\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 98, pp. 1--22.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/98\hfil Multi-strip BVP for fractional differential equations] {Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip boundary conditions} \author[B. Ahmad, S. K. Ntouyas\hfil EJDE-2012/98\hfilneg] {Bashir Ahmad, Sotiris K. Ntouyas} % in alphabetical order \address{Bashir Ahmad \newline Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia} \email{bashir\_qau@yahoo.com} \address{Sotiris K. Ntouyas \newline Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece} \email{sntouyas@uoi.gr} \thanks{Submitted May 20, 2012. Published June 12, 2012.} \subjclass[2000]{26A33, 34A60, 34B10, 34B15} \keywords{Fractional differential inclusions; integral boundary conditions; \hfill\break\indent existence; contraction principle; Krasnoselskii's fixed point theorem; Leray-Schauder degree; \hfill\break\indent Leray-Schauder nonlinear alternative; nonlinear contractions} \begin{abstract} We study boundary value problems of nonlinear fractional differential equations and inclusions of order $q \in (m-1, m]$, $m \ge 2$ with multi-strip boundary conditions. Multi-strip boundary conditions may be regarded as the generalization of multi-point boundary conditions. Our problem is new in the sense that we consider a nonlocal strip condition of the form: $$ x(1)=\sum_{i=1}^{n-2}\alpha_i \int^{\eta_i}_{\zeta_i} x(s)ds, $$ which can be viewed as an extension of a multi-point nonlocal boundary condition: $$ x(1)=\sum_{i=1}^{n-2}\alpha_i x(\eta_i). $$ In fact, the strip condition corresponds to a continuous distribution of the values of the unknown function on arbitrary finite segments $(\zeta_i,\eta_i)$ of the interval $[0,1]$ and the effect of these strips is accumulated at $x=1$. Such problems occur in the applied fields such as wave propagation and geophysics. Some new existence and uniqueness results are obtained by using a variety of fixed point theorems. Some illustrative examples are also discussed. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In recent years, boundary value problems for nonlinear fractional differential equations have been addressed by several researchers. Fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes, see \cite{Pod}. These characteristics of the fractional derivatives make the fractional-order models more realistic and practical than the classical integer-order models. As a matter of fact, fractional differential equations arise in many engineering and scientific disciplines such as physics, chemistry, biology, economics, control theory, signal and image processing, biophysics, blood flow phenomena, aerodynamics, fitting of experimental data, etc. \cite{d2, Kil, Sag, SKM}. For some recent development on the topic, see \cite{r1, r2, t1, b3, t2, d1} and the references therein. In the first part of this paper, we consider the following nonlinear fractional BVP of an arbitrary order with multi-strip boundary conditions: \begin{equation}\label{e1} \begin{gathered} ^cD^qx(t) =f(t,x(t)), \quad 00, $$ provided the integral exists. \end{definition} \begin{lemma} \label{l2} For any $\sigma\in C([0,1], \mathbb{R})$, the unique solution of the boundary value problem \begin{equation}\label{e1a} \begin{gathered} ^cD^qx(t) =\sigma(t), \quad 00$, $x, y\in \mathbb{R}$, \end{itemize} with $L < 1/\Lambda$, where $\Lambda$ is given by \eqref{e302}. Then the boundary value problem \eqref{e1} has a unique solution. \end{theorem} \begin{proof} Setting $\sup_{t \in [0,1]}|f(t,0)|=M$ and choosing $ r \ge \frac{\Lambda M}{1-L\Lambda}$, we show that $F B_r \subset B_r$, where $B_r=\{x \in {\mathcal{C}}: \|x\|\le r \}$. For $x \in B_r$, we have \begin{align*} &\|(Fx)(t)\|\\ &\leq \sup_{t \in [0, 1]}\Big\{\int_0^t \frac{(t-s)^{q-1} }{\Gamma(q)}|f(s,x(s))|ds +|\vartheta| t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} |f(s,x(s))|ds \\ &\quad + \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} |f(u,x(u))|du\Big)ds\Big]\Big\} \\ &\leq \sup_{t \in [0,1]}\Big\{\frac{1}{\Gamma(q)}\int_0^t (t-s)^{q-1} (|f(s,x(s))-f(s,0)|+|f(s,0)|)ds \\ &\quad + |\vartheta| t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} (|f(s,x(s))-f(s,0)|+|f(s,0)|)ds \\ &\quad + \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} (|f(u,x(u))-f(u,0)|+|f(u,0)|)du\Big)ds\Big]\Big\} \\ &\leq (Lr+M )\sup_{t \in [0,T]} \Big\{\frac{1}{\Gamma(q)}\int_0^t (t-s)^{q-1} ds \\ &\quad + |\vartheta| t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} ds + \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} du\Big)ds\Big]\Big\} \\ &\leq \frac{(Lr+M)}{\Gamma(q+1)} \Big[1+ |\vartheta| \Big\{1+\sum_{i=1}^{n-2}\frac{\alpha_i (\eta_i^{q+1}-\zeta_i^{q+1})}{q+1}\Big\}\Big] \\ &= \left(Lr+M \right)\Lambda \le r. \end{align*} Now, for $x, y \in {\mathcal{C}}$ and for each $t \in [0,1]$, we obtain \begin{align*} &\|(F x)(t)-(F y)(t)\|\\ &\leq \sup_{t \in [0, 1]}\Big\{\int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} |f(s,x(s))-f(s,y(s))|ds \\ &\quad + |\vartheta| t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} |f(s,x(s))-f(s,y(s))|ds \\ & \quad + \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} |f(u,x(u))-f(u,y(u))|du\Big)ds\Big]\Big\} \\ &\leq L\|x-y\|\sup_{t \in [0, 1]}\Big\{\frac{1}{\Gamma(q)}\int_0^t (t-s)^{q-1} ds \\ &\quad + |\vartheta| t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} ds + \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} du\Big)ds\Big]\Big\}\\ &\leq \frac{L}{\Gamma(q+1)}\Big[1+ |\vartheta| \Big\{1+\sum_{i=1}^{n-2}\frac{\alpha_i (\eta_i^{q+1}-\zeta_i^{q+1})}{q+1}\Big\}\Big]\|x-y\| =L \Lambda \|x-y\|, \end{align*} where $\Lambda$ is given by \eqref{e302}. Observe that $\Lambda$ depends only on the parameters involved in the problem. As $L < 1/\Lambda$, therefore $F$ is a contraction. Thus, the conclusion of the theorem follows by the contraction mapping principle (Banach fixed point theorem).