\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 95, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/95\hfil Multiple symmetric positive solutions] {Multiple symmetric positive solutions to four-point boundary-value problems of differential systems with p-Laplacian} \author[H. Feng, D. Bai, M. Feng \hfil EJDE-2012/95\hfilneg] {Hanying Feng, Donglong Bai, Meiqiang Feng} \address{Hanying Feng \newline Department of Mathematics, Shijiazhuang Mechanical Engineering College\\ Shijiazhuang 050003, China} \email{fhanying@yahoo.com.cn} \address{Donglong Bai \newline Department of Mathematics, Shijiazhuang Mechanical Engineering College\\ Shijiazhuang 050003, China} \email{baidonglong@yeal.net} \address{Meiqiang Feng \newline School of Applied Science, Beijing Information Science and Technology University\\ Beijing 100092, China} \email{meiqiangfeng@sina.com} \thanks{Submitted March 9, 2012. Published June 10, 2012.} \thanks{Supported by grants 10971045 from the NNSF, and A2012506010 from HEBNSF of China} \subjclass[2000]{34B10, 34B15, 34B18} \keywords{Four-point boundary-value problem; differential system; \hfill\break\indent fixed point theorem; symmetric positive solution; one-dimensional $p$-Laplacian} \begin{abstract} In this article, we study the four-point boundary-value problem with the one-dimensional $p$-Laplacian \begin{gather*} (\phi_{p_i}(u_i'))'+q_i(t)f_i(t,u_1,u_2)=0,\quad t\in(0,1),\quad i=1,2;\\ u_i(0)-g_i(u_i'(\xi))=0,\quad u_i(1)+g_i(u_i'(\eta))=0, \quad i=1,2. \end{gather*} We obtain sufficient conditions such that by means of a fixed point theorem on a cone, there exist multiple symmetric positive solutions to the above boundary-value problem. As an application, we give an example that we illustrates our results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In this article, we discuss the existence of multiple symmetric positive solutions to the four-point boundary-value problem (BVP) for a differential system with the one-dimensional $p$-Laplacian, \begin{gather}\label{e1.1} (\phi_{p_i}(u_i'))'+q_i(t)f_i(t,u_1,u_2)=0,\quad t\in(0,1),\; i=1,2; \\ \label{e1.2} u_i(0)-g_i(u_i'(\xi))=0,\quad u_i(1)+g_i(u_i'(\eta))=0, \quad i=1,2, \end{gather} where $\phi_{p_i}(s)=|s|^{p_i-2}s$, $p_i>1$, $0<\xi<1/2$, $\xi+\eta=1$, and the functions $q_i$, $f_i$, $g_i$, $i=1,2$ satisfy the following conditions: \begin{itemize} \item[(H1)] $q_i\in L^1[0,1]$ is nonnegative symmetric on $[0,1]$ (i.e., $q_i(t)=q_i(1-t)$,\ $t\in[0,1]$) and $q_i(t)\not\equiv0$ on any subinterval of $[0,1]$; \item[(H2)] $ f_i\in C ([0,1]\times [0,+\infty)\times [0,+\infty),(0,+\infty))$ is symmetric on $[0,1]$ (i.e., $f_i(t,u_1,u_2)=f_i(1-t,u_1,u_2)$, for $t\in[0,1]$); \item[(H3)] $ g_i\in C ((-\infty,+\infty), (-\infty,+\infty))$ is strictly increasing, odd and satisfies the condition that there exists $m_i>0$ such that $0\leq g_i(s)\leq m_is$ for all $s\geq0$. \end{itemize} Multipoint boundary-value problems for ordinary differential equations and systems arise in a variety of areas of applied mathematics and physics. The study of multipoint BVPs for linear second-order ordinary differential equations was initiated by Il'in and Moiseev \cite{il}. Since then, many authors studied more general nonlinear multi-point boundary-value problems by Leray-Schauder continuation theorem, coincidence degree theory, the method of lower and upper solutions, monotone iterative