P)$, then the growth order $\rho:=\rho(w)$ of $w(z)$ satisfies $$ \rho\leq 1+\frac{\deg_{z,\infty}a}{(nqk-nq+1)m-W(P)}, $$ where $Q(z)$ is a polynomial of degree $q$. \end{theorem} The following examples show that the result is sharp in special cases. \begin{example}[\cite{s8}] \label{examp1}\rm For $n>0$, let $w(z)=\cos{z^{\frac{n}{2}}}$, then $\rho(w)=\frac{n}{2}$ and $w$ satisfies the algebraic differential equation: $$ [(w^2)']^{2} = n^{2}z^{n-2}w^2(1-w^{2}) = 0. $$ when $n=1$ or $2$, $\deg_{z,\infty} a=0$, and the growth order $\rho(w)$ of any entire solution $w(z)$ of \eqref{e1.3} satisfies $\rho(w) \leq 1$; when $n \geq 3$, $\deg_{z,\infty} a=n-2$, and the growth order $\rho(w)$ of any entire solution $w(z)$ of above equation satisfies $\rho(w) \leq \frac{n}{2}$. \end{example} \begin{example} \label{examp2}\rm For $n=2$, entire function $w(z)=e^{z^2}$ satisfies the algebraic differential equation $$ [(w')^2]'=8zw^2+8z^2w'w. $$ We know $k=2$, $m=1$, $n=2$, $q=1$, $\deg_{z,\infty}a=2$, $W(P)=1$, and then $\rho=2\leq 1+\frac{2}{3-1}=2$. This example illustrates that Theorem \ref{thm1} is an extension result of Theorems \ref{thmA} and \ref{thmB}, and our result is sharp in the special cases. \end{example} Set \begin{equation} \begin{gathered} (Q(w_2^{(k)}(z)))^{m_1}=a(z)w_1^{(n)}\\ (w_1^{(n)})^{m_2}= P(w_2), \end{gathered}\label{e1.3} \end{equation} where $m_1, m_2 \in \mathbb{N}$, $Q(z)$ and $a(z)$ are two polynomials of degrees $q$ and $D(a)$, respectively. In 2012, Qi et al proved the following theorem. \begin{theorem}[\cite{QLY}] \label{thmC} Let $k, m_1, m_2, n, q\in \mathbb{N}$, and let $w=(w_1, w_2)$ be a pair of entire solutions of system \eqref{e1.3}, if ${m_1m_2}qk>W(P)$, and all zeros of $w_2$ have multiplicity at least $k$, then the growth orders $\rho(w_i)$ of $w_i(z)$ for $i=1,2$ satisfy $$ \rho(w_1)= \rho(w_2)\leq 1+\frac{\deg_{z,\infty}a+D(a)}{{m_1m_2}qk-W(P)}. $$ \end{theorem} In 2009, Gu et al \cite{GDY} obtained Theorem \ref{thmC} when $k=1$, $q=1$ Now we consider the similar result to Theorem \ref{thm1} for the system of the algebraic differential equations \begin{equation} \begin{gathered}[] [([Q(w_2^{(k-1)})]^{m_3})']^{m_1}=a(z)R(w_1^{(n)}),\\ (R(w_1^{(n)}))^{m_2}=P[(w_2], \end{gathered} \label{e1.4} \end{equation} where $R(z)$ is a polynomial, too. We obtain the following result. \begin{theorem} \label{thm2} Let $k, n, q, m_1,m_2,m_3\in \mathbb{N}$, and let $w=(w_1, w_2)$ be a pair of entire solutions of system \eqref{e1.4}. If $(m_3qk-m_3q+1){m_1m_2}>W(P)$, and all zeros of $w_2$ have multiplicity at least $k$, then the growth orders $\rho(w_i)$ of $w_i(z)$ for $i=1,2$ satisfy $$ \rho(w_1)=\rho(w_2)\leq 1 +\frac{\deg_{z,\infty}a+m_2 D(a)}{(m_3qk-m_3q+1){m_1m_2}-W(P)}. $$ \end{theorem} \begin{example} \label{examp3} The entire functions $w_1(z)=e^z+c$, $w_2(z)=e^z$ satisfy the algebraic differential equation system \begin{gather*} [(w^{(k-1)}_2)^2]'=2(w_1^{(n)})^2\\ \{(w_1^{(n)})^2\}^3 =(w_2)^3(w'_2)^2, \end{gather*} where $c$ is a constant, $m_1=1$, $m_2=3$, $m_3=2$, $q=1$, $D(a)=0$, $W(P)=2$, $\deg_{z,\infty}a=0$ and $(m_3qk-m_3q+1){m_1m_2}=3(2k-1)>2=W(P)$. So $\rho(w_1)=\rho(w_2)=1\leq 1$. So the conclusion of Theorem \ref{thm2} may be applied. \end{example} \section{Main Lemmas} To prove our result, we need the following lemmas. Lemma \ref{lem1} extends the result by Zalcman \cite{s13} concerning normal family. \begin{lemma}[\cite{s14}] \label{lem1} Let $\mathcal{F}$ be a family of meromorphic(or analytic) functions on the unit disc. Then $\mathcal{F}$ is not normal on the unit disc if and only if there exist \begin{itemize} \item[(a)] a number $r\in (0,1)$; \item[(b)] points $z_n$ with $|z_n|-1$. If $f^{\sharp}(z)= O(r^{\sigma})$, then $T(r,f)=O(r^{\sigma+1})$. \end{lemma} \begin{lemma}[\cite{GLY}] \label{lem3} Let $f(z)$ be holomorphic in whole complex plane with growth order $\rho:=\rho(f)>1$, then for each $0<\mu < \rho -1,$ there exists a sequence $a_n\to \infty,$ such that \begin{equation} \lim_{n\to \infty}\frac{f^{\sharp}(a_n)}{|a_n|^{\mu}}=+\infty. \label{e2.1} \end{equation} \end{lemma} \section{Proofs of theorems} \begin{proof}[Proof of Theorem \ref{thm1}] Suppose that the conclusion of theorem is not true, then there exists an entire solution $w(z)$ satisfies the equation $[([Q(w^{(k-1)}(z))]^n)']^m=P[w]$, such that \begin{equation} \rho> 1+\frac{\deg_{z,\infty}a}{(nqk-nq+1)m-W(P)}. \label{e3.1} \end{equation} By Lemma \ref{lem2} we know that for each $0<\mu<\rho-1$, there exists a sequence of points $a_j\to\infty(j\to\infty)$, such that \eqref{e2.1} is valid. This implies that the family $\{w_j(z):=w(a_j+z)\}_{j\in \mathbb{N}}$ is not normal at $z=0$. By Lemma \ref{lem1}, there exist sequences $\{b_j\}$ and $\{\rho_j\}$ such that \begin{equation} |a_j-b_j|<1, \quad \rho_j\to 0,\label{e3.2} \end{equation} and $g_j(\zeta):=w_j(b_j-a_j+\rho_j\zeta)=w(b_j+\rho_j\zeta)$ converges locally uniformly to a nonconstant entire function $g(\zeta)$, which order is at most 2, all zeros of $g(\zeta)$ have multiplicity at least $k$ . In particular, we may choose $b_j$ and $\rho_j$, such that \begin{equation} \rho_j\leq\frac{2}{w^{\sharp}(b_j)},\quad w^{\sharp}(b_j)\geq w^{\sharp}(a_j).\label{e3.3} \end{equation} According to \eqref{e2.1} and \eqref{e3.1}--\eqref{e3.3}, we can get the following conclusion: For any fixed constant $0\leq\mu<\rho-1$, we have \begin{equation} \lim_{j\to\infty}b_j^{\mu}\rho_j=0.\label{e3.4} \end{equation} In the differential equation $[([Q(w^{(k-1)}(z))]^n)']^m=P[w]$, we now replace $z$ by $b_j+\rho_j\zeta$. Assuming that $P[w]$ has the form \eqref{e1.2}. Then we obtain $$ [([Q(w^{(k-1)}(b_j+\rho_j\zeta))]^n)']^m=\sum_{r\in I} a_r(b_j+\rho_j\zeta, g_j(\zeta))\rho_j^{-p(r)}M_{r}[g_j](\zeta). $$ From \begin{align*} &([Q(w^{(k-1)}(b_j+\rho_j\zeta))]^n)'\\ &= n[Q(w^{(k-1)}(b_j+\rho_j\zeta))]^{n-1}Q'(w^{(k-1)}(b_j+\rho_j\zeta)) (w^{(k)}(b_j+\rho_j\zeta)), \end{align*} we