\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 03, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/03\hfil Gaussian functions] {An approximation property of Gaussian functions} \author[S.-M. Jung, H. \c{S}evli, S. \c{S}evgin \hfil EJDE-2013/03\hfilneg] {Soon-Mo Jung, Hamdullah \c{S}evli, Sebaheddin \c{S}evgin} % in alphabetical order \address{Soon-Mo Jung (corresponding author)\newline Mathematics Section, College of Science and Technology, Hongik University, 339-701 Jochiwon, South Korea} \email{smjung@hongik.ac.kr} \address{Hamdullah \c{S}evli \newline Department of Mathematics, Faculty of Sciences and Arts, Istanbul Commerce University, 34672 Uskudar, Istanbul, Turkey} \email{hsevli@yahoo.com} \address{Sebaheddin \c{S}evgin \newline Department of Mathematics, Faculty of Art and Science, Yuzuncu Yil University, 65080 Van, Turkey} \email{ssevgin@yahoo.com} \thanks{Submitted October 5, 2012. Published January 7, 2013.} \subjclass[2000]{34A30, 34A40, 41A30, 39B82, 34A25} \keywords{Linear first order differential equation; power series method; \hfill\break\indent Gaussian function; approximation; Hyers-Ulam stability; local Hyers-Ulam stability} \begin{abstract} Using the power series method, we solve the inhomogeneous linear first order differential equation $$ y'(x) + \lambda (x-\mu) y(x) = \sum_{m=0}^\infty a_m (x-\mu)^m, $$ and prove an approximation property of Gaussian functions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Let $Y$ and $I$ be a normed space and an open subinterval of $\mathbb{R}$, respectively. If for any function $f : I \to Y$ satisfying the differential inequality $$ \big\| a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x) + h(x) \big\| \leq \varepsilon $$ for all $x \in I$ and for some $\varepsilon \geq 0$, there exists a solution $f_0 : I \to Y$ of the differential equation $$ a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x) + h(x) = 0 $$ such that $\| f(x) - f_0(x) \| \leq K(\varepsilon)$ for any $x \in I$, where $K(\varepsilon)$ depends on $\varepsilon$ only, then we say that the above differential equation satisfies the Hyers-Ulam stability (or the local Hyers-Ulam stability if the domain $I$ is not the whole space $\mathbb{R}$). We may apply these terminologies for other differential equations. For a more detailed definition of the Hyers-Ulam stability, refer to \cite{czerwik0,hir,jung2}. Ob\a{l}oza seems to be the first author who investigated the Hyers-Ulam stability of linear differential equations (see \cite{ob1,ob2}). Here, we introduce a result of Alsina and Ger (see \cite{ag}): If a differentiable function $f : I \to \mathbb{R}$ is a solution of the differential inequality $| y'(x) - y(x) | \leq \varepsilon$, where $I$ is an open subinterval of $\mathbb{R}$, then there exists a solution $f_0 : I \to \mathbb{R}$ of the differential equation $y'(x) = y(x)$ such that $| f(x) - f_0(x) | \leq 3\varepsilon$ for any $x \in I$. This result of Alsina and Ger was generalized by Takahasi, Miura