technique, fixed point theorem in cones and so on. We refer readers to \cite{ba,fw1,gu,gu1,mr,wp,wf} and the references cited therein. On the other hand, the existence of symmetric positive solutions of second or higher order boundary-value problems have received more and more attention in the recent literature. The results of existence of symmetric positive solutions were obtained by some authors, see \cite{av1,fh,fh1,gr,gr1,ko,ko1,sy,sy1,yq}. In recent years, there were many works done for a variety of nonlinear second order ordinary differential systems with different boundary conditions, see \cite{ag,fi,ll,mr1,wz,ya}. However, to the best of our knowledge, there were only a few results on the existence of multiple positive solutions to boundary-value problems for differential systems with the one-dimensional $p$-Laplacian. Especially, there were few papers on the existence of symmetric positive solutions. Recently, Liu \cite{lb} studied the existence of positive solutions of singular boundary value systems with $p$-Laplacian, \begin{gather*} (\phi_{p}(x'))'+a_1(t)f(t,x(t),y(t))=0,\quad t\in(0,1),\\ (\phi_{p}(y'))'+a_2(t)g(t,x(t),y(t))=0,\quad t\in(0,1),\\ x(0)-\beta_1x'(0)=0, \quad x(1)+\delta_1x'(1)=0,\\ y(0)-\beta_2y'(0)=0, \quad y(1)+\delta_2y'(1)=0. \end{gather*} By using fixed-point index theory, the existence of one and multiple positive solutions for the boundary value systems under some conditions were established. Liu and zhang \cite{lz} considered the existence of positive solutions for the nonlinear system \begin{gather*} (\varphi_1(x'))'+a(t)f(x,y)=0,\ (\varphi_2(y'))'+b(t)g(x,y)=0,\quad t\in(0,1),\\ \alpha\varphi_1(x(0))-\beta\varphi_1(x'(0))=0,\quad \alpha\varphi_2(y(0))-\beta\varphi_2(y'(0))=0,\\ \alpha\varphi_1(x(1))-\beta\varphi_1(x'(1))=0,\quad \alpha\varphi_2(y(1))-\beta\varphi_2(y'(1))=0, \end{gather*} where $\varphi_1, \varphi_2$ are the increasing homeomorphism and positive homomorphism and $\varphi_1(0)=0, \varphi_2(0)=0$. They showed the sufficient conditions for the existence of positive solutions by means of the norm type cone expansion-expression fixed point theorem. Recently, Ji, Feng and Ge \cite{ji} discussed the existence of symmetric positive solutions for the boundary-value system with $p$-Laplacian, \begin{gather*} (\phi_{p_1}(u'))'+a_1(t)f(u,v)=0,\quad t\in(0,1),\\ (\phi_{p_2}(v'))'+a_2(t)g(t,u,v)=0, \quad t\in(0,1),\\ u(0)-\alpha u'(\xi)=0, \quad u(1)+\alpha u'(\eta)=0,\\ v(0)-\alpha u'(\xi)=0,\quad v(1)+\alpha v'(\eta)=0, \end{gather*} Motivated by the above works, our purpose in this paper is to give some conditions that guarantee the existence of multiple symmetric positive solutions for boundary value systems \eqref{e1.1}, \eqref{e1.2}. The main tool of this article is the fixed point index theorem in cones. \begin{lemma}[\cite{gd,la}] \label{lem1.1} Let $K$ be a cone in a Banach space $X$. Let $D$ be an open bounded subset of $X$ with $D_k = D \cap K \neq \phi$ and $\overline{D}_k\neq K$. Assume that $A: \overline{D}_k\to K$ is a compact map such that $x \neq Ax$ for $x \in \partial{D}_k$. Then the following results hold: \begin{itemize} \item[(1)] If $\|Ax\|\leq \|x\|$, $x \in\partial D_k$, then $i_k(A,D_k) = 1$; \item[(2)] If there exists $e\in K\backslash \{0\}$ such that $x \neq Ax + \lambda e$ for all $x \in\partial{D}_k$ and all $\lambda > 0$, then $i_k(A,{D}_k) = 0$; \item[(3)] Let $U$ be open in $X$ such that $\overline{U} \subset {D}_k$. If $i_k(A,{D}_k) = 1$ and $i_k(A,U_k) = 0$, then $A$ has a fixed point in ${D}_k\backslash \overline{U}_k$. The same results holds if $i_k(A,{D}_k) = 0$ and $i_k(A,U_k) =1$. \end{itemize} \end{lemma} \section{Preliminaries} Let $E=C[0,1]\times C[0,1]$, then $E$ is a Banach space with the norm $\|(u,v)\|=\|u\|+\|v\|$, where $\|u\|=\max_{t\in [0,1]}\mid u(t)\mid$, $\|v\|=\max_{t\in [0,1]}\mid v(t)\mid$. \begin{definition}\label{def3.1} \rm We define a partial ordering in $E$. For $(u_1, u_2), (v_1,v_2)\in E$: $(u_1,u_2)\leq (v_1,v_2)$ if and only if $u_i(t)\leq v_i(t),\ t\in[0,1],\ i=1,2$. \end{definition} \begin{definition}\label{def3.2} \rm $(u_1,u_2)\in E$ is concave and symmetric on $[0,1]$ if and only if $u_i(t),\ i=1,2$, is concave and symmetric on $[0,1]$. \end{definition} So, define a cone $K\subset E\times E$ by $$ K=\{(u_1,u_2)\in E\times E : (u_1,u_2) \text{ is nonnegative, concave and symmetric on } [0,1]\}. $$ For $h_i\in L^1[0,1]$, let $(u_1,u_2)$ be a solution of the BVP \begin{gather}\label{e3.1} (\phi_{p_i}(u_i'))'+h_i(t)=0, \quad t\in(0,1),\;i=1,2,\\ \label{e3.2} u_i(0)-g_i(u_i'(\xi))=0,\quad u_i(1)+g_i(u_i'(\eta))=0, \quad i=1,2. \end{gather} By integrating \eqref{e3.1}, it follows that \begin{gather*} u_i'(t)=\phi_{p_i}^{-1}\Big(A_{h_i}-\int_0^{t}h_i(\tau)d\tau\Big),\\ u_i(t)=u_i(0)+\int_0^{t}\phi_{p_i}^{-1}\Big(A_{h_i}-\int_0^sh_i(\tau) d\tau\Big)ds,\\ u_i(t)=u_i(1)-\int_{t}^1\phi_{p_i}^{-1}\Big(A_{h_i}-\int_0^sh_i(\tau) d\tau\Big)ds. \end{gather*} Using the boundary condition \eqref{e3.2}, we can easily obtain \[ u_i(t)=g_i\circ\phi_{p_i}^{-1} \Big(A_{h_i}-\int_0^{\xi}h_i(\tau)d\tau\Big)+ \int_0^{t}\phi_{p_i}^{-1}\Big(A_{h_i}-\int_0^sh_i(\tau) d\tau\Big)ds \] or \[ u_i(t)=-g_i\circ\phi_{p_i}^{-1} \Big(A_{h_i}-\int_0^{\eta}h_i(\tau)d\tau\Big) -\int_{t}^1\phi_{p_i}^{-1}\Big(A_{h_i}-\int_0^sh_i(\tau)d\tau\Big)ds, \] where $A_{h_i}$ satisfies \eqref{e3.3}. \begin{equation}\label{e3.3} \begin{split} &g_i\circ\phi_{p_i}^{-1}(A_{h_i}-\int_0^{\xi}h_i(\tau) d\tau)+g_i\circ\phi_{p_i}^{-1}(A_{h_i}-\int_0^{\eta}h_i(\tau) d\tau )\\ &+\int_0^1 \phi_{p_i}^{-1}(A_{h_i}-\int_0^s h_i(\tau)d\tau)ds=0, \quad i=1,2. \end{split} \end{equation} \begin{lemma} \label{lem2.1} If $h_i\in L^1[0,1]$ is nonnegative on $[0,1]$ and $h_i(t)\not\equiv0$ on any subinterval of $[0,1]$, then there exists a unique $A_{h_i} \in (-\infty, +\infty)$ satisfying \eqref{e3.3}. Moreover, there is a unique $\sigma_{h_i} \in (0,1)$ such that $A_{h_i}=\int_0^{\sigma_{h_i}}h_i(\tau)d\tau$ for $i=1,2$. \end{lemma} \begin{proof} For any $h_i(t)$ in Lemma \ref{lem2.1}, define \begin{align*} H_{h_i}(c) &= g_i\circ\phi_{p_i}^{-1}\Big(c-\int_0^{\xi}h_i(\tau) d\tau\Big)+g_i\circ\phi_{p_i}^{-1}\Big(c-\int_0^{\eta}h_i(\tau) d\tau \Big) \\ &\quad +\int_0^1 \phi_{p_i}^{-1}(c-\int_0^s h_i(\tau)d\tau)ds, \quad i=1,2. \end{align*} So, $H_{h_i}: R\to R$ is continuous and strictly increasing since $g_i$ is strictly increasing. It is easy to see that $H_{h_i}(0)<0$, $H_{h_i}(\int_0^1 h_i(\tau)d\tau)>0$. Therefore, there exists a unique $A_{h_i}\in (0, \int_0^1h_i(\tau)d\tau)\subset(-\infty, +\infty)$ satisfying \eqref{e3.3}. Furthermore, if $F_i(t)=\int_0^{t}h_i(\tau)d\tau$, then $F_i(t)$ is continuous and strictly increasing on $[0,1]$, $F_i(0)=0$, and $F_i(1)= \int_0^1h_i(\tau)d\tau$. Thus, $$ 0=F_i(0)0$, such that $\|(u_1,u_2)\|\leq D$ for any $(u_1,u_2)\in U$. By the discussion about $T_i\ (i=1,2)$ and condition (H3), for any $(u_1,u_2)\in U$ and $0\leq t\leq1/2$ (the case $1/2\leq t\leq1$ can be proved similarly), we have \begin{displaymath} \begin{aligned} \|T_i(u_1,u_2)\| &= T_i(u_1,u_2)(\frac{1}{2})\\ &= g_i\circ\phi_{p_i}^{-1} \Big(\int_{\xi}^{1/2}q_i(\tau)f_i(\tau,u_1(\tau),u_2(\tau))d\tau\Big)\\ &\quad +\int_0^{\frac{1}{2}}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)f_i(\tau,u_1(\tau),u_2(\tau)) d\tau\Big)ds,\\ &\leq \Big[m_i\phi_{p_i}^{-1} \Big(\int_{\xi}^{1/2}q_i(\tau)d\tau\Big)+ \int_0^{\frac{1}{2}}\phi_{p_i}^{-1}(\int_{s}^{1/2} q_i(\tau) d\tau)ds\Big]\\ &\quad \times\phi_{p_i}^{-1}\Big(\sup\{f_i(t,u_1,u_2):t\in[0,1],\ (u_1,u_2)\in U\}\Big). \end{aligned}\quad\quad\ \ \end{displaymath} Thus $T_i(U)$ $(i=1,2)$ is bounded, this implies $T(U)$ is bounded. Next, for any $(u_1,u_2)\in U$ and $0\leq t\leq1/2$, we have \begin{align*} \|T_i'(u_1,u_2)\| &\leq \phi_{p_i}^{-1}(\int_0^{1/2} q_i(\tau)f_i(\tau,u_1(\tau),u_2(\tau)) d\tau)\\ &\leq \phi_{p_i}^{-1}(\int_0^{1/2} q_i(\tau) d\tau) \phi_{p_i}^{-1}(\sup\{f_i(t,u_1,u_2):t\in[0,1],\ (u_1,u_2)\in U\}). \end{align*} Then $T(U)$ is equicontinuous; that is, $T(U)$ is a relatively compact set according to the Ascoli-Arzela theorem. (2) We show that $T$ is continuous. Let $(u_1^{(n)},u_2^{(n)})\in U$ and converge uniformly to $(u_1^{(0)},u_2^{(0)})$, then \begin{align*} &T_i(u_1^{(n)},u_2^{(n)})(t)\\ &\leq T_i(u_1^{(n)},u_2^{(n)})(\frac{1}{2})\\ &= \begin{cases} g_i\circ\phi_{p_i}^{-1} \Big(\int_{\xi}^{1/2}q_i(\tau)f_i(\tau,u_1^{(n)}(\tau),u_2^{(n)}(\tau))d\tau\Big)\\ +\int_0^{1/2}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)f_i(\tau,u_1^{(n)}(\tau),u_2^{(n)}(\tau)) d\tau\Big)ds, & 0\leq t\leq 1/2,\\ g_i\circ\phi_{p_i}^{-1} \Big(\int_{1/2}^{\eta}q_i(\tau)f_i(\tau,u_1^{(n)}(\tau),u_2^{(n)}(\tau))d\tau\Big)\\ +\int_{1/2}^1\phi_{p_i}^{-1}\Big(\int_{1/2}^s q_i(\tau)f_i(\tau,u_1^{(n)}(\tau),u_2^{(n)}(\tau))d\tau\Big)ds, & 1/2\leq t\leq1, \end{cases} \\ &\leq \begin{cases} \Big[m_i\phi_{p_i}^{-1} \Big(\int_{\xi}^{1/2}q_i(\tau)d\tau\Big)+ \int_0^{\frac{1}{2}}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau) d\tau\Big)ds\Big]\\ \times\phi_{p_i}^{-1}(\sup\{f_i(t,u_1,u_2):t\in[0,1],\; (u_1,u_2)\in U\}), & 0\leq t\leq 1/2,\\ \Big[m_i\phi_{p_i}^{-1} \Big(\int_{1/2}^{\eta}q_i(\tau)d\tau\Big)+ \int_{\frac{1}{2}}^1\phi_{p_i}^{-1}\Big(\int_{1/2}^s q_i(\tau) d\tau\Big)ds\Big]\\ \times\phi_{p_i}^{-1}(\sup\{f_i(t,u_1,u_2):t\in[0,1],\ (u_1,u_2)\in U\}) & 1/2\leq t\leq1. \end{cases} \end{align*} Thus, by the dominated convergence theorem, we can get the limit \begin{align*} &\lim_{n\to\infty}T_i(u_1^{(n)},u_2^{(n)})(t)\\ &= \begin{cases} g_i\circ\phi_{p_i}^{-1} \Big(\int_{\xi}^{1/2}q_i(\tau)f_i(\tau,u_1^{(0)}(\tau),u_2^{(0)}(\tau))d\tau\Big)\\ +\int_0^{t}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)f_i(\tau,u_1^{(0)}(\tau),u_2^{(0)}(\tau)) d\tau\Big)ds, & 0\leq t\leq 1/2,\\ g_i\circ\phi_{p_i}^{-1} \Big(\int_{1/2}^{\eta}q_i(\tau)f_i(\tau,u_1^{(0)}(\tau),u_2^{(0)}(\tau))d\tau\Big)\\ +\int_{t}^1\phi_{p_i}^{-1}\Big(\int_{1/2}^s q_i(\tau)f_i(\tau,u_1^{(0)}(\tau),u_2^{(0)}(\tau))d\tau\Big)ds, & 1/2\leq t\leq1; \end{cases} \end{align*} i.e., $\lim_{n\to\infty}T_i(u_{n},u_{n})(t)=T_i(u_0,u_0)(t)$. So $T_i\ (i=1,2)$ is continuous on $U$. It follows that $T(U)$ is continuous on $U$. Hence we complete the proof of Lemma \ref{lem3.4}. \end{proof} \section{Existence of multiple symmetric positive solutions to \eqref{e1.1}-\eqref{e1.2}} Now for convenience we use the following notation. Let \[ \overline{\gamma}_i =\frac{\delta \int_{\delta}^{1/2}\phi_{p_i}^{-1} \big(\int_{s}^{1/2} q_i(\tau)d\tau\big)ds} {m_i\phi_{p_i}^{-1}\big(\int_{\xi}^{1/2}q_i(\tau)d\tau\big) +\int_0^{1/2}\phi_{p_i}^{-1}\big(\int_{s}^{1/2} q_i(\tau)d\tau\big)ds},\quad i=1,2, \] $\gamma_i=\delta\overline{\gamma}_i$, $\gamma=\min\{\gamma_1,\gamma_2\}$, $K_{\rho}=\{(u_1,u_2)\in K: \|(u_1,u_2)\|<\rho\}$, \begin{align*} \Omega_{\rho}&=\{(u_1,u_2)\in K: \min_{\delta\leq t\leq1-\delta}(u_1(t)+u_2(t))<\gamma\rho\},\\ &=\{(u_1,u_2)\in K,\ \gamma\|(u_1,u_2)\|\leq \min_{\delta\leq t\leq1-\delta}(u_1(t)+u_2(t))<\gamma\rho\}, \end{align*} \begin{gather*} f_{i [\gamma \rho,\rho]}=\min\{\min_{t\in [\delta,1-\delta]}\frac{f_i(t,u_1,u_2)}{\phi_{p_i}(\rho)}:u_1+u_2\in[\gamma \rho,\rho]\}, \\ f_i^{[0,\rho]}=\max\{\max_{t\in [0,1]}\frac{f_i(t,u_1,u_2)}{\phi_{p_i}(\rho)}: u_1+u_2\in[0,\rho]\}, \\ f_{i\alpha}=\liminf_{(u_1, u_2)\to\alpha} \min_{t\in [\delta,1-\delta]}\frac{f_i(t,u_1,u_2)}{\phi_{p_i}(u_1+u_2)}, \\ f_i^{\alpha}=\limsup_{(u_1, u_2)\to\alpha} \max_{t\in [0,1]}\frac{f_i(t,u_1,u_2)}{\phi_{p_i}(u_1+u_2)},\quad (\alpha:=\infty,\text{ or }0), \\ \frac{1}{N_i}=2\Big[m_i\phi_{p_i}^{-1} \Big(\int_{\xi}^{1/2}q_i(\tau)d\tau\Big) +\int_0^{1/2}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)d\tau\Big)ds\Big], \\ \frac{1}{M_i}=2\delta \int_{\delta}^{1/2}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)d\tau\Big)ds, \end{gather*} where $i=1,2$ and $(u_1, u_2)\to\alpha$ if and only if $\|u_1\|+\|u_2\|\to\alpha$ \begin{remark} \label{rmk3.1} \rm By (H1) it is to show that $0\phi_{p_i}(\gamma M_i),\quad f_i^{[0,\rho_3]}\leq\phi_{p_i}(N_i),\quad i=1,2. $$ \end{itemize} Then \eqref{e1.1}-\eqref{e1.2} has three symmetric positive solutions in $K$. \end{theorem} \begin{proof} Recall that \eqref{e1.1}-\eqref{e1.2} has a solution $(u_1,u_2)$ if and only if the operator $T$ has a fixed point. Thus we set out to verify that the operator $T$ satisfies Lemma \ref{lem1.1} which will prove the existence of three fixed points of $T$ which satisfies the conclusion of the theorem. Firstly, we show that $i_k(T, K_{\rho_1})=1$. In fact, by the definition of $T$ and $f_i^{[0,\rho_1]}<\phi_{p_i}(N_i)$, for $(u_1,u_2)\in \partial K_{\rho_1}$, we have \begin{align*} \|T_i(u_1,u_2)\| &= \max _{0\leq t\leq 1}|T_i(u_1,u_2)(t)| =T_i(u_1,u_2)(1/2)\\ &= g_i\circ\phi_{p_i}^{-1} \Big(\int_{\xi}^{1/2}q_i(\tau)f_i(\tau,u_1(\tau),u_2(\tau))d\tau\Big)\\ &+\int_0^{1/2}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)f_i(\tau,u_1(\tau),u_2(\tau)) d\tau\Big)ds\\ &< m_i\phi_{p_i}^{-1} \Big(\int_{\xi}^{1/2}q_i(\tau)d\tau\phi_{p_i}(\rho_1N_i)\Big)\\ &\quad +\int_0^{1/2}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)d\tau\phi_{p_i}(\rho_1N_i)\Big)ds\\ &\leq \rho_1N_i\Big[m_i\phi_{p_i}^{-1} \Big(\int_{\xi}^{1/2}q_i(\tau)d\tau\Big) +\int_0^{1/2}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)d\tau\Big)ds\Big]\\ &=\frac{\rho_1}{2} =\frac{\|(u_1,u_2)\|}{2},\quad i=1,2. \end{align*} Thus, $$ \|T(u_1u_2)\|=\|(T_1(u_1u_2),T_2(u_1u_2))\| =\|(T_1(u_1u_2)\|+\|T_2(u_1u_2))\|< \|(u_1,u_2)\|, $$ by Lemma\ref{lem1.1} (1), one has $i_k(T, K_{\rho_1})=1$. Secondly, we show that $i_k(T, \Omega_{\rho_2})=0$. Let $(e_1(t),e_2(t))\equiv(\frac{1}{2},\frac{1}{2})$ for $t\in[0,1]$, then $(e_1(t),e_2(t))\in \partial K_1$. We claim that \begin{align*} (u_1,u_2) \neq T(u_1,u_2) + \lambda (e_1,e_2) &= (T_1(u_1,u_2),T_2 (u_1,u_2)) + \lambda (e_1,e_2)\\ &= (T_1(u_1, u_2)+ \lambda e_1, T_2 (u_1,u_2) + \lambda e_2); \end{align*} that is, $u_i\neq T_i(u_1, u_2)+ \lambda e_i$, for $(u_1,u_2)\in \partial\Omega_{\rho_2}$, $\lambda>0$, $i=1,2$. In fact, if not, there exist $(u_1^{0},u_2^{0})\in \partial\Omega_{\rho_2}$, $\lambda_0>0$ such that $(u_1^{0},u_2^{0}) = T (u_1^{0},u_2^{0})+ \lambda_0(e_1,e_2)$. From Lemma \ref{lem3.3} and $f_{i [\gamma \rho_2,\rho_2]}>\phi_{p_i}(\gamma M_i)$, we have \begin{align*} u_i^{0}(t)&= T_i(u_1^{0},u_2^{0})(t)+\lambda_0e_i(t) \\ &\geq \delta\|T_i(u_1^{0},u_2^{0})\|+\frac{\lambda_0}{2} =\delta T_i(u_1^{0},u_2^{0})(\frac{1}{2})+\frac{\lambda_0}{2}\\ &= \delta\Big[g_i\circ\phi_{p_i}^{-1} \Big(\int_{\xi}^{1/2}q_i(\tau)f_i(\tau,u_1^{0}(\tau),u_2^{0}(\tau))d\tau\Big)\\ &\quad +\int_0^{1/2}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)f_i(\tau,u_1^{0}(\tau),u_2^{0}(\tau)) d\tau\Big)ds\Big] +\frac{\lambda_0}{2}\\ &\geq \delta\int_{\delta}^{1/2}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)f_i(\tau,u_1^{0}(\tau),u_2^{0}(\tau)) d\tau\Big)ds+\frac{\lambda_0}{2}\\ &>\delta\int_{\delta}^{1/2}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)d\tau\phi_{p_i}(\gamma\rho_2 M_i)\Big)ds+\frac{\lambda_0}{2}\\ &= \delta\gamma\rho_2 M_i\int_{\delta}^{1/2}\phi_{p_i}^{-1}\Big(\int_{s}^{1/2} q_i(\tau)d\tau\Big)ds+\frac{\lambda_0}{2}\\ &= \frac{\gamma \rho_2+\lambda_0}{2},\ i=1,2. \end{align*} Thus $u_1^{0}(t)+u_2^{0}(t)>\gamma \rho_2+\lambda_0$. This implies that $\gamma \rho_2>\gamma \rho_2+\lambda_0$, which is a contradiction. Hence by Lemma \ref{lem1.1} (2), it follows that $i_k(T, \Omega_{\rho_2})=0$. Finally, similar to the proof of $i_k(T, K_{\rho_1})=1$, we can obtain that $i_k(T, K_{\rho_3})=1$. Therefore, it follows from Lemma \ref{lem1.1} that $T$ has three fixed points $u_1\in K_{\rho_1}$, $u_2\in \Omega_{\rho_2}\backslash\overline{K}_{\rho_1}$ and $u_3\in K_{\rho_3}\backslash\overline{\Omega}_{\rho_2}$. \end{proof} \begin{theorem} \label{thm3.2} Assume that {\rm (H1)--(H3)} hold, and suppose that $f_i$ satisfies the conditions: \begin{itemize} \item[(H5)] There exist $\rho_1, \rho_2, \rho_3\in (0, \infty)$, with $\rho_1<\rho_2<\gamma\rho_3$ such that $$ f_{i[\gamma\rho_1,\rho_1]}>\phi_{p_i}(\gamma M_i),\quad f_i^{[0,\rho_2]}<\phi_{p_i}(N_i),\quad f_{i[\gamma\rho_3,\rho_3]}\geq\phi_{p_i}(\gamma M_i), \quad i=1,2. $$ \end{itemize} Then \eqref{e1.1}-\eqref{e1.2} has two symmetric positive solutions in $K$. \end{theorem} The proof of the above theorem is similar to that of Theorem \ref{thm3.1}; we omit it here. As a special case of Theorem \ref{thm3.1}, we obtain the following result. \begin{corollary} \label{cor3.3} Assume that {\rm (H1)--(H3)} hold. In addition, if there exists $\rho\in(0,\infty)$ such that \begin{itemize} \item[(H6)] $ 0\leq f_i^{0}<\phi_{p_i}(N_i)$, $ f_{i [\gamma\rho,\rho]}>\phi_{p_i}(\gamma M_i)$, $0\leq f_i^{\infty}<\phi_{p_i}(N_i)$, $i=1,2$. \end{itemize} Then \eqref{e1.1}-\eqref{e1.2} has three symmetric positive solutions in $K$. \end{corollary} \begin{proof} We show that (H6) implies (H4). It is easy to verify that $0\leq f_i^{0}<\phi_{p_i}(N_i)$ implies that there exists $\rho_1\in(0,\gamma \rho)$ such that $f_i^{[0,\rho_1]}<\phi_{p_i}(N_i)$. Let $k_i\in (f_i^{\infty},\phi_{p_i}(N_i))$, then there exists $r>\rho$ such that $\max_{0\leq t\leq1}f_i(t,u_1,u_2)\leq k_{_i}\phi_{p_i}(u_1+u_2)$ for $u_1+u_2\in [r,\infty)$ since $0\leq f_i^{\infty}<\phi_{p_i}(N_i)$. Let \begin{gather*} \beta_i=\max\big\{\max_{0\leq t\leq1}f_i(t,u_1,u_2): 0\leq u_1+u_2\leq r\big\},\\ \rho_3>\max\big\{\phi_{p_1}^{-1}(\frac{\beta_1}{\phi_{p_1}(N_1)-k_1}), \phi_{p_2}^{-1}(\frac{\beta_2}{\phi_{p_2}(N_2)-k_2}), \rho\big\}. \end{gather*} Then $$ \max_{0\leq t\leq1}f_i(t,u_1,u_2)\leq k_i\phi_{p_i}(u_1+u_2) +\beta_i\leq k_i\phi_{p_i}(\rho_3) +\beta_i<\phi_{p_i}(N_i)\phi_{p_i}(\rho_3) $$ for $u_1+u_2\in [0, \rho_3]$. This implies $f_i^{[0,\rho_3]}\leq\phi_{p_i}(N_i)$ and (H4) holds. \end{proof} Similarly, as a special case of Theorem \ref{thm3.2}, we obtain the following result. \begin{corollary} \label{cor3.4} Assume that {\rm (H1)--(H3)} hold. In addition, if there exists $\rho\in(0,\infty)$ such that the following conditions hold \begin{itemize} \item[(H7)] $\phi_{p_i}(M_i)3, \end{cases} \\ f_2(t,u_1,u_2)=\begin{cases} \sqrt{t(1-t)}(u_1+u_2)^{13}+\frac{1}{1000}, & 0\leq u+v\leq3, \\ \sqrt{t(1-t)}\cdot3^{13}+\frac{1}{1000}, & u+v>3, \end{cases} \end{gather*} Choose $\rho_1=1$, $\rho_2=64(\sqrt{6}+\sqrt{2})$, $\rho_3=1500$, $\delta=\frac{1}{4}$. we note that $$ M_i=24,\quad N_i=\frac{3(\sqrt{6}-\sqrt{2})}{4},\quad \gamma=\frac{\sqrt{6}-\sqrt{2}}{128}. $$ Consequently, $f_i(t,u_1,u_2)$, $i=1,2$, satisfies \begin{gather*} f_1^{[0,\rho_1]}=0.25<\phi_{p_1}(N_1)= 0.60, \quad f_2^{[0,\rho_1]}=0.5<\phi_{p_1}(N_1)= 0.60,\\ f_{1 [\gamma \rho_2,\rho_2]} = 0.05>\phi_{p_1}(\gamma M_1)=0.04,\quad f_{2 [\gamma \rho_2,\rho_2]}= 0.06>\phi_{p_1}(\gamma M_1)= 0.04,\\ f_1^{[0,\rho_3]}= 0.53<\phi_{p_1}(N_1)= 0.60,\quad f_2^{[0,\rho_3]}= 0.35<\phi_{p_1}(N_1)= 0.60. \end{gather*} Then all the conditions for Theorem \ref{thm3.1} hold. Thus, \eqref{e1.1}-\eqref{e1.2} has three symmetric positive solutions in $K$. \subsection*{Acknowledgements} The authors would like to thank the anonymous referee for his or her helpful suggestions. \begin{thebibliography}{00} \bibitem{ag} R. P. Agarwal, D. ORegan; \emph{A coupled system of boundary-value problems}, Appl. Anal. 69 (1998) 381-385. \bibitem{av1} R. I. Avery, A. C. Henderson; \emph{Three symmetric positive solutions for a second-order boundary-value problem}, Appl. Math. Lett. 13 (2000) 1-7. \bibitem{ba} Z. Bai; \emph{Positive solutions of some nonlocal fourth-order boundary-value problem}, Appl. Math. Comput. 215 (2010) 4191-4197. \bibitem{fh} H. Feng, W. Ge; \emph{Triple symmetric positive solutions for multipoint boundary-value problem with one-dimensional $p$-Laplacian}, Math. Comput. Model. 47 (2008) 186-195. \bibitem{fh1} H. Feng, H. Pang, W. Ge; \emph{Multiplicity of symmetric positive solutions for a multipoint boundary-value problem with a one-dimensional $p$-Laplacian}, Nonlinear Anal. 69 (2008) 3050-3059. \bibitem{fw1} W. Feng, J. R. L. Webb; \emph{Solvability of a $m$-point boundary-value problem with nonlinear growth}, J. Math. Anal. Appl. 212 (1997) 467-480. \bibitem{fi} A. M. Fink, J. A. Gatica; \emph{Positive solutions of second order systems of boundary-value problems}, J. Math. Anal. Appl. 180 (1993) 93-108. \bibitem{gr} J. R. Graef, L. Kong, Q. Kong; \emph{Symmetric positive solutions of nonlinear boundary-value problems}, J. Math. Anal. Appl. 326 (2007) 1310-1327. \bibitem{gr1} J. R. Graef, L. Kong; \emph{Necessary