have \begin{align*} &([Q(w^{(k-1)}(b_j+\rho_j\zeta))]^n)'\\ &=\rho_j^{-(nqk-nq+1)}g_j^{(k)}(\zeta)[nq(g_j^{(k-1)})^{(nq-1)(k-1)} (\zeta)+H(\rho_j,g_j^{(k-1)}(\zeta))], \end{align*} where $H(s,t)$ is a polynomial in two variables, whose degree $\deg_{s}H$ in $s$ satisfies $\deg_{s}H\geq 1$. Hence we deduce that \begin{align*} &\rho_j^{-(nqk-nq+1)m}\{g_j^{(k)}(\zeta)[nq(g_j^{(k-1)})^{(nq-1)(k-1)}(\zeta) +H(\rho_j,g_j^{(k-1)}(\zeta))]\}^m \\ &=\sum_{r\in I} a_r(b_j+\rho_j\zeta, g_j(\zeta))\rho_j^{-p(r)}M_{r}[g_j](\zeta). \end{align*} Therefore, \begin{equation} \begin{aligned} &\{g_j^{(k)}(\zeta)[nq(g_j^{(k-1)})^{(nq-1)(k-1)}(\zeta) +H(\rho_j,g_j^{(k-1)}(\zeta))]\}^m\\ &=\sum_{r\in I}\frac{ a_r(b_j+\rho_j\zeta, g_j(\zeta))}{b_j^{\deg a_r}}[b_j^{\frac{\deg a_r}{(nqk-nq+1)m-p(r)}}\rho_j]^{(nqk-nq+1)m-p(r)}M_{r}[g_j](\zeta). \end{aligned} \label{e3.5} \end{equation} Because $0\leq\mu=\frac{\deg_{z,\infty}a_r}{(nqk-nq+1)m-p(r)} \leq\frac{\deg_{z,\infty}a}{(nqk-nq+1)m-W(P)}<\rho-1$, $p(r)<(nqk-nq+1)m$, for every fixed $\zeta\in\mathrm{C}$, if $\zeta$ is not the zero of $g(\zeta)$, by \eqref{e3.4} then we can get $g^{(k)}(\zeta)=0$ from \eqref{e3.5}. By the all zeros of $g(\zeta)$ have multiplicity at least $k$, this is a contradiction. The proof is complete. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2}] By the first equation of the systems of algebraic differential equations \eqref{e1.4}, we know $$ R(w_1^{(n)})=\frac{[([Q(w_2^{(k-1)})]^{m_3})']^{m_1}}{a(z)}. $$ Therefore, $\rho(w_1)=\rho(w_2)$. If $w_2$ is a rational function, then $w_1$ must be a rational function, so that the conclusion of Theorem \ref{thm2} is right. If $w_2$ is a transcendental entire function, by the systems of algebraic differential equations \eqref{e1.4}, then we have \begin{equation} [([Q(w_2^{(k-1)})]^{m_3})']^{m_1m_2}=(a(z))^{m_2}P[w_2].\label{e3.6} \end{equation} Suppose that the conclusion of Theorem \ref{thm2} is not true, then there exists an entire vector $w(z)=(w_1(z),w_2(z))$ which satisfies the system of equations \eqref{e1.4} such that \begin{equation} \rho:=\rho(w_2)> 1+\frac{\deg_{z,\infty}a+ m_2D(a)}{(m_3qk-m_3q+1)m_1m_2-W(P)},\qquad\quad. \label{e3.7} \end{equation} By Lemma \ref{lem2} we know that for each $0<\mu<\rho-1$, there exists a sequence of points $a_j\to\infty(j\to\infty)$, such that \eqref{e2.1} is right. This implies that the family $\{w_j(z):=w(a_j+z)\}_{j\in \mathbb{N}}$ is not normal at $z=0$. By Lemma \ref{lem1}, there exist sequences $\{b_j\}$ and $\{\rho_j\}$ such that \begin{equation} |a_j-b_j|<1, \quad \rho_j\to 0,\label{e3.8} \end{equation} and $g_j(\zeta):=w_{2,j}(b_j-a_j+\rho_j\zeta)=w_2(b_j+\rho_j\zeta)$ converges locally uniformly to a nonconstant entire function $g(\zeta)$, which order is at most 2, all zeros of $g(\zeta)$ have multiplicity at least $k$ . In particular, we may choose $b_j$ and $\rho_j$, such that \begin{equation} \rho_j\leq\frac{2}{w^{\sharp}_2(b_j)},\quad w_2^{\sharp}(b_j)\geq w_2^{\sharp}(a_j).