and Miyajima: They proved in \cite{tmm} that the Hyers-Ulam stability holds for the Banach space valued differential equation $y'(x) = \lambda y(x)$ (see also \cite{mjt,motn,popa}). Using the conventional power series method, the first author investigated the general solution of the inhomogeneous linear first order differential equations of the form, $$ y'(x) - \lambda y(x) = \sum_{m=0}^\infty a_m (x-c)^m, $$ where $\lambda$ is a complex number and the convergence radius of the power series is positive. This result was applied for proving an approximation property of exponential functions in a neighborhood of $c$ (see \cite{115}). Throughout this paper, we assume that $\rho$ is a positive real number or infinity. In \S 2 of this paper, using an idea from \cite{115}, we will investigate the general solution of the inhomogeneous linear differential equation of the first order, \begin{equation} y'(x) + \lambda (x-\mu) y(x) = \sum_{m=0}^{\infty} a_m (x-\mu)^m, \label{eq:1.1} \end{equation} where the coefficients $a_m$ of the power series are given such that the radius of convergence is at least $\rho$. Moreover, we prove the (local) Hyers-Ulam stability of linear first order differential equation \eqref{eq:2.1} in a class of special analytic functions. \section{General Solution of \eqref{eq:1.1}} The linear first order differential equation \begin{equation} y'(x) + \lambda (x-\mu) y(x) = 0 \label{eq:2.1} \end{equation} has a general solution of the form $y(x) = c \exp\big\{ -\frac{\lambda}{2}(x-\mu)^2 \}$, which is called a Gaussian function. We recall that $\rho$ is a positive real number or infinity. \begin{theorem}\label{thm:2.1} Let $\lambda \neq 0$ and $\mu$ be a complex number and a real number, respectively. Assume that the radius of convergence of power series $\sum_{m=0}^\infty a_m (x-\mu)^m$ is at least $\rho$. Every solution $y : (\mu-\rho, \mu+\rho) \to \mathbb{C}$ of the inhomogeneous differential equation \eqref{eq:1.1} can be expressed as \begin{equation} y(x) = y_h(x) + \sum_{m=0}^\infty c_m (x-\mu)^m, \label{eq:2.2} \end{equation} where the coefficients $c_m$ are given by \begin{gather} c_{2m} = \sum_{i=0}^{m-1} (-1)^i \frac{a_{2m-1-2i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{2m-2k} + (-1)^m c_0 \prod_{k=0}^{m-1} \frac{\lambda}{2m-2k}, \label{eq:2.3a} \\ c_{2m+1} = \sum_{i=0}^{m-1} (-1)^i \frac{a_{2m-2i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{2m+1-2k} + (-1)^m c_1 \prod_{k=0}^{m-1} \frac{\lambda}{2m+1-2k} \label{eq:2.3b} \end{gather} for each $m \in \mathbb{N}_0$, and $y_h(x)$ is a solution of the corresponding homogeneous differential equation \eqref{eq:2.1}. \end{theorem} \begin{proof} Since each solution of \eqref{eq:1.1} can be expressed as a power series in $x-\mu$, we put $y(x) = \sum_{m=0}^\infty c_m (x-\mu)^m$ in \eqref{eq:1.1} to obtain \begin{align*} y'(x) + \lambda (x-\mu) y(x) &= c_1 + \sum_{m=0}^\infty (m+2) c_{m+2} (x-\mu)^{m+1} + \sum_{m=0}^\infty \lambda c_m (x-\mu)^{m+1} \\ &= c_1 + \sum_{m=0}^\infty \big[ (m+2) c_{m+2} + \lambda c_m \big] (x-\mu)^{m+1} \\ &= a_0 + \sum_{m=0}^\infty a_{m+1} (x-\mu)^{m+1}, \end{align*} from which we obtain the following recurrence formula \begin{equation} \begin{gathered} c_1 = a_0, \\ (m+2) c_{m+2} + \lambda c_m = a_{m+1} \quad (m \in \mathbb{N}_0). \end{gathered} \label{eq:rec} \end{equation} We will now prove the formula \eqref{eq:2.3a} for any $m \in \mathbb{N}_0$: If we set $m = 0$ in \eqref{eq:2.3a}, then we get $c_0 = c_0$ which is true. We assume that the formula \eqref{eq:2.3a} is true for some $m \in \mathbb{N}_0$. Then, it follows from \eqref{eq:rec} and the induction hypothesis that \begin{align*} &c_{2m+2} \\ &= \frac{a_{2m+1}}{2m+2} - \frac{\lambda}{2m+2} c_{2m} \\ &= \frac{a_{2m+1}}{2m+2} - \frac{\lambda}{2m+2} \Big[ \sum_{i=0}^{m-1} (-1)^i \frac{a_{2m-1-2i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{2m-2k} + (-1)^m c_0 \prod_{k=0}^{m-1} \frac{\lambda}{2m-2k} \Big] \\ &= \frac{a_{2m+1}}{2m+2} + \sum_{i=0}^{m-1} (-1)^{i+1} \frac{a_{2m-1-2i}}{\lambda} \prod_{k=-1}^{i} \frac{\lambda}{2m-2k} + (-1)^{m+1} c_0 \prod_{k=-1}^{m-1} \frac{\lambda}{2m-2k} \\ &= \frac{a_{2m+1}}{2m+2} + \sum_{i=0}^{m-1} (-1)^{i+1} \frac{a_{2m-1-2i}}{\lambda} \prod_{k=0}^{i+1} \frac{\lambda}{2m+2-2k} + (-1)^{m+1} c_0 \prod_{k=0}^{m} \frac{\lambda}{2m+2-2k} \\ &= \frac{a_{2m+1}}{2m+2} + \sum_{i=1}^{m} (-1)^i \frac{a_{2m+1-2i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{2(m+1)-2k} + (-1)^{m+1} c_0 \prod_{k=0}^{m} \frac{\lambda}{2(m+1)-2k} \\ &= \sum_{i=0}^{m} (-1)^i \frac{a_{2m+1-2i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{2(m+1)-2k} + (-1)^{m+1} c_0 \prod_{k=0}^{m} \frac{\lambda}{2(m+1)-2k}, \end{align*} which can be obtained provided we replace $m$ in \eqref{eq:2.3a} with $m+1$. Hence, we conclude that the formula \eqref{eq:2.3a} is true for all $m \in \mathbb{N}_0$. Similarly, we can also prove the validity of \eqref{eq:2.3b} for all $m \in \mathbb{N}_0$. Indeed, in view of \eqref{eq:rec}, $y_p(x) = \sum_{m=0}^\infty c_m (x-\mu)^m$ is a solution of the inhomogeneous linear differential equation \eqref{eq:1.1}. Since every solution of Eq. \eqref{eq:1.1} is a sum of a solution $y_h(x)$ of the corresponding homogeneous equation and a particular solution $y_p(x)$ of the inhomogeneous equation, it can be expressed by \eqref{eq:2.2}. The formulas \eqref{eq:2.3a} and \eqref{eq:2.3b} can be merged in a new one: \begin{equation} c_m = \sum_{i=0}^{[m/2]-1} (-1)^i \frac{a_{m-1-2i}}{\lambda} \prod_{k=0}^{i} \frac{\lambda}{m-2k} + (-1)^{[m/2]} c_{0,1} \prod_{k=0}^{[m/2]-1} \frac{\lambda}{m-2k} \label{eq:20120902-1} \end{equation} for all $m \in \mathbb{N}_0$, where $c_{0,1} = c_0$ for $m$ even, $c_{0,1} = c_1$ for $m$ odd, and $[m/2]$ denotes the largest integer not exceeding $m/2$. Let us define $$ C := \max \Big\{ \frac{1}{|\lambda|} \prod_{k=0}^i \frac{| \lambda |}{m-2k} \;|\; m \in \mathbb{N}_0;\; i \in \{ 0, 1, \ldots, [m/2]-1 \} \Big\}. $$ For any $\varepsilon > 0$, we can choose an (sufficiently