\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 04, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/04\hfil Global dynamics] {Global dynamics of a predator-prey model incorporating a constant prey refuge} \author[X. Yu, F. Sun \hfil EJDE-2013/04\hfilneg] {Xiaolei Yu, Fuqin Sun} \address{Xiaolei Yu \newline School of Science, Tianjin University of Technology and Education, Tianjin 300222, China} \email{13752383154@126.com, yuxioalei12@126.com} \address{Fuqin Sun \newline School of Science, Tianjin University of Technology and Education, Tianjin 300222, China} \email{sfqwell@163.com} \thanks{Submitted May 8, 2012. Published January 7, 2013.} \subjclass[2000]{34D05, 34D20, 92D25} \keywords{Predator-prey model; prey refuge; global stability} \begin{abstract} In this article, a general predator-prey model incorporating a constant prey refuge with Hassell-Varley type functional response is studied. Sufficient conditions for the stability of the equilibria are obtained. It is shown that the positive equilibrium exists if predator death rate multiplied by a constants is smaller than its growth rate multiplied by capturing rate. Moreover, by constructing a Lyapunov function, it is shown that the positive equilibrium is globally stable. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \newcommand{\p}{\varphi} \section{Introduction} In 1980, Freedman \cite{Freedman} proposed a predator-prey model with Holling type II functional response: \begin{equation} \label{e1} \begin{gathered} x'(t) =ax(1-x/K)-bxy/(\beta+x),\\ y'(t) =y(ex/(\beta+x)-D),\\ x(0)>0,\quad y(0)>0, \end{gathered} \end{equation} where $x$ and $y$ denote the prey and predator populations, respectively at any time $t$; $a>0$ represents the intrinsic growth rate of the prey; $K>0$ is the carrying capacity of the prey in the absence of predator; $b>0$ is the conversion factor denoting the number of newly born predators for each captured prey; $D>0$ is the death rate of the predator; $e>0$ is the intrinsic growth rate of the predator; $\beta$ represents half saturation constant. The model exhibits the well-known but highly controversial paradox of enrichinent observed by Hairston et al \cite{Hairston} (1960) and by Rosenzweig \cite{Rosenzweig} (1969) which is rarely reported in nature. To address this problem, Arditi and Ginzburg \cite{Arditi} (1989) proposed the following predator-prey model with ratio-dependent type functional response: \begin{equation} \label{e2} \begin{gathered} x'(t) =ax(1-x/K)-bxy/(\beta y+x),\\ y'(t) =y(ex/(\beta y+x)-D),\\ x(0)>0, \quad y(0)>0. \end{gathered} \end{equation} It is well known system \eqref{e2} can display richer and more plausible dynamics than system \eqref{e1}. A general predator-prey model with Hassell-Varley type functional response may take the following form (Hsu 2008) \cite{Hsu}: \begin{equation} \label{e3} \begin{gathered} x'(t) =ax(1-x/K)-bxy/(\beta y^\gamma+x),\\ y'(t) =y(ex/(\beta y^\gamma+x)-D),\\ x(0)>0,\quad y(0)>0, \end{gathered} \end{equation} where the constant $\gamma>0$ is called the Hassel-Varley constant. A unified mechanistic approach was provided by Cosner et al \cite{Cosner} where the functional response in system \eqref{e3} was derived. In a typical predator-prey interaction where predators do not form groups, one can assume