\end{proof} \subsection{Existence result via Krasnoselskii's fixed point theorem} \begin{lemma}[Krasnoselskii's fixed point theorem \cite{MAK}] \label{lk} Let $M$ be a bounded, closed, convex, and nonempty subset of a Banach space $X$. Let $A, B$ be the operators such that: \begin{itemize} \item[(i)] $Ax+By \in M$ whenever $x, y \in M$; \item[(ii)] $A$ is compact and continuous; \item[(iii)] $B$ is a contraction mapping. \end{itemize} Then there exists $z \in M$ such that $z=Az+Bz$. \end{lemma} \begin{theorem}\label{tk} Let $f : [0,1]\times \mathbb{R} \to \mathbb{R}$ be a jointly continuous function satisfying the assumption {\rm (A1)}. Moreover we assume that \begin{itemize} \item[(A2)] $|f(t,x)|\le \mu (t)$, for all $(t,x) \in [0,1] \times \mathbb{R}$, and $\mu \in C([0,1], \mathbb{R}^+)$. \end{itemize} If \begin{equation}\label{e4} \frac{L|\vartheta|}{\Gamma(q+1)}\Big( 1+\sum_{i=1}^{n-2}\frac{\alpha_i (\eta_i^{q+1}-\zeta_i^{q+1})}{q+1}\Big)<1, \end{equation} then the boundary value problem \eqref{e1} has at least one solution on $[0,1]$. \end{theorem} \begin{proof} By the assumption (A2), we can fix $$ \overline{r} \ge \frac{|\vartheta|\|\mu\|}{\Gamma(q+1)}\Big( 1+\sum_{i=1}^{n-2}\frac{\alpha_i (\eta_i^{q+1}-\zeta_i^{q+1})}{q+1}\Big), $$ and consider $B_{\overline{r}}=\{x \in {\mathcal{C}}: \|x\|\le \overline{r} \}$. We define the operators ${\mathcal{P}}$ and ${\mathcal{Q}}$ on $B_{\overline{r}}$ as \begin{gather*} ({\mathcal{P}} x)(t)= \int_{0}^t\frac{(t-s)^{q-1}}{\Gamma(q)}f(s,u(s))ds, \quad t\in [0,1],\\ \begin{aligned} ({\mathcal{Q}} x)(t) &= - \vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f(s,x(s))ds \\ &\quad -\sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f(u,x(u))du\Big)ds\Big],\quad t\in [0,1]. \end{aligned} \end{gather*} For $x, y \in B_{\overline{r}}$, we find that $$ \|{\mathcal{P}} x+{\mathcal{Q}} y\| \le \frac{|\vartheta|\|\mu\|}{\Gamma(q+1)}\Big( 1+\sum_{i=1}^{n-2}\frac{\alpha_i (\eta_i^{q+1}-\zeta_i^{q+1})}{q+1}\Big) \le \overline{r}. $$ Thus, ${\mathcal{P}} x+{\mathcal{Q}} y \in B_{\overline{r}}$. It follows from the assumption (A1) together with \eqref{e4} that ${\mathcal{Q}}$ is a contraction mapping. Continuity of $f$ implies that the operator ${\mathcal{P}}$ is continuous. Also, ${\mathcal{P}}$ is uniformly bounded on $B_{\overline{r}}$ as $$ \|{\mathcal{P}} x\| \le \frac{\|\mu\|}{\Gamma(q+1)}. $$ Now we prove the compactness of the operator ${\mathcal{P}}$. In view of (A1), we define $$ \sup_{(t,x) \in [0,1] \times B_{\overline{r}}}|f(t,x)|=\overline{f}. $$ Consequently we have \begin{align*} &\|({\mathcal{P}} x)(t_1)-({\mathcal{P}} x)(t_2)\|\\ &= \big\|\frac{1}{\Gamma(q)}\int_0^{t_1}[(t_2-s)^{q-1}-(t_1-s)^{q-1}]f(s,x(s))ds + \int_{t_1}^{t_2}(t_2-s)^{q-1}f(s,x(s))ds\big\|\\ &\leq \frac{\overline{f}}{\Gamma(q+1)}|2(t_2-t_1)^q+t_1^q-t_2^q|, \end{align*} which is independent of $x$ and tends to zero as $t_2 \to t_1$. Thus, ${\mathcal{P}}$ is relatively compact on $B_{\overline{r}}$. Hence, by the Arzel\'a-Ascoli Theorem, ${\mathcal{P}}$ is compact on $B_{\overline{r}}$. Thus all the assumptions of Lemma \ref{lk} are satisfied. So by the conclusion of Lemma \ref{lk}, problem $\eqref{e1}$ has at least one solution on $[0,1]$. \end{proof} \subsection{Existence result via Leray-Schauder Alternative} \begin{lemma}[Nonlinear alternative for single valued maps \cite{GrDu}] \label{lls}. Let $E$ be a Banach space, $C$ a closed, convex subset of $E$, $U$ an open subset of $C$ and $0\in U$. Suppose that $F:\overline{U}\to C$ is a continuous, compact (that is, $F(\overline{U})$ is a relatively compact subset of $C$) map. Then either \begin{itemize} \item[(i)] $F$ has a fixed point in $\overline{U}$, or \item[(ii)] there is a $u\in \partial U$ (the boundary of $U$ in $C$) and $\lambda\in(0,1)$ with $u=\lambda F(u)$. \end{itemize} \end{lemma} \begin{theorem}\label{tls} Let $f: [0,1]\times \mathbb{R} \to \mathbb{R}$ be a jointly continuous function. Assume that: \begin{itemize} \item[(A3)] There exist a function $p \in L^1([0,1], \mathbb{R}^+)$, and a nondecreasing function $\psi: {\mathbb{R}}^+\to { \mathbb{R}}^+$ such that $|f(t,x)|\le p (t)\psi(\|x\|)$, for all $(t,x) \in [0,1] \times \mathbb{R}$. \item[(A4)] There exists a constant $M>0$ such that $$ \frac{M}{\frac{\psi(M)}{\Gamma(q)}\big[\{1+|\vartheta|\}\int_0^1 p(s)ds+ |\vartheta|\sum_{i=1}^{n-2}\alpha_i \frac{\eta_i^q-\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}p(s) ds\big]}> 1. $$ \end{itemize} Then the boundary value problem \eqref{e1} has at least one solution on $[0,1]$. \end{theorem} \begin{proof} Consider the operator $F : \mathcal{C} \to \mathcal{C}$ with $ x=F (x)$, where \begin{align*} (F x)(t)&= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f(s,x(s))ds - \vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f(s,x(s))ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f(u,x(u))du\Big)ds\Big], \quad t \in [0,1]. \end{align*} We show that $F$ maps bounded sets into bounded sets in $ C([0,1], \mathbb{R})$. For a positive number $r$, let $B_r = \{x \in C([0,1], \mathbb{R}): \|x\| \le r \}$ be a bounded set in $C([0,1], \mathbb{R})$. Then \begin{align*} |(Fx)(t)| &\leq \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} |f(s,x(s))|ds+ |\vartheta| t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} |f(s,x(s))|ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} |f(u,x(u))|du\Big)ds\Big] \\ &\leq \int_0^t \frac{(t-s)^{q-1} }{\Gamma(q)} p(s)\psi(\|x\|)ds +|\vartheta| t^{m-1}\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} p(s)\psi(\|x\|)ds\\ &\quad + |\vartheta| t^{m-1} \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} p(s)\psi(\|x\|)du\Big)ds\\ &\leq \frac{\psi(\|x\|)}{\Gamma(q)}\int_0^1 (t-s)^{q-1} p(s)ds + \frac{|\vartheta|\psi(\|x\|)}{\Gamma(q)} \int_0^1 (1-s)^{q-1}p(s)ds \\ &\quad + \frac{|\vartheta|\psi(\|x\|)}{ \Gamma(q)}\sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s (s-u)^{q-1} p(u)du\Big)ds\\ &\leq \frac{\psi(\|x\|)}{\Gamma(q)}\int_0^1 (t-s)^{q-1} p(s)ds+ \frac{|\vartheta|\psi(\|x\|)}{\Gamma(q)} \int_0^1 (1-s)^{q-1}p(s)ds \\ &\quad + \frac{|\vartheta|\psi(\|x\|)}{ \Gamma(q)}\sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s (s-u)^{q-1} p(u)du\Big)ds\\ &\leq \frac{\psi(\|x\|)}{\Gamma(q)}\int_0^1 p(s)ds + \frac{|\vartheta|\psi(\|x\|)}{\Gamma(q)} \int_0^1 p(s)ds \\ &\quad + \frac{|\vartheta|\psi(\|x\|)}{ \Gamma(q)}\sum_{i=1}^{n-2}\alpha_i \frac{\eta_i^q-\zeta_i^q}{q} \int_{\zeta_i}^{\eta_i}p(s)ds\\ &= \frac{\psi(\|x\|)}{\Gamma(q)}\Big[\{1+|\vartheta|\}\int_0^1 p(s)ds+ |\vartheta|\sum_{i=1}^{n-2}\alpha_i \frac{\eta_i^q -\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}p(s) ds\Big]. \end{align*} Consequently, $$ \|Fx\|\le \frac{\psi(r)}{\Gamma(q)}\Big[\{1+|\vartheta|\}\int_0^1 p(s)ds+ |\vartheta|\sum_{i=1}^{n-2}\alpha_i \frac{\eta_i^q-\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}p(s) ds\Big]. $$ Next we show that $F$ maps bounded sets into equicontinuous sets of $ C([0,1], \mathbb{R})$. Let $t', t'' \in [0,1]$ with $t'< t''$ and $x \in B_r$, where $B_r$ is a bounded set of $C([0,1], \mathbb{R})$. Then we obtain \begin{align*} &|(Fx)(t'')-(Fx)(t')|\\ &= \Big| \frac{1}{\Gamma(q)}\int_0^{t''} (t''-s)^{q-1} f(s,x(s))ds -\frac{1}{\Gamma(q)}\int_0^{t'} (t'-s)^{q-1} f(s,x(s))ds \\ &\quad - \vartheta \Big((t'')^{m-1}-(t')^{m-1}\Big)\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f(s,x(s))ds\\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f(u,x(u))du\Big)ds\Big]\Big|\\ &\leq \Big| \frac{1}{\Gamma(q)}\int_0^{t'}[ (t''-s)^{q-1}-(t'-s)^{q-1}] \psi(r)p(s)ds\Big|\\ &\quad +\Big|\frac{1}{\Gamma(q)}\int_{t'}^{t''} (t''-s)^{q-1} \psi(r)p(s)ds\Big|\\ &\quad +\Big|\vartheta \Big((t'')^{m-1}-(t')^{m-1}\Big)\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} \psi(r)p(s)ds\\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} \psi(r)p(u)du\Big)ds\Big]\Big|. \end{align*} Obviously the right hand side of the above inequality tends to zero independently of $x \in B_{r'}$ as $t''- t' \to 0$. As $F$ satisfies the above assumptions, therefore it follows by the Arzel\'a-Ascoli theorem that $F: C([0,1], \mathbb{R}) \to C([0,1], \mathbb{R})$ is completely continuous. The result will follow from the Leray-Schauder nonlinear alternative (Lemma \ref{lls}) once we have proved the boundendness of the set of all solutions to equations $x=\lambda F x$ for $\lambda\in [0,1]$. Let $x$ be a solution. Then, for $t\in [0,1]$, and using the computations in proving that $F$ is bounded, we have \begin{align*} |x(t)| &= |\lambda (F x)(t)| \\ &\leq \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} |f(s,x(s))|ds+ |\vartheta| t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} |f(s,x(s))|ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} |f(u,x(u))|du\Big)ds\Big] \\ &\leq \frac{\psi(\|x\|)}{\Gamma(q)}\Big[\{1+|\vartheta|\}\int_0^1 p(s)ds+ |\vartheta|\sum_{i=1}^{n-2}\alpha_i \frac{\eta_i^q-\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}p(s) ds\Big]. \end{align*} Consequently, we have $$ \frac{\|x\|}{ \frac{\psi(\|x\|)}{\Gamma(q)}\big[\{1+|\vartheta|\}\int_0^1 p(s)ds+ |\vartheta|\sum_{i=1}^{n-2}\alpha_i \frac{\eta_i^q-\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}p(s) ds\big]}\le 1. $$ In view of (A4), there exists $M$ such that $\|x\| \ne M$. Let us set $$ U = \{x \in C([0,1], \mathbb{R}):\|x\| < M\}. $$ Note that the operator $F:\overline{U} \to C([0,1], \mathbb{R})$ is continuous and completely continuous. From the choice of $U$, there is no $x \in \partial U$ such that $x =\lambda F(x)$ for some $\lambda \in (0,1)$. Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma \ref{lls}), we deduce that $F$ has a fixed point $x \in \overline{U}$ which is a solution of the problem \eqref{e1}. This completes the proof. \end{proof} \subsection{Existence result via Leray-Schauder degree theory} \begin{theorem}\label{tlsd} Let $f: [0,1]\times \mathbb{R} \to \mathbb{R}$. Assume that there exist constants $0 \le \kappa < \frac{1}{\Lambda}$, where $\Lambda$ is given by \eqref{e302} and $M>0$ such that $|f(t,x)| \le \kappa \|x\| +M$ for all $t \in [0,1], x \in \mathbb{R}$. Then the boundary value problem \eqref{e1} has at least one solution. \end{theorem} \begin{proof} In view of the fixed point problem \eqref{e301}, we just need to prove the existence of at least one solution $x \in \mathbb{R}$ satisfying \eqref{e301}. Define a suitable ball $B_R \subset C[0,1]$ with radius $R>0$ as $$ B_R=\{x \in \mathcal{C} : \|x\|0$ with the property: $$ \|Fx-Fy\|\le \Psi(\|x-y\|), \quad \forall x,y\in E. $$ \end{definition} \begin{lemma}[Boyd and Wong \cite{BW}]\label{BW} Let $E$ be a Banach space and let $F: E\to E$ be a nonlinear contraction. Then $F$ has a unique fixed point in $E$. \end{lemma} \begin{theorem}\label{tnc} Assume that: \begin{itemize} \item[(A5)] $|f(t,x)-f(t,y)|\le h(t)\frac{|x-y|}{H^*+|x-y|}$, $t\in [0,1]$, $x,y\ge 0$, where $h:[0,1]\to \mathbb{R}^+$ is continuous and \begin{equation}\label{e3004} \begin{aligned} H^*&= \int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} h(s)ds + |\vartheta|\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} h(s)ds \\ &\quad +\sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} h(u)du \Big)ds\Big]. \end{aligned} \end{equation} \end{itemize} Then the boundary value problem \eqref{e1} has a unique solution. \end{theorem} \begin{proof} We define the operator $F: \mathcal{C}\to \mathcal{C}$ by \begin{align*} Fx(t) &= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f(s,x(s))ds + \vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f(s,x(s))ds \\ &\quad + \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f(u,x(u))du\Big)ds\Big], \quad t \in [0,1]. \end{align*} Let a continuous nondecreasing function $\Psi: \mathbb{R}^+\to \mathbb{R}^+$ satisfying $\Psi(0)=0$ and $\Psi(\xi)<\xi$ for all $\xi>0$ be defined by $$ \Psi(\xi)=\frac{H^*\xi}{H^*+\xi},\quad \forall \xi\ge 0. $$ Let $x, y\in \mathcal{C}$. Then $$ |f(s,x(s))-f(s,y(s))|\le \frac{h(s)}{H^*}\Psi(\|x-y\|) $$ so that \begin{align*} &|Fx(t)-Fy(t)| \\ &\leq \int_0^t \frac{(1-s)^{q-1}}{\Gamma(q)} h(s)\frac{|x(s)-y(s)|}{H^*+|x(s)-y(s)|}ds \\ &\quad + |\vartheta| \int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} h(s)\frac{|x(s)-y(s)|}{H^*+|x(s)-y(s)|}ds \\ &\quad + |\vartheta| \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} h(m)\frac{|x(m)-y(m)|}{H^*+|x(m)-y(m)|}dm \Big)ds, \end{align*} for $t \in [0,1]$. In view of \eqref{e3004}, it follows that $\|Fx-Fy\|\le \Psi(\|x-y\|)$ and hence $F$ is a nonlinear contraction. Thus, by Lemma \ref{BW}, the operator $F$ has a unique fixed point in $\mathcal{C}$, which in turn is a unique solution of problem \eqref{e1}. \end{proof} \subsection{Examples} For the forthcoming examples, we consider the following boundary conditions: \begin{equation}\label{bc} x(0)=0, \quad x'(0)=0, \quad x''(0)=0, \quad x(1)=\sum_{i=1}^{3}\alpha_i \int^{\eta_i}_{\zeta_i} x(s)ds, \end{equation} where $\zeta_1=1/16$, $\zeta_2=5/16$, $\zeta_3=9/16$, $\eta_1=1/4$, $\eta_2=1/2$, $\eta_3=3/4$, $\alpha_1=1/3$, $\alpha_2=2/3$, $\alpha_3=1$. \begin{example} \label{examp3.10}\rm Consider the fractional differential equation \begin{equation}\label{ex1} ^cD^{7/2}x(t) =L\big( \cos t +\tan^{-1}x(t)\big), \quad 0 0$, there exists $\varphi_{\alpha} \in L^1([0,1],\mathbb{R}^+)$ such that $$ \|F (t, x)\| = \sup \{|v| : v \in F (t, x)\} \le \varphi_{\alpha} (t) $$ for all $\|x\| \le \alpha$ and for a. e. $t \in [0,1]$. \end{itemize} \end{definition} For each $y \in C([0,1], \mathbb{R})$, define the set of selections of $F$ by $$ S_{F,y} := \{ v \in L^1([0,1],\mathbb{R}) : v (t) \in F (t, y(t)) ~\text{for a.e.} ~t \in [0,1]\}. $$ The consideration of this subsection is based on the following lemmas. \begin{lemma}[Nonlinear alternative for Kakutani maps \cite{GrDu}] \label{NAK} Let $E$ be a Banach space, $C$ a closed convex subset of $E$, $U$ an open subset of $C$ and $0\in U$. Suppose that $F: \overline{U}\to \mathcal{P}_{c,cv}(C)$ is a upper semicontinuous compact map; here $\mathcal{P}_{c,cv}(C)$ denotes the family of nonempty, compact convex subsets of $C$. Then either \begin{itemize} \item[(i)] $F$ has a fixed point in $\overline{U}$, or \item[(ii)] there is a $u\in \partial U$ and $\lambda\in(0,1)$ with $u\in \lambda F(u)$. \end{itemize} \end{lemma} \begin{lemma}[\cite{LaOp}] \label{l1i} Let $X$ be a Banach space. Let $F : [0, 1] \times \mathbb{R} \to \mathcal{P}_{cp,c}(\mathbb{R})$ be an $L^1-$ Carath\'{e}odory multivalued map and let $\Theta$ be a linear continuous mapping from $L^1([0,1],\mathbb{R})$ to $C([0,1],\mathbb{R})$. Then the operator $$ \Theta \circ S_F : C([0,1],\mathbb{R}) \to P_{cp,c} (C([0,1],\mathbb{R})), \quad x \mapsto (\Theta \circ S_F) (x) = \Theta( S_{F,x}) $$ is a closed graph operator in $C([0,1],\mathbb{R}) \times C([0,1],\mathbb{R})$. \end{lemma} \begin{theorem}\label{tcar} Assume that {\rm (A4)} holds. In addition we assume that: \begin{itemize} \item[(H1)] $F : [0,1] \times \mathbb{R} \to {\mathcal{P}}(\mathbb{R})$ is Carath\'{e}odory and has nonempty compact convex values; \item[(H2)] there exists a continuous nondecreasing function $\psi : [0,\infty) \to (0,\infty)$ and a function $p \in L^1([0,1],\mathbb{R}^+)$ such that $$ \|F(t,x)\|_\mathcal{P}:=\sup\{|y|: y \in F(t,x)\}\le p(t)\psi(\|x\|) \quad \text{for each} ~(t,x) \in [0,1] \times \mathbb{R}. $$ \end{itemize} Then the boundary value problem \eqref{e1i} has at least one solution on $[0,1]$. \end{theorem} \begin{proof} Define an operator $\Omega: C([0,1], \mathbb{R})\to \mathcal{P}(C([0,1], \mathbb{R}))$ by \begin{align*} &\Omega(x)\\ &=\Big\{ h \in C([0,1], \mathbb{R}): h(t) = \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f(s)ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f(u)du\Big)ds\Big], \; 0\le t\le 1 \Big\}, \end{align*} for $f \in S_{F,x}$. We will show that $\Omega$ satisfies the assumptions of the nonlinear alternative of Leray-Schauder type. The proof consists of several steps. As a first step, we show that $\Omega$ is convex for each $x \in C([0,1], \mathbb{R})$. For that, let $h_1, h_2 \in \Omega(x)$. Then there exist $f_1, f_2 \in S_{F,x}$ such that for each $t \in [0,1]$, we have \begin{align*} h_i(t) &= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f_i(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f_i(s)ds\\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f_i(u)du\Big)ds\Big], \quad