large) integer $m_\varepsilon$ such that $$ \prod_{k=0}^{[m/2]-1} \frac{|\lambda|}{m-2k} \leq \varepsilon $$ for all integers $m \geq m_\varepsilon$. Thus, in view of \eqref{eq:20120902-1}, there exists a constant $D > 0$ such that \begin{equation} | c_m | \leq (C+D) \sum_{i=0}^{m-1} | a_i | \label{eq:20120830} \end{equation} for all sufficiently large integers $m$. (Since the inhomogeneous term $\sum_{m=0}^\infty a_m (x-\mu)^m$ has to be nonzero for some $x \in (\mu-\rho, \mu+\rho)$, there exists an $m_0 \in \mathbb{N}_0$ such that $a_{m_0} \neq 0$ and hence, $\sum_{i=0}^{m-1} | a_i | > 0$ for all sufficiently large integer $m$.) Finally, it follows from \eqref{eq:20120830} and \cite[Problem 8.8.1 (p)]{kosmala} that \begin{align*} \limsup_{m \to \infty} | c_m |^{1/m} &= \limsup_{m \to \infty} \Big(\frac{1}{m} | c_m |\Big)^{1/m} \\ &\leq \limsup_{m \to \infty} \Big(\frac{C+D}{m} \sum_{i=0}^{m-1} | a_i |\Big)^{1/m} \\ &\leq \limsup_{m \to \infty} | a_m |^{1/m}. \end{align*} By use of the Cauchy-Hadamard theorem (see \cite[Theorem 8.8.2]{kosmala}), the radius of convergence of the power series for $y_p(x)$ is at least $\rho$. Therefore, $y(x)$ in Eq. \eqref{eq:2.2} is well defined on $(\mu-\rho, \mu+\rho)$. \end{proof} \begin{remark}\label{rem:2.1} \rm We notice that Theorem \ref{thm:2.1} is true if we set $c_0 = 0$. \end{remark} \section{Local Hyers-Ulam stability of \eqref{eq:2.1}} Let $\rho$ be a positive real number or the infinity. We denote by $\widetilde{C}$ the set of all functions $f : (\mu-\rho, \mu+\rho ) \to \mathbb{C}$ with the following properties: \begin{itemize} \item[(a)] $f(x)$ is expressible by a power series $\sum_{m=0}^\infty b_m (x-\mu)^m$ whose radius of convergence is at least $\rho$; \item[(b)] There exists a constant $K \geq 0$ such that \[ \sum_{m=0}^\infty | a_m (x-\mu)^m | \leq K \big| \sum_{m=0}^\infty a_m (x-\mu)^m \big| \] for all $x \in (\mu-\rho, \mu+\rho)$, where $a_0 = b_1$ and $a_m = (m+1) b_{m+1} + \lambda b_{m-1}$ for any $m \in \mathbb{N}$. \end{itemize} If we define $$ ( y_1 + y_2 )(x) = y_1(x) + y_2(x) \quad\text{and}\quad ( \lambda y_1 )(x) = \lambda y_1(x) $$ for all $y_1, y_2 \in \widetilde{C}$ and $\lambda \in \mathbb{C}$, then $\widetilde{C}$ is a vector space over complex numbers. We remark that the set $\widetilde{C}$ is large enough to be a vector space. We investigate an approximation property of Gaussian functions. More precisely, we prove the (local) Hyers-Ulam stability of the linear first order differential equation \eqref{eq:2.1} for the functions in $\widetilde{C}$. \begin{theorem}\label{thm:3.1} Let $\lambda \neq 0$ and $\mu$ be a complex number and a real number, respectively. If a function $y \in \widetilde{C}$ satisfies the differential inequality \begin{equation} \big| y'(x) + \lambda (x-\mu) y(x) \big| \leq \varepsilon \label{eq:3.1} \end{equation} for all $x \in (\mu-\rho, \mu+\rho)$ and for some $\varepsilon \geq 0$, then there exists a solution $y_h : (\mu-\rho, \mu+\rho) \to \mathbb{C}$ of