and sufficient conditions for the existence of symmetric positive solutions of singular boundary-value problems}, J. Math. Anal. Appl. 331 (2007) 1467-1484. \bibitem{gd} D. Guo, V. Lakshmikantham; \emph{Nonlinear Problems in Abstract Cones}, Academic Press, San Diego, 1988. \bibitem{gu} C. P. Gupta; \emph{Solvability of a three-point nonlinear boundary-value problem under for a second order ordinary differential equation}, J. Math. Anal. Appl. 168 (1992) 540-551. \bibitem{gu1} C. P. Gupta; \emph{A generalized multi-point boundary-value problem for second order ordinary differential equation}, Appl. Math. Comput. 89 (1998) 133-146. \bibitem{il} V. A. Il'in, E. I. Moiseev; \emph{nonlocal boundary-value problem of the second kind for a Sturm-Liouville operator}, Diff. Eqs. 23 (1987) 979-987. \bibitem{ji} D. Ji, H. Feng, W. Ge; \emph{The existence of symmetric positive solutions for some nonlinear equation systems}, Appl. Math. Comput. 197 (2008) 51-59. \bibitem{ko} N. Kosmatov; \emph{Symmetric solutions of a muti-point boundary-value problem}, J. Math. Anal. Appl. 309 (2005) 25-36. \bibitem{ko1} N. Kosmatov; \emph{A symmetric solution of a multipoint boundary-value problem at resonance}, Abstr. Appl. Anal. 2006 (2006), Article ID 54121, 1-11. \bibitem{la} K. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc. 63 (2001) 690-704. \bibitem{lb} B. Liu; \emph{The existence of positive solutions of singular boundary value systems with $p$-Laplacian}, Acta Math. Sin. 1 (2005) 35-50. \bibitem{lz} B. Liu, J. Zhang; \emph{The existence of positive solutions for some nonlinear equation systems}, J. Math. Anal. Appl. 324 (2006) 970-981. \bibitem{ll} L. Liu, L. Hu, Y. Wu; \emph{Positive solutions of two-point boundary-value problems for systems of nonlinear second-order singular and impulsive differential}, Nonlinear Anal. 69 (2008) 3774-3789. \bibitem{mr} R. Ma; \emph{Existence theorems for a second order three-point boundary-value problem}, J. Math. Anal. Appl. 212 (1997) 430-442. \bibitem{mr1} R. Ma; \emph{Multiple nonnegative solutions of second-order systems of boundary-value problems}, Nonlinear Anal. 42 (2000) 1003-1010. \bibitem{sy} Y. Sun; \emph{Existence and multiplicity of symmetric positive solutions for three-point boundary-value problem}, J. Math. Anal. Appl. 329 (2007) 998-1009. \bibitem{sy1} Y. Sun; \emph{Optimal existence criteria for symmetric positive solutions to a three-point boundary-value problem}, Nonlinear Anal. 66 (2007) 1051-1063. \bibitem{wp} P. Wang; \emph{Iterative methods for the boundary-value problem of a fourth-order differential-difference equation}, Appl. Math. Comput., 73 (1995) 257-270. \bibitem{wz} Z. Wei; \emph{Positive solution of singular Dirichlet boundary-value problems for second order differential equation system}, J. Math. Anal. Appl. 328 (2007) 1255-1267. \bibitem{wf} F. Wong; \emph{Existence of positive solutions for $m$-Laplacian boundary-value problems}, Appl. Math. Lett. 12 (1999) 11-17. \bibitem{ya} J. Yang, Z. Wei; \emph{On existence of positive solutions of Sturm-Liouville boundary-value problems for a nonlinear singular differential system}, Appl. Math. Comput. 217 (2011) 6097-6104. \bibitem{yq} Q. Yao; \emph{Existence and Iteration of n symmetric positive solutions for a singular two-point boundary-value problem}, Comput. Math. Appl. 47 (2004) 1195-1200. \end{thebibliography} \end{document}