i=1,2. \end{align*} Let $0 \le \omega \le 1$. Then, for each $t \in [0,1]$, we have \begin{align*} &[\omega h_1+(1-\omega)h_2](t)\\ &= \int_0^t \frac{(t-s)^{q-1} }{\Gamma(q)} [\omega f_1(s)+(1-\omega)f_2(s)]ds\\ &\quad -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} [\omega f_1(s)+(1-\omega)f_2(s)]ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} [\omega f_1(s)+(1-\omega)f_2(s)]du\Big)ds\Big]. \end{align*} Since $S_{F,x}$ is convex ($F$ has convex values), therefore it follows that $\omega h_1+(1-\omega)h_2 \in \Omega(x)$. Next, we show that $\Omega$ maps bounded sets into bounded sets in $ C([0,1], \mathbb{R})$. For a positive number $r$, let $B_r = \{x\in C([0,1], \mathbb{R}): \|x\| \le r \}$ be a bounded set in $C([0,1], \mathbb{R})$. Then, for each $h \in \Omega (x), x \in B_r$, there exists $f \in S_{F,x}$ such that \begin{align*} h(t)&= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f(s)ds\\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f(u)du\Big)ds\Big]. \end{align*} Then, as in Theorem \ref{tls}, \begin{align*} |h(t)| &\leq \int_0^t \frac{(t-s)^{q-1} }{\Gamma(q)} |f(s)|ds +|\vartheta| t^{m-1}\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} |f(s)|ds \\ &\quad + |\vartheta| t^{m-1} \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} |f(u)|du\Big)ds\\ &\leq \frac{\psi(\|x\|)}{\Gamma(q)}\Big[\{1+|\vartheta|\}\int_0^1 p(s)ds+ |\vartheta| \sum_{i=1}^{n-2}\alpha_i \frac{\eta_i^q-\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}p(s) ds\Big]. \end{align*} Thus, $$ \|h\| \le \frac{\psi(r)}{\Gamma(q)}\Big[\{1+|\vartheta|\}\int_0^1 p(s)ds+ |\vartheta| \sum_{i=1}^{n-2}\alpha_i \frac{\eta_1^q-\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}p(s) ds\Big]. $$ Now we show that $\Omega$ maps bounded sets into equicontinuous sets of $ C([0,1], \mathbb{R})$. Let $t', t'' \in [0,1]$ with $t'< t''$ and $x \in B_r$, where $B_r$ is a bounded set of $C([0,1], \mathbb{R})$. For each $h \in \Omega(x)$, we obtain \begin{align*} |h(t'')-h(t')| &= \Big| \frac{1}{\Gamma(q)}\int_0^{t''} (t''-s)^{q-1} f(s)ds -\frac{1}{\Gamma(q)}\int_0^{t'} (t'-s)^{q-1} f(s)ds \\ &\quad - \vartheta \Big((t'')^{m-1}-(t')^{m-1}\Big) \Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f(s)ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f(u)du\Big)ds\Big]\Big| \\ &\leq \Big| \frac{1}{\Gamma(q)}\int_0^{t'}[ (t''-s)^{q-1}-(t'-s)^{q-1}] \psi(r)p(s)ds\Big|\\ &\quad +\Big|\frac{1}{\Gamma(q)}\int_{t'}^{t''} (t''-s)^{q-1} \psi(r)p(s)ds\Big|\\ &\quad +\Big|\vartheta \Big((t'')^{m-1}-(t')^{m-1}\Big)\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} \psi(r)p(s)ds\\ &\quad \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} \psi(r)p(u)du\Big)ds\Big]\Big|. \end{align*} Obviously the right hand side of the above inequality tends to zero independently of $x \in B_{r'}$ as $t''- t' \to 0$. As $\Omega$ satisfies the above three assumptions, therefore it follows by the Arzel\'a-Ascoli theorem that $\Omega: C([0,1], \mathbb{R}) \to {\mathcal{P}}(C([0,1], \mathbb{R}))$ is completely continuous. \\ In our next step, we show that $\Omega$ has a closed graph. Let $x_n \to x_*, h_n \in \Omega (x_n)$ and $h_n \to h_*$. Then we need to show that $h_* \in \Omega (x_*)$. Associated with $h_n \in \Omega(x_n)$, there exists $f_n \in S_{F,x_n}$ such that for each $t \in [0,1]$, \begin{align*} h_n(t) &= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f_n(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f_n(s)ds\\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f_n(u)du\Big)ds\Big]. \end{align*} Thus we have to show that there exists $f_* \in S_{F,x_*}$ such that for each $t \in [0,1]$, \begin{align*} h_*(t) &= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f_*(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f_*(s)ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f_*(u)du\Big)ds\Big]. \end{align*} Let us consider the continuous linear operator $\Theta : L^1([0,1], \mathbb{R}) \to C([0,1], \mathbb{R})$ given by \begin{align*} f \mapsto \Theta(f) &= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f(s)ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f(u)du\Big)ds\Big]. \end{align*} Observe that \begin{align*} &\| h_n(t)-h_*(t)\|\\ &= \Big\| \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)}(f_n(s)-f_*(s))ds - \vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} (f_n(s)-f_*(s))ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} (f_n(u)-f_*(u))du\Big)ds\Big]\Big\|\to 0, \end{align*} as $n \to \infty$. Thus, it follows by Lemma \ref{l1i} that $\Theta \circ S_F$ is a closed graph operator. Further, we have $h_n(t) \in \Theta(S_{F,x_n})$. Since $x_n \to x_*$, therefore, we have \begin{align*} h_*(t) &= \int_0^t \frac{ (t-s)^{q-1}}{\Gamma(q)} f_*(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f_*(s)ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f_*(u)du\Big)ds\Big], \end{align*} for some $f_* \in S_{F,x_*}$. Finally, we discuss a priori bounds on solutions. Let $x$ be a solution of \eqref{e1i}. Then there exists $f \in L^1([0,1], \mathbb{R})$ with $f \in S_{F,x}$ such that, for $t \in [0,1]$, we have \begin{align*} x(t)&= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} f(s)ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} f(u)du\Big)ds\Big]. \end{align*} In view of (H2), and using the computations in second step above, for each $t \in [0,1]$, we obtain \begin{align*} |x(t)|&\leq \int_0^t \frac{(t-s)^{q-1} }{\Gamma(q)} |f(s)|ds +|\vartheta| t^{m-1}\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} |f(s)|ds \\ &\quad + |\vartheta| t^{m-1} \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} |f(u)|du\Big)ds\\ &\leq \frac{\psi(\|x\|)}{\Gamma(q)}\Big[\{1+|\vartheta|\}\int_0^1 p(s)ds+ |\vartheta|\sum_{i=1}^{n-2}\alpha_i \frac{\eta_i^q-\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}p(s) ds\Big]. \end{align*} Consequently, $$ \frac{\|x\|}{ \frac{\psi(\|x\|)}{\Gamma(q)}\big[\{1+|\vartheta|\}\int_0^1 p(s)ds+ |\vartheta|\sum_{i=1}^{n-2}\alpha_i \frac{\eta_1^q-\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}p(s) ds\big]}\le 1. $$ In view of (A4), there exists $M$ such that $\|x\| \ne M$. Let us set $$ U = \{x \in C([0,1], \mathbb{R}) : \|x\| < M\}. $$ Note that the operator $\Omega :\overline{U} \to \mathcal{P}(C([0,1], \mathbb{R}))$ is upper semicontinuous and completely continuous. From the choice of $U$, there is no $x \in \partial U$ such that $x \in \mu \Omega(x)$ for some $\mu \in (0,1)$. Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma \ref{NAK}), we deduce that $\Omega$ has a fixed point $x \in \overline{U}$ which is a solution of the problem \eqref{e1i}. This completes the proof. \end{proof} \subsection{The lower semi-continuous case} Here, we study the case when $F$ is not necessarily convex valued. Our strategy to deal with this problems is based on the nonlinear alternative of Leray Schauder type together with the selection theorem of Bressan and Colombo \cite{BrCo} for lower semi-continuous maps with decomposable values. \begin{definition} \label{def4.9} \rm Let $X$ be a nonempty closed subset of a Banach space $E$ and $G: X \to {\mathcal{P}}(E)$ be a multivalued operator with nonempty closed values. $G$ is lower semi-continuous (l.s.c.) if the set $\{y \in X : G(y)\cap B \ne \emptyset\}$ is open for any open set $B$ in $E$. \end{definition} \begin{definition} \label{def4.10} \rm Let $A$ be a subset of $[0,1]\times \mathbb{R}$. $A$ is $\mathcal{L}\otimes \mathcal{B}$ measurable if $A$ belongs to the $\sigma-$algebra generated by all sets of the form $\mathcal{J} \times \mathcal{D}$, where $\mathcal{J}$ is Lebesgue measurable in $[0,1]$ and $\mathcal{D}$ is Borel measurable in $\mathbb{R}$. \end{definition} \begin{definition} \label{def4.11} \rm A subset $\mathcal{A}$ of $L^1([0,1], \mathbb{R})$ is decomposable if for all $x, y \in \mathcal{A}$ and measurable $\mathcal{J} \subset [0,1]=J$, the function $x \chi_{\mathcal{J}}+y \chi_{J-\mathcal{J}} \in \mathcal{A}$, where $\chi_{\mathcal{J}}$ stands for the characteristic function of $\mathcal{J}$. \end{definition} \begin{definition} \label{def4.12} \rm Let $Y$ be a separable metric space and $N : Y \to {\mathcal{P}}(L^1([0,1],\mathbb{R}))$ be a multivalued operator. We say $N$ has a property (BC) if $N$ is lower semi-continuous (l.s.c.) and has nonempty closed and decomposable values. \end{definition} Let $F : [0,1] \times \mathbb{R} \to {\mathcal{P}}(\mathbb{R})$ be a multivalued map with nonempty compact values. Define a multivalued operator $\mathcal{F} : C([0,1] \times \mathbb{R}) \to {\mathcal{P}}(L^1([0,1],\mathbb{R}))$ associated with $F$ as $$ \mathcal{F}(x)=\{w \in L^1([0,1],\mathbb{R}) : w(t) \in F(t,x(t)) \text{ for a.e. } t \in [0,1]\}, $$ which is called the Nemytskii operator associated with $F$. \begin{definition} \label{def4.13} \rm Let $F : [0,1] \times \mathbb{R} \to {\mathcal{P}}(\mathbb{R})$ be a multivalued function with nonempty compact values. We say $F$ is of lower semi-continuous type (l.s.c. type) if its associated Nemytskii operator $\mathcal{F }$ is lower semi-continuous and has nonempty closed and decomposable values. \end{definition} \begin{lemma}[\cite{BrCo}] \label{l2i} Let $Y$ be a separable metric space and $N : Y \to {\mathcal{P}}(L^1([0,1],\mathbb{R}))$ be a multivalued operator satisfying the property (BC). Then $N$ has a continuous selection, that is, there exists a continuous function (single-valued) $g : Y \to L^1([0,1],\mathbb{R})$ such that $g(x) \in N(x)$ for every $x \in Y$. \end{lemma} \begin{theorem}\label{tbc} Assume that {\rm (H2), (H3)} and the following condition holds: \begin{itemize} \item[(H4)] $F : [0,1] \times \mathbb{R} \to {\mathcal{P}}(\mathbb{R})$ is a nonempty compact-valued multivalued map such that \begin{itemize} \item[(a)] $(t,x) \mapsto F(t,x)$ is $\mathcal{L}\otimes \mathcal{B}$ measurable, \item[(b)] $ x \mapsto F(t,x)$ is lower semicontinuous for each $t \in [0,1]$. \end{itemize} \end{itemize} Then the boundary value problem \eqref{e1i} has at least one solution on $[0,1]$. \end{theorem} \begin{proof} It follows from (H2) and (H4) that $F$ is of l.s.c. type. Then, by Lemma \ref{l2i}, there exists a continuous function $f : C([0,1],\mathbb{R}) \to L^1([0,1],\mathbb{R})$ such that $f (x) \in \mathcal{F}(x)$ for all $x \in C([0,1],\mathbb{R})$. Consider the problem \begin{equation}\label{et2i} \begin{gathered} ^cD^qx(t)= f(x(t)), \quad 0 0$ such that $$ H_d(N(x),N(y)) \le \gamma d(x,y) \text{ for each } x, y \in X; $$ \item[(b)] a contraction if and only if it is $\gamma$-Lipschitz with $\gamma < 1$. \end{itemize} \end{definition} \begin{lemma}[Covitz-Nadler, \cite{CoNa}] \label{l3i} Let $(X,d)$ be a complete metric space. If $N : X \to P_{cl}(X)$ is a contraction, then ${\rm Fix }N \ne \emptyset $. \end{lemma} \begin{definition} A measurable multi-valued function $F:[0,1]\to \mathcal{P}(X)$ is said to be integrably bounded if there exists a function $h\in L^1([0,1], X)$ such that for all $v\in F(t)$, $\|v\|\le h(t)$ for a.e. $t\in [0,1]$. \end{definition} \begin{theorem}\label{tcn} Assume that the following conditions hold: \begin{itemize} \item[(H5)] $F : [0,1] \times \mathbb{R} \to P_{cp}(\mathbb{R})$ is such that $F(\cdot,x) : [0,1] \to P_{cp}(\mathbb{R})$ is measurable for each $x \in \mathbb{R}$; \item[(H6)] $H_d(F(t,x), F(t,\bar{x}))\le m(t)|x-\bar{x}|$ for almost all $t \in [0,1]$ and $x, \bar{x} \in \mathbb{R}$ with $m \in L^1([0,1], \mathbb{R}^+)$ and $d(0,F(t,0))\le m(t)$ for almost all $t \in [0,1]$. \end{itemize} Then the boundary-value problem \eqref{e1i} has at least one solution on $[0,1]$ if $$ \frac{1}{\Gamma(q)}\Big[\{1+|\vartheta|\}\int_0^1 m(s)ds+ |\vartheta| \sum_{i=1}^{n-2}\alpha_i \frac{\eta_1^q-\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}m(s) ds\Big] <1. $$ \end{theorem} \begin{proof} We transform the problem \eqref{e1i} into a fixed point problem. Consider the set-valued map $\Omega: C([0,1], \mathbb{R})\to \mathcal{P}(C([0,1], \mathbb{R}))$ defined at the beginning of the proof of Theorem \ref{tcar}. It is clear that the fixed point of $\Omega$ are solutions of the problem \eqref{e1i}. Note that, by the assumption (H5), since the set-valued map $F(\cdot, x)$ is measurable, it admits a measurable selection $f: [0,1]\to \mathbb{R}$ (see \cite[Theorem III.6]{CaVa}). Moreover, from assumption (H6) $$ |f(t)|\le m(t)+m(t)|x(t)|, $$ i.e. $f(\cdot)\in L^1([0,1], \mathbb{R})$. Therefore the set $S_{F,x}$ is nonempty. Also note that since $S_{F,x}\ne \emptyset$, therefore $\Omega(x)\ne \emptyset$ for any $x\in C([0,1],\mathbb{R})$. Now we show that the operator $\Omega$ satisfies the assumptions of Lemma \ref{l3i}. To show that $\Omega(x) \in P_{cl}((C[0,1],\mathbb{R}))$ for each $x \in C([0,1], \mathbb{R})$, let $\{u_n\}_{n \ge 0} \in \Omega(x)$ be such that $u_n \to u ~(n \to \infty)$ in $C([0,1],\mathbb{R})$. Then $u \in C([0,1],\mathbb{R})$ and there exists $v_n \in S_{F,x}$ such that, for each $t \in [0,1]$, we have \begin{align*} u_n(t) &= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} v_n(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} v_n(s)ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} v_n(u)du\Big)ds\Big]. \end{align*} As $F$ has compact values, we may pass onto a subsequence (if necessary) to obtain that $v_n$ converges to $v$ in $L^1 ([0,1],\mathbb{R})$. Thus, $v \in S_{F,x}$ and for each $t \in [0,1]$, \begin{align*} u_n(t) \to u(t) &= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} v(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} v(s)ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} v(u)du\Big)ds\Big]. \end{align*} Hence, $u \in \Omega(x)$ and $\Omega(x)$ is closed. Next we show that $\Omega$ is a contraction on $C([0,1],\mathbb{R})$; i.e., there exists $\gamma <1$ such that $$ H_d(\Omega(x), \Omega(\bar{x}))\le \gamma \|x-\bar{x}\|_{\infty} \quad \text{for each} \quad x, \bar{x} \in C([0,1], \mathbb{R}). $$ Let $x, \bar{x} \in C([0,1], \mathbb{R})$ and $h_1 \in \Omega(x)$. Then there exists $v_1(t) \in F(t,x(t))$ such that, for each $t \in [0,1]$, \begin{align*} h_1(t) &= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} v_1(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} v_1(s)ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} v_1(u)du\Big)ds\Big]. \end{align*} By (H6), we have $$ H_d(F(t,x), F(t,\bar{x}))\le m(t)|x(t)-\bar{x}(t)|. $$ So, there exists $w \in F(t,\bar{x}(t))$ such that $$ |v_1(t)-w|\le m(t)|x(t)-\bar{x}(t)|, \quad t \in [0,1]. $$ Define $U : [0,1] \to \mathcal{P}(\mathbb{R})$ by $$ U(t)=\{w \in \mathbb{R} : |v_1(t)-w|\le m(t)|x(t)-\bar{x}(t)|\}. $$ Since the multivalued operator $U(t)\cap F(t,\bar{x}(t))$ is measurable (\cite[Proposition III.4]{CaVa}), there exists a function $v_2(t)$ which is a measurable selection for $U$. So $v_2(t) \in F(t,\bar{x}(t))$ and for each $t \in [0,1]$, we have $|v_1(t)-v_2(t)|\le m(t)|x(t)-\bar{x}(t)|$. For each $t \in [0,1]$, let us define \begin{align*} h_2(t) &= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} v_2(s)ds -\vartheta t^{m-1}\Big[\int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} v_2(s)ds \\ &\quad - \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} v_2(u)du\Big)ds\Big]. \end{align*} Thus, \begin{align*} | h_1(t)-h_2(t)| &\leq \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} |v_1(s)-v_2(s)|ds\\ &\quad +|\vartheta| t^{m-1} \int_0^1 \frac{(1-s)^{q-1}}{\Gamma(q)} |v_1(s)-v_2(s)|ds \\ &\quad +|\vartheta| t^{m-1} \sum_{i=1}^{n-2}\alpha_i\int_{\zeta_i}^{\eta_i}\Big(\int_0^s \frac{(s-u)^{q-1}}{\Gamma(q)} |v_1(u)-v_2(u)|du\Big)ds \\ &\leq \frac{\|x-\overline{x}\|}{\Gamma(q)} \Big[\{1+|\vartheta|\}\int_0^1 m(s)ds+ |\vartheta| \sum_{i=1}^{n-2}\alpha_i \frac{\eta_i^q-\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}m(s) ds\Big]. \end{align*} Hence, \begin{align*} \| h_1-h_2\| \le \frac{1}{\Gamma(q)}\Big[\{1+|\vartheta|\}\int_0^1 m(s)ds+ |\vartheta| \sum_{i=1}^{n-2}\alpha_i \frac{\eta_i^q -\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}m(s) ds\Big]\|x-\overline{x}\|. \end{align*} Analogously, interchanging the roles of $x$ and $\overline{x}$, we obtain \begin{align*} & H_d(\Omega(x), \Omega(\bar{x})) \\ &\leq \gamma \|x-\bar{x}\|\\ &\leq \frac{1}{\Gamma(q)}\Big[\{1+|\vartheta|\}\int_0^1 m(s)ds+ |\vartheta| \sum_{i=1}^{n-2}\alpha_i \frac{\eta_i^q -\zeta_i^q}{q}\int_{\zeta_i}^{\eta_i}m(s) ds\Big]\|x-\overline{x}\|. \end{align*} Since $\Omega$ is a contraction, it follows by Lemma \ref{l3i} that $\Omega$ has a fixed point $x$ which is a solution of \eqref{e1i}. This completes the proof. \end{proof} \subsection{Example} \begin{example} \rm Consider the strip fractional boundary value problem \begin{equation}\label{ex4} \begin{gathered} ^cD^{7/2}x(t) \in F(t,x(t)), \quad 0 1, $$ we find that $ M > 5.6427$. Clearly, all the conditions of Theorem \ref{tcar} are satisfied. So there exists at least one solution of the problem \eqref{ex4} on $[0,1]$. \begin{thebibliography}{99} \bibitem{r1} R. P. Agarwal, B. Andrade, C. Cuevas; Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations, \emph{Nonlinear Anal. Real World Appl.