the differential equation $\eqref{eq:2.1}$ such that $$ \big| y(x) - y_h(x) \big| \leq \Big( | b_1 | \exp \big\{ \frac{|\lambda|}{2} (x-\mu)^2 \big\} + \frac{K \varepsilon}{2} \frac{\exp \big\{ \frac{|\lambda|}{2} (x-\mu)^2 \big\} - 1} {\frac{|\lambda|}{2} (x-\mu)^2} \Big) | x-\mu | $$ for any $x \in (\mu-\rho, \mu+\rho)$. In particular, it holds that $y_h \in \widetilde{C}$. \end{theorem} \begin{proof} Since $y$ belongs to $\widetilde{C}$, $y(x)$ can be expressed by $y(x) = \sum_{m=0}^\infty b_m (x-\mu)^m$ and it follows from (a) and (b) that \begin{equation} \begin{aligned} &y'(x) + \lambda (x-\mu) y(x)\\ &= b_1 + \sum_{m=0}^\infty (m+2) b_{m+2} (x-\mu)^{m+1} + \sum_{m=0}^\infty \lambda b_m (x-\mu)^{m+1} \\ &= b_1 + \sum_{m=0}^\infty \big[ (m+2) b_{m+2} + \lambda b_m \big] (x-\mu)^{m+1} \\ &= \sum_{m=0}^\infty a_m (x-\mu)^m \end{aligned} \label{eq:3.3} \end{equation} for all $x \in (\mu-\rho, \mu+\rho)$. By considering \eqref{eq:3.1} and \eqref{eq:3.3}, we have $$ \Big| \sum_{m=0}^\infty a_m (x-\mu)^m \Big| \leq \varepsilon $$ for any $x \in (\mu-\rho, \mu+\rho)$. This inequality, together with (b), yields \begin{equation} \sum_{m=0}^\infty \big| a_m (x-\mu)^m \big| \leq K \Big| \sum_{m=0}^\infty a_m (x-\mu)^m \Big| \leq K \varepsilon \label{eq:condition1} \end{equation} for all $x \in (\mu-\rho, \mu+\rho)$. Now, it follows from Theorem \ref{thm:2.1}, \eqref{eq:20120902-1}, \eqref{eq:3.3}, and \eqref{eq:condition1} that there exists a solution $y_h : (\mu-\rho, \mu+\rho) \to \mathbb{C}$ of the differential equation \eqref{eq:2.1} such that \begin{align*} &\big| y(x) - y_h(x) \big| \\ &\leq \sum_{m=0}^\infty | c_m | | x-\mu |^m \text{ }\leq\text{ } | c_0 | + | c_1 | | x-\mu | + \sum_{m=2}^\infty | c_m | | x-\mu |^m \\ &\leq | c_0 | + | c_1 | | x-\mu | + \sum_{m=2}^\infty \sum_{i=0}^{[m/2]-1} \frac{| a_{m-2i-1} (x-\mu)^{m-2i-1} |}{| \lambda (x-\mu) |} \prod_{k=0}^i \frac{| \lambda (x-\mu)^2 |}{m-2k} \\ &\quad + \sum_{m=2}^\infty | c_{0,1} | | x-\mu |^{m-2[m/2]} \prod_{k=0}^{[m/2]-1} \frac{| \lambda (x-\mu)^2 |}{m-2k} \\ &\leq | c_0 | + | c_1 | | x-\mu | + \sum_{m=2}^\infty \frac{| a_{m-1} (x-\mu)^{m-1} |}{| \lambda (x-\mu) |} \frac{| \lambda (x-\mu)^2 |}{m} \\ &\quad + \sum_{m=4}^\infty \frac{| a_{m-3} (x-\mu)^{m-3} |}{| \lambda (x-\mu) |} \frac{| \lambda (x-\mu)^2 |}{m} \frac{| \lambda (x-\mu)^2 |}{m-2} \\ &\quad + \sum_{m=6}^\infty \frac{| a_{m-5} (x-\mu)^{m-5} |}{| \lambda (x-\mu) |} \frac{| \lambda (x-\mu)^2 |}{m} \frac{| \lambda (x-\mu)^2 |}{m-2} \frac{| \lambda (x-\mu)^2 |}{m-4} + \dots \\ &\quad + | c_0 | \frac{| \lambda (x-\mu)^2 |}{2} + | c_1 | | x-\mu | \frac{| \lambda (x-\mu)^2 |}{3} + | c_0 | \frac{| \lambda (x-\mu)^2 |}{4} \frac{| \lambda (x-\mu)^2 |}{2} \\ &\quad + | c_1 | | x-\mu | \frac{| \lambda (x-\mu)^2 |}{5} \frac{| \lambda (x-\mu)^2 |}{3} + | c_0 | \frac{| \lambda (x-\mu)^2 |}{6} \frac{| \lambda (x-\mu)^2 |}{4} \frac{| \lambda (x-\mu)^2 |}{2} \\ &\quad + | c_1 | | x-\mu | \frac{| \lambda (x-\mu)^2 |}{7} \frac{| \lambda (x-\mu)^2 |}{5} \frac{| \lambda (x-\mu)^2 |}{3} + \cdots \\ &\leq K \varepsilon \Big( \frac{| x-\mu |}{2} + \frac{| \lambda (x-\mu)^3 |}{4 \cdot 2} + \frac{| \lambda^2 (x-\mu)^5 |}{6 \cdot 4 \cdot 2} + \cdots \Big) \\ &\quad + | c_0 | \Big( 1 + \frac{| \lambda (x-\mu)^2 |}{2} + \frac{| \lambda (x-\mu)^2 |^2}{4 \cdot 2} + \frac{| \lambda (x-\mu)^2 |^3}{6 \cdot 4 \cdot 2} + \cdots \Big) \\ &\quad + | c_1 | | x-\mu | \Big( 1 + \frac{| \lambda (x-\mu)^2 |}{3} + \frac{| \lambda (x-\mu)^2 |^2}{5 \cdot 3} + \frac{| \lambda (x-\mu)^2 |^3}{7 \cdot 5 \cdot 3} + \dots \Big) \end{align*} for all $x \in (\mu-\rho, \mu+\rho)$, where $c_{0,1} = c_0$ for $m$ even, $c_{0,1} = c_1$ for $m$ odd. In view of \eqref{eq:rec}, Remark \ref{rem:2.1}, and (b), we know that $y_p(x) = b_1 (x-\mu) + \sum_{m=2}^\infty c_m (x-\mu)^m$ is a particular solution of the inhomogeneous differential equation \eqref{eq:1.1}, i.e., we can set $c_0 = 0$ and $c_1 = b_1$ in Theorem \ref{thm:2.1}. Hence, we obtain \begin{align*} &\big| y(x) - y_h(x) \big| \\ &\leq | c_0 | + | c_1 | | x-\mu | + \Big( \frac{K \varepsilon}{| \lambda (x-\mu) |} + | c_0 | + | c_1 | | x-\mu | \Big) \sum_{i=1}^\infty \frac{| \lambda (x-\mu)^2 |^i}{2^i i!} \\ &= | b_1 | | x-\mu | + \Big( \frac{K \varepsilon}{| \lambda (x-\mu) |} + | b_1 | | x-\mu | \Big) \sum_{i=1}^\infty \frac{1}{i!} \Big| \frac{\lambda}{2} (x-\mu)^2 \Big|^i \\ &= \Big( | b_1 | \exp \Big\{ \frac{|\lambda|}{2} (x-\mu)^2 \Big\} + \frac{K \varepsilon}{2} \frac{\exp \Big\{ \frac{|\lambda|}{2} (x-\mu)^2 \Big\} - 1} {\frac{|\lambda|}{2} (x-\mu)^2} \Big) | x-\mu | \end{align*} for any $x \in (\mu-\rho, \mu+\rho)$. As we already remarked, there exists a real number $c$ such that $$ y_h(x) = c\exp \big\{ -\frac{\lambda}{2} (x-\mu)^2 \big\}. $$ Hence, $y_h(x)$ has a power series expansion in $x-\mu$, namely, \begin{equation} y_h(x) = \sum_{m=0}^\infty b_m^\ast (x-\mu)^m, \label{eq:20120829} \end{equation} where $$ b_{2m}^\ast = (-1)^m \frac{c}{m!} \Big( \frac{\lambda}{2} \Big)^m \quad\text{and}\quad b_{2m+1}^\ast = 0 $$ for all $m \in \mathbb{N}_0$. The radius of convergence of the power series \eqref{eq:20120829} is infinity. It follows from (b) that $a_0^\ast = b_1^\ast = 0$ and $$ a_{2m}^\ast = (2m+1) b_{2m+1}^\ast + \lambda b_{2m-1}^\ast = 0 $$ for every $m \in \mathbb{N}$. Moreover, we have \begin{align*} a_{2m+1}^\ast &= (2m+2) b_{2m+2}^\ast + \lambda b_{2m}^\ast \\ &= (2m+2) (-1)^{m+1} \frac{c}{(m+1)!} \Big( \frac{\lambda}{2} \Big)^{m+1} + \lambda (-1)^m \frac{c}{m!} \Big( \frac{\lambda}{2} \Big)^m = 0 \end{align*} for all $m \in \mathbb{N}_0$, i.e., $a_m^\ast = 0$ for all $m \in \mathbb{N}_0$. Therefore, $y_h(x) = c\exp \big\{ -\frac{\lambda}{2} (x-\mu)^2 \big\}$ satisfies both conditions (a) and (b). That is, $y_h$ belongs to $\widetilde{C}$. \end{proof} According to the previous theorem, each approximate solution of the differential equation \eqref{eq:2.1} can be well approximated by a Gaussian function in a (small) neighborhood of $\mu$. More precisely, by applying