\label{e3.9} \end{equation} According to \eqref{e3.6} and \eqref{e3.7}--\eqref{e3.9}, we can get the following conclusion: For any fixed constant $0\leq\mu<\rho-1$, we have \begin{equation} \lim_{m\to\infty}b_j^{\mu}\rho_j=0.\label{e3.10} \end{equation} In the differential equation \eqref{e3.6} we now replace $z$ by $b_j+\rho_j\zeta$, then we obtain \begin{align*} &[([Q(w^{(k-1)}(b_j+\rho_j\zeta))]^{m_3})']^{{m_1m_2}}\\ &=(a(b_j+\rho_j\zeta))^{m_2} \sum_{r\in I} a_r(b_j+\rho_j\zeta, g_j(\zeta))\rho_j^{-p(r)}M_{r}[g_j](\zeta). \end{align*} By \begin{align*} &([Q(w^{(k-1)}(b_j+\rho_j\zeta))]^{m_3})'\\ &={m_3}[Q(w^{(k-1)}(b_j+\rho_j\zeta))]^{{m_3}-1}Q'(w^{(k-1)}(b_j+\rho_j\zeta)) (w^{(k)}(b_j+\rho_j\zeta)), \end{align*} we obtain \begin{align*} &([Q(w^{(k-1)}(b_j+\rho_j\zeta))]^{m_3})'\\ &=\rho_j^{-({m_3}qk-m_3q+1)}g_j^{(k)}(\zeta)[{m_3}q(g_j^{(k-1)})^{({m_3}q-1)(k-1)} (\zeta)+H(\rho_j,g_j^{(k-1)}(\zeta))], \end{align*} where $H(s,t)$ is a polynomial in two variables, whose degree $\deg_{s}H$ in $s$ satisfies $\deg_{s}H\geq 1$. Therefore, \begin{align*} &\rho_j^{-(m_3qk-m_3q+1){m_1m_2}}\{g_j^{(k)}(\zeta) [m_3q(g_j^{(k-1)})^{(m_3q-1)(k-1)}(\zeta)+ H(\rho_j,g_j^{(k-1)}(\zeta))]\}^{{m_1m_2}} \\ &=\sum_{r\in I} (a(b_j+\rho_j\zeta))^{m_2}a_r(b_j+\rho_j\zeta, g_j(\zeta))\rho_j^{-p(r)}M_{r}[g_j](\zeta). \end{align*} Thus \begin{equation} \begin{aligned} &\{g_j^{(k)}(\zeta)[m_3q(g_j^{(k-1)})^{(m_3q-1)(k-1)}(\zeta)+H(\rho_j,g_j^{(k-1)}(\zeta))]\}^{{m_1m_2}}\\ &=\sum_{r\in I}\frac{ (a(b_j+\rho_j\zeta))^{m_2}a_r(b_j+\rho_j\zeta, g_j(\zeta))}{b_j^{\deg a_r+m_2D(a)}}\\ &\quad \times[b_j^{\frac{\deg a_r+m_2D(a)}{(m_3qk-m_3q+1){m_1m_2}-p(r)}} \rho_j]^{(m_3qk-m_3q+1){m_1m_2}-p(r)}M_{r}[g_j](\zeta). \end{aligned} \label{e3.11} \end{equation} For every fixed $\zeta\in\mathrm{C}$, if $\zeta$ is not a zero of $g(\zeta)$, for $j\to\infty$ and \begin{align*} 0&\leq\mu =\frac{\deg_{z, \infty}a_r+m_2D(a)}{(m_3qk-m_3q+1){m_1m_2}-p(r)}\\ &\leq\frac{\deg_{z,\infty}a+m_2D(a)}{(m_3qk-m_3q+1){m_1m_2} -\deg P(w_2)}<\rho-1 \end{align*} then we have $(g^{(k)})^{{m_1m_2}}=0$, which contradicts with all zeros of $g(\zeta)$ have multiplicity at least $k$. So \[ \rho(w_2)\leq 1+\frac{\deg_{z,\infty}a+m_2D(a)}{(m_3qk-m_3q+1){m_1m_2}-\deg P(w_2)}. \] \end{proof} \subsection*{Acknowledgments} This work was supported by the Visiting Scholar Program of Chern Institute of Mathematics at Nankai University. The first author would like to express his hearty thanks to Chern Institute of Mathematics provided very comfortable research environments to him worked as visiting scholar. The authors finally wish to thank Professor Barsegian for his helpful comments and suggestions. \begin{thebibliography} {00} \bibitem{s1} Bank, S.; Kaufman, R.; \emph{On meromorphic solutions of first-order differential equations}, Comment. Math. Helv. 51(1976), 289-299. \bibitem{s2} Barsegian, G.; \emph{Estimates