that $\gamma=1$, producing the so-called ratio-dependent predator-prey dynamics. For terrestrial predators that form a fixed number of tight groups, it is often reasonable to assume that $\gamma=1/2$. For aquatic predators that form a fixed number of tight groups, $\gamma=1/3$ maybe more appropriate. Since most predators do not form a fixed number of tight groups, it can be argued that for most realistic predator-prey interactions,$\gamma\in[0,1]$. Because species compete, evolve and disperse often simply for the purpose of seeking resources to sustain their struggle for their very existence. Their extinctions are often the results of their failure in obtaining the minimum level of resources needed for their subsistence. Thus, prey refuge are widely believed to prevent prey extinction and damp predator-prey oscillations. For example, Gonzalez-Olivares and Ramos-Jiliberto \cite{Gonzalez} studied the dynamic consequences of the following predator-prey systems with constant number of prey using refuges, which protects of prey $m$ from predation \begin{equation} \label{e4} \begin{gathered} x'(t) =ax(1-x/K)-\frac{b(x-m)y}{1+c(x-m)},\\ y'(t) =-Dy+\frac{be(x-m)y}{1+c(x-m)},\\ \end{gathered} \end{equation} $m>0$ is a constant number of prey using refuges, which protects $m$ of prey from predation; $c>0$ is a constant. Inspired by [4] and [10], we will consider a more general predator-prey model incorporating a constant prey refuge with Hassell-Varley type functional response. \begin{equation} \label{e5} \begin{gathered} x'(t) =ax(1-x/K)-\frac{b(x-m)y}{y^\gamma+c(x-m)},\\ y'(t) =-Dy+\frac{be(x-m)y}{y^\gamma+c(x-m)},\\ x(0)>m,\quad y(0)>0. \end{gathered} \end{equation} Mathematically, system \eqref{e1} or \eqref{e2} can be viewed as limiting cases of system \eqref{e3} if one chooses $\gamma=0$ or 1 in system \eqref{e3}. System \eqref{e4} can be viewed as limiting case of system \eqref{e5} if one chooses $\gamma=0$ in system \eqref{e5}. In this paper we take $\gamma\in(0,1)$. In this article, we will find sufficient conditions of the stability properties to the equilibria of \eqref{e5}. We will show the positive equilibrium exists if predator death rate multiplied by a constant is smaller than its growth rate multiplied by capturing rate. We construct a Lyapunov function to show the global stability of the positive equilibrium. \section{Preliminary analysis} In this section, we present the basic results on the boundedness of positive solutions and the local stabilities of nonnegative equilibria in \eqref{e5}. Let $\Omega_0=\{(x,y):x>m,\; y>0\}$, for practical biological meaning, we simply study system \eqref{e5} in $\Omega_0$. By the scaling: $t\to at$, $x\to x/m$, $y\to\alpha y$. System \eqref{e5} turns into \begin{equation} \label{e6} \begin{gathered} x'(t) =x\Big(1-\frac{m}{K}x\Big)-\frac{s(x-1)y}{y^\gamma+x-1} \equiv F(x,y),\\ y'(t) =\delta y\Big(-d+\frac{x-1}{y^\gamma+x-1}\Big) \equiv G(x,y),\\ x(0)>1,\quad y(0)>0, \end{gathered} \end{equation} where $s=\frac{b}{a}(cm)^{\frac{1}{\gamma}-1}$, $\delta=\frac{be}{ac}$, $d=\frac{Dc}{be}$. we thus define that $F(1,0)=G(1,0)=0$. Clearly with this assumption, both $F$ and $G$ are continuous on the closure of $\Omega$, where $\Omega=\{(x,y)|x>1,y>0\}$. The variational matrix of the system \eqref{e6} is \begin{equation*} A(x,y)= \begin{pmatrix} 1-\frac{2m}{K}x-\frac{sy}{y^\gamma+x-1} +\frac{s(x-1)y}{(y^\gamma+x-1)^2} & \frac{-s(x-1)}{(y^\gamma+x-1)^2}[(x-1)+(1-\gamma)y^\gamma] \\ \frac{\delta y^{\gamma+1}}{(y^\gamma+x-1)^2} & \delta(\frac{x-1}{y^\gamma+x-1}-\frac{\gamma(x-1)y^\gamma}{(y^\gamma+x-1)^2}-d) \end{pmatrix}. \end{equation*} \begin{proposition} \label{prop1} Let $(x(t),y(t))$ be any solution of \eqref{e6} with $(x(0),y(0))\in\Omega$. Then \begin{equation*} \lim\sup_{t\to\infty}(x(t)+\frac{s}{\delta}y(t))\leq \frac{(1+d\delta)^2K}{4dm\delta}. \end{equation*} \end{proposition} \begin{proof} It follows immediately from the existence and uniqueness of solutions for ordinary differential equations with initial conditions that the solution is positive on its domain of definition. Let $V(t)=x(t)+\frac{s}{\delta}y(t)$ and differentiating $V$ once yields \begin{equation*} V'(t)=-\frac{m}{K}x^2+(1+d\delta)x-d\delta V(t) \leq\frac{(1+d\delta)^2}{4m/K}-d\delta V. \end{equation*} Hence we have \[ 01$, $y_*>0$ and \begin{gather*} x_*\left(1-\frac{m}{K}x_*\right)-\frac{s(x_*-1)y_*}{y_*^\gamma+x_*-1}=0, \\ \frac{x_*-1}{y_*^\gamma+x_*-1}=d, \end{gather*} if $d\in(0,1)$. At $E_1$, we have \begin{equation*} A(\frac{K}{m},0)= \begin{pmatrix} -1 & s \\ 0 & \delta(1-d) \end{pmatrix}. \end{equation*} For the rest of this article, we always assume that $00$, then $E_*$ is locally asymptotically stable if $\operatorname{tr} A(x_*,y_*)<0$; $E_*$ is unstable if $\operatorname{tr} A(x_*,y_*)>0$; \item when $\det A(x_*,y_*)<0$, then $E_*$ is a saddle point. \end{enumerate} \end{proposition} \section{Uniform persistence} The objective of this section is to present conditions ensuring the system \eqref{e6} is uniformly persistent. To this end, we make the change of variables $(x,y)\to(u,z)$ in system \eqref{e6}, where $u=\frac{x-1}{y^\gamma}$, $z=y^\sigma$ and $\sigma$ will be chosen later. This reduces it to the system \begin{equation} \label{e7} \begin{gathered} u'(t) =g(u)-\varphi_1(u)z^{\sigma_1}-\varphi_2(u)z^{\sigma_2}+(1-m/K)z^{-1} \equiv f_1(u,z), \\ z'(t) =\psi(u)z \equiv f_2(u,z),\\ u(0)>0,\quad z(0)>0, \end{gathered} \end{equation} where \begin{gather*} g(u) =\frac{u}{1+u}[1+\gamma\delta d-2m/K+(1+\gamma\delta d-\gamma\delta-2m/K)u], \\ \varphi_1(u) =2m/Ku^2,\quad \varphi_2(u) =\frac{su}{1+u},\\ \psi(u) =\sigma\delta\Big(-d+\frac{u}{1+u}\Big), \end{gather*} and $\sigma_1=\gamma/\sigma$ and $\sigma_2=(1-\gamma)/\sigma$. Now let $\sigma=\gamma$ if $\gamma\in(0,1/2)$ and $\sigma=1-\gamma$ if $\gamma\in[1/2,1)$, then \begin{equation*} \label{eq:7} \sigma_1 = \begin{cases} 1 & \text{if } \gamma\in(0,\frac1{2}), \\ \gamma/(1-\gamma) &\text{if } \gamma\in[\frac1{2},1) \end{cases} \end{equation*} and \begin{equation*} \sigma_2 = \begin{cases} (1-\gamma)/{\gamma} &\text{if } \gamma\in(0,1/2), \\ 1 &\text{if }\gamma\in[1/2,1). \end{cases} \end{equation*} Hence, $\sigma_i\geq1,i=1,2$ and the vector field $(f_1,f_2)$ is $C^1$ smooth on the set $\mathbb{R}_+^2$ where $\mathbb{R}_+^2=\{(u,z):,u>0,\,z>0\}$. Since $00$ on $\mathbb{R}_+^2$ if $\gamma\delta\leq\frac{1-2m/K}{1-d}$ where $1-2m/K\geq0$ and $g(u)$ has exactly one positive zero $u_0=\frac{-(1+\gamma\delta d-2M/K)}{1+\gamma\delta d-\gamma\delta-2m/K}$ if $\gamma\delta>\frac{1-2m/K}{1-d}$. In last case, we have $g(u)(u-u_0)<0$ for $u\neq u_0$. From system \eqref{e7}, we have that the prey isocline, $z=h(u)$ is implicitly defined by $f_1(u,z)=0$. Since $\lim_{z\to\infty}f_1(u,z)=-\infty$ and $\frac{\partial f_1}{\partial z}(u,z)<0$, it follows from the implicit function theorem that $z=h(u)$ is $C^1$ function defined on $(0,\infty)$ if $\gamma\delta\leq\frac{1-2m/K}{1-d}$ or on $(0,u_0]$ if $\gamma\delta>\frac{1-2m/K}{1-d}$. Moreover, \begin{equation} \label{e8} \begin{aligned} h'(u) &= -\frac{{\partial f_1(u,h(u))}/{\partial u}}{{\partial f_1(u,h(u))} /{\partial z}},\\ &= {\frac{\big(\frac{g(u)}{\varphi_2(u)}\big)' -\big(\frac{\varphi_1(u)}{\varphi_2(u)}\big)' h^{\sigma_1}(u)-\frac{1-m/K}{\varphi^2_2(u)} \p'_2(u) h^{-1}(u)} {\big(\frac{\varphi_1(u)}{\varphi_2(u)}\big)\sigma_1 h^{\sigma_1 -1}(u) +\sigma_2 h^{\sigma_2 -1}(u)+\frac{1-m/K}{\varphi_2(u)}h^{-2}(u)}}. \end{aligned} \end{equation} The qualitative behavior of $z=h(u)$ is given in the following lemma. \begin{lemma} \label{lem1} \begin{itemize} \item[(a)] If $\gamma\delta\in(\frac{1-2m/K}{1-d},\infty)$, then $h(u)>0>h'(u)$ for all $u\in[0,u_0]$. \item[(b)] If $\gamma\delta\in(0,\frac{1-2m/K}{1-d}]$ and $h(u)>{[\frac{K(1+\gamma\delta d-\gamma\delta-2m/k)}{m}]}^{1/{\sigma_1}}$, then $h(u)>0>h'(u)$ for all $u\in (0,\infty)$. \end{itemize} \end{lemma} \begin{proof} From \eqref{e8}, we have $h'(u)<0$ as long as $\gamma\delta\in(\frac{1-2m/K}{1-d},\infty)$, This proves the assertion (a). Now let $1+\gamma\delta d-\gamma\delta-2m/K\geq0$ , we have \begin{align*} h'(u)\\ &={\frac{\frac1{s}(1+\gamma\delta d-\gamma\delta-2\frac{m}{K}) -\frac{m}{sK}(1+2m)h^\sigma_1(u)- su^{-2}(1-\frac{m}{K})h^{-1}(u)}{(\frac{\varphi_1(u)}{\varphi_2(u)}) \sigma_1 h^{\sigma_1 -1}(u)+\sigma_2 h^{\sigma_2 -1}(u) +\frac{1-m/K}{\varphi_2(u)}h^{-2}(u)}} <0 \end{align*} as long as $$ \frac{m}{sK}h^{\sigma_1}(u)>\frac{1}{s(1+\gamma\delta d-\gamma\delta-2m/K)}. $$ This proves assertion (b). \end{proof} System \eqref{e7} has one positive equilibrium $e_*=(u_*,z_*)$ where $z_*=h(u_*)$. The variational matrix of system \eqref{e7} is given by \begin{align*} &J(u,z)\\ &= \begin{pmatrix} g'(u)-\varphi_1'(u)z^{\sigma_1}-\varphi_2'(u)z^{\sigma_2 } &-\sigma_1\varphi_1(u)z^{\sigma_1-1}-\sigma_2\varphi_2(u)z^{\sigma_2-1} -(1-\frac{m}{K})/z^{2} \\ \sigma\delta z/(1+u)^2 & \sigma\delta(u/(1+u)-d) \\ \end{pmatrix}. \end{align*} The stability of equilibrim $e_*$ is determined by the eigenvalues of the matrix $J(e_*)$ and is given in the following lemma. \begin{lemma} \label{lem2} For system \eqref{e7}, the following statements are true. \begin{itemize} \item[(a)] If $tr(J(e_*))<0$, then $e_*$ is locally asymptotically stable; \item[(b)] If $tr(J(e_*))>0$, then $e_*$ is an unstable focus or node. \end{itemize} \end{lemma} \begin{remark} \label{rmk1} \rm Since $(x_*,y_*)=(u_*z_*^{\frac{\gamma}{\sigma}+1},z_*^{\frac{1}{\sigma}})$, we have \begin{align*} \operatorname{tr} A(E_*) &= 1-2m/Kx_*-\frac{sy_*}{y_*^\gamma+x_*1}+\frac{(x_*-1)y_*(s-\gamma\delta y_*^{\gamma-1})}{(y_*^\gamma+x_*-1)^2} \\ &= 1-2m/K(u_*z_*^{\gamma/\sigma}+1)-\frac{sz_*^{(1-\gamma)/\sigma}}{(u_*+1)}+\frac{u_*z_*^{(1-\gamma)/\sigma}(s-\delta\gamma z_*^{(\gamma-1)/\sigma})}{(u_*+1)^2} \\ &= \operatorname{tr}J(e_*) . \end{align*} So, the locally stability of $E_*$ and $e_*$ are the