} \textbf{11} (2010), 3532-3554. \bibitem{r2} R. P. Agarwal, Y. Zhou, Y. He; Existence of fractional neutral functional differential equations, \emph{Comput. Math. Appl.} \textbf{59} (2010), 1095-1100. \bibitem{t1} A. Aghajani, Y. Jalilian, J. J. Trujillo; On the existence of solutions of fractional integro-differential equations. \emph{Fract. Calc. Appl. Anal.} \textbf{15}, No 2 (2012), 44-69. \bibitem{n1} B. Ahmad, S. Sivasundaram; On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, \emph{Appl. Math. Comput.} \textbf{217} (2010), 480-487. \bibitem{n2} B. Ahmad, J. J. Nieto; Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, \emph{Comput. Math. Appl.} \textbf{58} (2009) 1838-1843. \bibitem{b1} B. Ahmad, A. Alsaedi, B. Alghamdi; Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, \emph{Nonlinear Anal. Real World Appl.} \textbf{9} (2008), 1727-1740. \bibitem{b2} B. Ahmad, T. Hayat, S. Asghar; Diffraction of a plane wave by an elastic knife-edge adjacent to a strip, \emph{ Canad. App. Math. Quart.} 9(2001) 303-316. \bibitem{n5} B. Ahmad, S. K. Ntouyas, A. Alsaedi; New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, \emph{Adv. Differ. Equ.} (2011) Art. ID 107384, 11 pages. \bibitem{n6} B. Ahmad, S. K. Ntouyas; A four-point integral boundary value problem for fractional differential equations of arbitrary order, \emph{E. J. Qualitative Theory of Diff. Equ.} \textbf{No. 22} (2011), 15 pages. \bibitem{n3} B. Ahmad and R.P. Agarwal; On nonlocal fractional boundary value problems, {\it Dynam. Contin. Discrete Impuls. Systems} \textbf{ 18}, No 4 (2011), 535-544. \bibitem{n4} B. Ahmad, J. J. Nieto; Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions, \emph{Bound. Value Probl.} \textbf{2011:36}, (2011), 9 pages. \bibitem{b3} B. Ahmad and S. K. Ntouyas; A note on fractional differential equations with fractional separated boundary conditions, {\it Abstr. Appl. Anal. 2012, Article ID 818703, 11 pages}. \bibitem{b4} S. Asghar, B. Ahmad, M. Ayub; Diffraction from an absorbing half plane due to a finite cylindrical source, \emph{Acustica-Acta Acustica} \textbf{ 82} (1996), 365-367. \bibitem{n7} Z. B. Bai; On positive solutions of a nonlocal fractional boundary value problem, \emph{Nonlinear Anal.} \textbf{72} (2010), 916-924. \bibitem{t2} K. Balachandran, J. J. Trujillo; The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, \emph{Nonlinear Anal.} \textbf{72} (2010) 4587-4593. \bibitem{d1} D. Baleanu, O. G. Mustafa, R .P. Agarwal; An existence result for a superlinear fractional differential equation, \emph{Appl. Math. Lett.} \textbf{23} (2010), 1129-1132. \bibitem{d2} D. Baleanu, K. Diethelm, E. Scalas, J. J.Trujillo; \emph{Fractional calculus models and numerical methods. Series on Complexity, Nonlinearity and Chaos}, World Scientific, Boston, 2012. \bibitem{ch1} A. Boucherif; Second-order boundary value problems with integral boundary conditions, \emph{Nonlinear Anal.} \textbf{70} (2009), 364-371. \bibitem{BW} D. W. Boyd, J. S. W. Wong; On nonlinear contractions, \emph{Proc. Amer. Math. Soc.} \textbf{20} (1969), 458-464. \bibitem{BrCo} A. Bressan, G. Colombo; Extensions and selections of maps with decomposable values, \emph{Studia Math.} \textbf{90} (1988), 69-86. \bibitem{CaVa} C. Castaing, M. Valadier; \emph{Convex Analysis and Measurable Multifunctions}, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. \bibitem{CoNa} H. Covitz, S. B. Nadler Jr.; Multivalued contraction mappings in generalized metric spaces, \emph{Israel J. Math.} \textbf{8} (1970), 5-11. \bibitem{GrDu} A. Granas, J. Dugundji; \emph{Fixed Point Theory}, Springer-Verlag, New York, 2003. \bibitem{Ki} M. Kisielewicz; \emph{Differential Inclusions and Optimal Control}, Kluwer, Dordrecht, The Netherlands, 1991. \bibitem{Kil} A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; \emph{Theory and Applications of Fractional Differential Equations}, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. \bibitem{MAK} M.A. Krasnoselskii; Two remarks on the method of successive approximations, \emph{Uspekhi Mat. Nauk} \textbf{10} (1955), 123-127. \bibitem{LaOp} A. Lasota, Z. Opial; An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, \emph{Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.} \textbf{13} (1965), 781-786. \bibitem{Pod} I. Podlubny; \emph{Fractional Differential Equations}, Academic Press, San Diego, 1999. \bibitem{Sag} J. Sabatier, O. P. Agrawal, J. A. T. Machado (Eds.); \emph{Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering}, Springer, Dordrecht, 2007. \bibitem{SKM} S.G. Samko, A. A. Kilbas, O. I. Marichev; \emph{Fractional Integrals and Derivatives, Theory and Applications}, Gordon and Breach, Yverdon, 1993. \bibitem{n8} C. Yuan, D. Jiang, D. O'Regan, R. P. Agarwal; Multiple positive solutions to systems of nonlinear semipositone fractional differential equations with coupled boundary conditions, \emph{E. J. Qualitative Theory of Diff. Equ.} \textbf{No. 13} (2012), pp. 1-17 \end{thebibliography} \end{document}