of derivatives of meromorphic functions on sets of $\alpha$-points}, J. London Math. Soc.34(1986), 534-540. \bibitem{s3} Barsegian, G.; Laine, I.; Yang, C. C.; \emph{On a method of estimating derivatives in complex differential equations}, J. Math. Soc. Japan 54(2002), 923-935. \bibitem{B1} Barsegian, G.; \emph{On a method of the study of algebraic diˇčerential equations of higher orders}, Bulletin of Hong Kong Math. Soc., 2(1): (1998), 159-164. \bibitem{B2} Barsegian, G.; \emph{Estimates of higher derivatives of meromorphic functions on sets of its a-points}, Bulletin of Hong Kong Math. Soc., 2(2): (1999), 341-346. \bibitem{s4} Bergweiler, W.; \emph{On a theorem of Gol'dberg concerning meromorphic solutions of algebraic differential equations}, Complex Variables. 37(1998), 93-96. \bibitem{s5} Clunie, J.; Hayma, W. K.; \emph{The spherical derivative of integral and meromorphic functions}, Comment. Math. Helv. 40(1966), 117--148. \bibitem{s6} Gol'dberg, A. A.; \emph{On single-valued solutions of first-order differential equations} (Rissian), Ukra\"{\i}n. Mat. Zh. 8 (1956), 254-261. \bibitem{GLY} Gu, R. M.; Li, Z. R.; Yuan, W. J.; \emph{The growth of entire solutions of some algebraic differential equations}, Georgian Mathematical Journal, Volume 18, Issue 3, Pages 489-495, doi: 10.1515/GMJ.2011-003. \bibitem{GDY} Gu, R. M.; Ding, J. J.; Yuan, W. J.; \emph{On the estimate of growth order of solutions of a class of systems of algebraic differential equations with higher orders}. J. Zhanjiang Normal Univ. (in Chinese), 2009, 30(6): 39-43 \bibitem{s7} Hayman, W. K.; \emph{Meromorphic Functions}, Clarendon Press, Oxford, 1964. \bibitem{s8} He, Y. Z.; Xiao, X. Z.; \emph{Algebroid functions and ordinary differential equations} (in Chinese), Science Press, Beijing, 1988. \bibitem{s9} Laine, I.; \emph{Nevanlinna theory and complex differential equations}, de Gruyter, Berlin, 1993. \bibitem{QLY} Qi, J. M.; Li, Y. Z.; Yuan, W. J.; \emph{Further results of the estimate of growth of entire solutions of some classes of algebraic differential equations}, Adv. Diffrence Equat. 2012, 2012: 6, doi:10.1186/1687-1847-2012-6. \bibitem{s10} Yang, L.; \emph{Value Distribution Theory}, Springer-Verlag, Berlin, 1993. \bibitem{s11} Yuan, W. J.; Xiao, B.; Zhang, J. J.; \emph{The general result of Gol'dberg's theorem concerning the growth of meromorphic solutions of algebraic differential equations}, J. Comput. Appl. Math. 58(2009), 1788-1791. \bibitem{s12} Yuan W. J., Li Z. R.; Zhang, J. J.; \emph{On the estimate of growth of meromorphic solutions of some classes of higher order algebraic differential equations}, J. Guangzhou Univ.Nat.Sci. 8(2)(2009), 28-31. \bibitem{s13} Zalcman L.; \emph{A heuristic principle in complex function theory}, Amer. Math. Monthly. 82(1975), 813-817. \bibitem{s14} Zalcman, L.; \emph{Normal families: new perspectives}, Bull. Amer. Math. Soc. 35(1998), 215-230. \end{thebibliography} \end{document}