same. \end{remark} \begin{lemma} \label{lem3} System \eqref{e7} is uniformly persistent in $\mathbb{R}_+^2$. \end{lemma} \begin{proof} Let $(u(t),z(t))$ be the solution starting at $A=(u_*,M_*+1)$ where $M_*=[\frac{(1+d \delta)^2K}{4sdm}]^\sigma$ and $\Gamma$ be its orbit. Then since $(x(t),y(t))=(u(t)z^{\frac{\gamma}{\sigma}+1}(t),z^\frac{1}{\sigma}(t))$ is a solution of system \eqref{e6} and by Proposition \ref{prop1}, we have $\lim\sup_{t\to\infty}z(t)\leq M_*$. Hence $\Gamma\subseteq\mathbb{R}_+\times(0,M_*+1)$. The flow analysis gives that $\Gamma$ must intersect the prey isocline$\{(u,h(u))|0u_*\}$ and $z=h(u)$. Consider the bounded region $\overline{\Omega}_1$, enclosed by $\Gamma,\overline{CD},\overline{DE}$ and $\overline{EA}$ where $E=(\bar{u},M_*+1)$. Clearly, every trajectory will enter and stay in $\overline{\Omega}_1$ for all $t$ sufficiently large. \noindent\textbf{Case 2: $\Gamma\cap\{(u_*,z)|z\in(0,h(u_*))\}=\emptyset$.} This implies $\lim_{t\to\infty}(u(t),z(t))=e_*$. Let $\overline{\Omega}_2$ be the bounded region enclosed by $\Gamma$ and $\overline{e_*A}$. Thus every trajectory will either enter $\overline{\Omega}_2$ or tend to $e_*$ as $t$ goes to $\infty$. Hence, from the above discussion, we show that system \eqref{e7} is permanent. \end{proof} Since every solution of \eqref{e6} takes the form of $(x(t),y(t))=(u(t)z^{\frac{\gamma}{\sigma}+1}(t), z^\frac{1}{\sigma}(t))$, where $(u(t),z(t))$ is some solution of system \eqref{e7}. Thus, as a consequence of Lemma \ref{lem3}, we have the following theorem for system \eqref{e6}. \begin{theorem} \label{thm1} System \eqref{e6} is uniformly persistent in $\Omega$. \end{theorem} \section{Global stability results} To study the global behavior of \eqref{e6}, we need following lemma. \begin{lemma} \label{lem4} Let $1+\gamma\delta d-\gamma\delta-2m/K\leq0$, Then the equilibrium $e_*$ is globally asymptotically stable for system \eqref{e7} in $\mathbb{R}_+^2$. \end{lemma} \begin{proof} To show that $e_*$ is globally asymptotically stable in $\mathbb{R}_+^2$. Consider the following Lyapunov function \[ V(u,z)=z^{-\frac{g(u_*)}{\varphi_2(u_*)}}\exp \Big(\frac{\varphi_1(u_*)}{\varphi_2(u_*)} \frac{z^\sigma_1}{\sigma_1}+\frac{z^{\sigma_2}}{\sigma_2}+ \frac{(1-m/K)z^{-1}}{\varphi_2(u_*)} +\int_{u_*}^u\frac{\psi(\xi)}{\varphi_2(\xi)}d\xi\Big) \] for $(u,z)\in\mathbb{R}_+^2$. The derivative of $V$ along the solution of \eqref{e7} is \begin{align*} \frac{\dot{V}(u,z)}{V(u,z)} &= \psi(u)\Big[\frac{g(u)}{\varphi_2(u)}-\frac{g(u_*)}{\varphi_2(u_*)}\Big] -\psi(u)z^{\sigma_1} \Big[\frac{\varphi_1(u)}{\varphi_2(u)}-\frac{\varphi_1(u_*)}{\varphi_2(u_*)} \Big]\\ &\quad +\psi(u)z^{-1}(1-m/K)\Big[\frac{1}{\varphi_2(u)} -\frac{1}{\varphi_2(u_*)}\Big]\\ &= \frac{1}{s}\psi(u)(u-u_*)\Big[1+\gamma\delta d-\gamma\delta-2m/K-m/K(1+u+u_*)z^{\sigma_1}\\ &\quad -(1-m/K)\frac{1-d}{ud}z^{-1}\Big]. \end{align*} Clearly, $1+\gamma\delta d-\gamma\delta-2m/K\leq0$ implies $\dot{V}(u,z)\leq0$ for $(u,z)\in\mathbb{R}_+^2$. Hence, the lemma follows from Lyapunov-LaSalle's invariance principle \cite{Hale}. \end{proof} \begin{theorem} \label{thm2} Let $1+\gamma\delta d-\gamma\delta-2m/K\leq0$, then the equilibrium $E_*$ is globally asymptotically stable for system \eqref{e6} in $\Omega$. \end{theorem} \subsection{Discussion} To facilitate the discussion