l'Hospital's rule, we can easily prove the following corollary. \begin{corollary}\label{cor:3.2} Let $\lambda \neq 0$ and $\mu$ be a complex number and a real number, respectively. If a function $y \in \widetilde{C}$ satisfies the differential inequality $\eqref{eq:3.1}$ for all $x \in (\mu-\rho, \mu+\rho)$ and for some $\varepsilon \geq 0$, then there exists a complex number $c$ such that $$ \Big| y(x) - c \exp \big\{ -\frac{\lambda}{2} (x-\mu)^2 \big\} \Big| = O \big( | x-\mu | \big) \quad\text{as}\quad x \to \mu, $$ where $O( \cdot )$ denotes the Landau symbol $($big-O$)$. \end{corollary} \subsection*{Acknowledgments} This research was completed with the support of the Scientific and Technological Research Council of Turkey while the first author was a visiting scholar at Istanbul Commerce University, Istanbul, Turkey. \begin{thebibliography}{99} \bibitem{ag} C. Alsina and R. Ger, \textit{On some inequalities and stability results related to the exponential function}, J. Inequal. Appl. \textbf{2} (1998), 373--380. \bibitem{czerwik0} S. Czerwik, \textit{Functional Equations and Inequalities in Several Variables}, World Sci. Publ., Singapore, 2002. \bibitem{hir} D. H. Hyers, G. Isac and Th. M. Rassias, \textit{Stability of Functional Equations in Several Variables}, Birkh\"{a}user, Boston, 1998. \bibitem{115} S.-M. Jung, \textit{An approximation property of exponential functions}, Acta Math. Hungar. \textbf{124} (2009), no. 1-2, 155--163. \bibitem{jung2} S.-M. Jung, \textit{Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis}, Springer Optimization and Its Applications Vol. 48, Springer, New York, 2011. \bibitem{kosmala} W. Kosmala, \textit{A Friendly Introduction to Analysis -- Single and Multivariable ($2$nd edn)}, Pearson Prentice Hall, London, 2004. \bibitem{mjt} T. Miura, S.-M. Jung and S.-E. Takahasi, \textit{Hyers-Ulam-Rassias stability of the Banach space valued linear differential equations $y' = \lambda y$}, J. Korean Math. Soc. \textbf{41} (2004), 995--1005. \bibitem{motn} T. Miura, H. Oka, S.-E. Takahasi and N. Niwa, \textit{Hyers-Ulam stability of the first order linear differential equation for Banach space-valued holomorphic mappings}, J. Math. Inequal. \textbf{3} (2007), 377--385. \bibitem{ob1} M. Ob\a{l}oza, \textit{Hyers stability of the linear differential equation}, Rocznik Nauk.-Dydakt. Prace Mat. \textbf{13} (1993), 259--270. \bibitem{ob2} M. Ob\a{l}oza, \textit{Connections between Hyers and Lyapunov stability of the ordinary differential equations}, Rocznik Nauk.-Dydakt. Prace Mat. \textbf{14} (1997), 141--146. \bibitem{popa} D. Popa and I. Ra\c{s}a, \textit{On the Hyers-Ulam stability of the linear differential equation}, J. Math. Anal. Appl. \textbf{381} (2011), 530--537. \bibitem{tmm} S.-E. Takahasi, T. Miura and S. Miyajima, \textit{On the Hyers-Ulam stability of the Banach space-valued differential equation $y' = \lambda y$}, Bull. Korean Math. Soc. \textbf{39} (2002), 309--315. \end{thebibliography} \end{document}