section, we summarize our findings. Recall that \[ s=\frac{b}{a}(cm)^{\frac{1}{\gamma}-1},\quad \delta=\frac{be}{ac}, \quad d=\frac{Dc}{be}. \] Since $00)$, then $E_*$ is locally asymptotically stable (unstable). Moreover, if $1+\gamma\delta d-\gamma\delta-2m/K\leq0$ , $E_*$ is globally asymptotically stable. \subsection*{Acknowledgments} The authors want to thank the anonymous referees for their valuable comments and suggestions. This work was supported by grants 12JCYBJC10600 from the Natural Science Foundation of Tianjin of China, and 20081003 from the Technology Development Foundation of Higher Education of Tianjin of China. \begin{thebibliography}{23} \bibitem{Arditi} R. Arditi, L.R. Ginzburg; \emph{Coupling in predator-prey dynamics: ratio-dependence}, J. Theor. Biol., 139 (1989), 311-326. \bibitem{Cosner} C. Cosner, D. L. De Angellis, J. S. Ault, D. B. Olson; \emph{Effects of spatial grouping on the functional response of predators}, Theor. Pop. Biol., 565 (1999), 65-75. \bibitem{Freedman} H.I. Freedman; \emph{Deterministic Mathematical Models in Population Ecology}, Marcel Dekker, 1980 New York. \bibitem{Gonzalez} E. Gonzalez-Olivares, R. Ramos-Jiliberto; \emph{Dynamic consequences of prey rufuges in a simple model system: More prey, fewer predators and enhanced stability}, Ecol. Model. 166 (2003), 135-146. \bibitem{Hairston} N. G. Hairston, F. E. Simth, L. B. Slobodkin; \emph{Community structure, population control and competition}, American Naturalist, 94 (1960), 42-425. \bibitem{Hale} J. Hale; \emph{Ordinary Differential Equtions}, Krieger Publ. Co., Malabar., 1980. \bibitem{Hassel} M. P. Hassel; \emph{The Dynamics of Arthropod Pradator-Prey System}, Princetion University Press, 1978. \bibitem{Hassell} M. P. Hassell, G. C. Varley; \emph{New inductive population model for insect parasites and its bearing on biological control}, Nature, 223 (1969), 1133-1136. \bibitem{Harrision} G. W. Harrision; \emph{Comparing pradator-prey models to Luckinbill's experiment with Didinium and Paramecium}, Ecology, 76(1995), 357-374. \bibitem{Hsu} S.-B. Hsu, T.-W. Hwang, Y. Kuang; \emph{Global analysis of a predator-prey model with Hassell-Varley type function response}, Discrete Contin. Dyn. Syst. Ser. B., 10 (2008), 857-871. \bibitem{Hwang1} T.-W. Hwang; \emph{Uniqueness of limit cycle for Gause-type predator-prey systems}, J. Math. Anal. Appl., 238 (1990), 179-195. \bibitem{Hwang2} T.-W. Hwang, Y. Kuang; \emph{Host extincton dynamics in a simple parasite-host interaction model}, Math. Biosc. and Eng., 2 (2005), 743-751. \bibitem{Kuang1} Y. Kuang; \emph{Rich dynamics of Gause-tyoe ratio-dependent pradator-prey system}, The Fields Institute Communications, 21 (1999), 325-337. \bibitem{Kuang2} Y. Kuang, E. Beretta; \emph{Global qualitative analysis of a ratio-dependent predator-prey system}, J. Math. Biol., 36 (1998), 389-406. \bibitem{Rosenzweig} M. L. Rosenzweig; \emph{Paradox of enrichment, destabilization of exploitation systems in ecologicaltime}, Science, 171 (1961), 385-387. \bibitem{Sih} A. Sih; \emph{Prey refuges and predator-prey stability}, Theoret. Popul. Biol. 31 (1987), 1-12. \bibitem{Xiao} D. Xiao, S. Ruan; \emph{Global dynamics of a ratio-dependent predator-prey system}, J. Math. Biol., 43 (2001), 268-290. \end{thebibliography} \end{document}