\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 08, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/08\hfil Existence and uniqueness of anti-periodic solutions] {Existence and uniqueness of anti-periodic solutions for nonlinear third-order \\ differential inclusions} \author[T. Haddad, T. Haddad \hfil EJDE-2013/08\hfilneg] {Touma Haddad, Tahar Haddad} % in alphabetical order \address{Touma Haddad \newline D\'epartement de Math\'ematiques, Facult\'e des Sciences, Universit\'e de Jijel, B.P. 98, Alg\'erie} \email{touma.haddad@yahoo.com} \address{Tahar Haddad \newline Laboratoire LMPA, Facult\'e des Sciences, Universit\'e de Jijel, B.P. 98, Alg\'erie} \email{haddadtr2000@yahoo.fr} \thanks{Submitted September 28, 2012. Published January 9, 2013.} \subjclass[2000]{34C25, 34G20, 49J52} \keywords{Anti-periodic solution; differential inclusions; subdifferential} \begin{abstract} In this article, we study the existence of anti-periodic solutions for the third-order differential inclusion \begin{gather*} u'''(t)\in \partial\varphi(u'(t))+F(t,u(t))\quad \text{a.e. on }[0,T]\\ u(0)=-u(T), \quad u'(0)=-u'(T),\quad u''(0)=-u''(T), \end{gather*} where $\varphi$ is a proper convex, lower semicontinuous and even function, and $F$ is an upper semicontinuous convex compact set-valued mapping. Also uniqueness of anti-periodic solution is studied. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} Existence and uniqueness of anti-periodic solutions for differential inclusions generated by the subdifferential of a convex lower semicontinuous even function appear in several articles; see \cite{AP1,AP2,AP3,AP4,CH,CP, HA}. Okochi \cite{ OK1} initiated the study of anti-periodic solutions of the differential inclusion \begin{equation}\label{eq1.1} \begin{gathered} f(t)\in u'(t)+\partial\varphi(u(t))\quad\text{a.e. } t\in [0,T]\\ u(0)=-u(T)\quad \end{gathered} \end{equation} in Hilbert spaces, where $\partial\varphi$ is the subdifferential of an even function $\varphi$ on a real Hilbert space $H$ and $f\in L^2([0,T],H)$. It was shown in \cite{OK2}, by applying a fixed point theorem for nonexpansive mapping, that \eqref{eq1.1} has a unique solution. Later Aftabizadeh and al \cite{AF} studied the anti-periodic solution of third-order differential inclusion \begin{equation}\label{eq1.2} \begin{gathered} u'''(t)\in \partial\varphi(u'(t))+f(t)\quad \text{a.e. }t\in [0,T]\\ u(0)=-u(T),\quad u'(0)=-u'(T), \quad u''(0)=-u''(T), \end{gathered} \end{equation} by using maximal monotone operator theory. The aim of this article is to study the existence of anti-periodic solutions for the third-order differential inclusion \begin{equation}\label{eq1.3} \begin{gathered} u'''(t)\in \partial\varphi(u'(t))+F(t,u(t))\quad \text{a.e. } t\in [0,T]\\ u(0)=-u(T), \quad u'(0)=-u'(T),\quad u''(0)=-u''(T), \end{gathered} \end{equation} where $\varphi:H\to ]-\infty,+\infty]$ is a convex lower semicontinuous even function and $F:[0,T]\times H\to 2^{H}$ is an upper semicontinuous convex compact set-valued mapping bounded above by $L^2$ function. Furthermore, an existence and uniqueness result when $F$ is single-valued is also studied. \section{Preliminaries} Let $H$ be a real Hilbert space with norm $\|\cdot\|$ and inner product $\langle \cdot,\cdot \rangle$. The open ball centered at $x$ with radius $r$ is defined by $ \mathbb{B}_{r}(x)=\{y\in H:\|y-x\|0$, the set $\{x\in D(\varphi): \|x\| \leq \beta_1, \varphi(x) \leq \beta_2 \}$ is compact. Let $F:[0,T]\times H\to 2^{H}$ be a convex compact set-valued mapping, measurable on $[0,T]$ and upper semicontinuous on $H$ satisfying: there is $\alpha(\cdot)\in L^2([0,T],\mathbb{R_{+}})$ such that $$ F(t,x) \subset \Gamma(t):=\overline{\mathbb{B}}_{\alpha(t)}(0)\quad \forall (t,x) \in [0,T]\times H $$ Then the problem \begin{gather*} u'''(t)\in \partial\varphi(u'(t))+F(t,u(t))\quad\text{a.e. } t\in [0,T],\\ u(0)=-u(T), \quad u'(0)=-u'(T), \quad u''(0)=-u''(T), \end{gather*} has at least an anti-periodic $W^{3,2}([0,T],H) $ solution. \end{theorem} \begin{proof} Using the notation of the proof of Theorem \ref{Theo1}, we have $$ u_{f_n}'''(t)-f_n(t)\in \partial\varphi(u_{f_n}'(t))\quad\text{a.e. }t\in [0,T], $$ for every $f_n\in S^2_{\Gamma}$. The absolute continuity of $\varphi(u_{f_n}'(\cdot))$ and the chain rule theorem \cite{BZ}, yield $$ \langle u_{f_n}'''(t), u_{f_n}''(t)\rangle -\langle f_n(t),u_{f_n}''(t)\rangle=\frac{d}{dt}\varphi(u_{f_n}'(t)), $$ for every $f_n\in S^2_{\Gamma}$, so that \[ +\infty > \sup_{n\geq 1}\int_0^{T} |\langle u_{f_n}'''(t), u_{f_n}''(t)\rangle -\langle f_n(t),u_n''(t)\rangle| dt = \sup_{n\geq 1} \int_0^{T} \big|\frac{d}{dt}\varphi(u_{f_n}'(t))\big|dt. \] Further applying the classical definition of the subdifferential to convex function $\varphi$ yields $$ 0=\varphi(0)\geq \varphi(u_{f_n}'(t))+\langle0-u_{f_n}'(t),u_{f_n}'''(t)-f_n(t)\rangle $$ or $$ 0\leq\varphi(u_{f_n}'(t))\leq\langle u_{f_n}'(t),u_{f_n}'''(t)-f_n(t)\rangle. $$ Hence $$ \sup_{n\geq 1}|\varphi(u_{f_n}')|_{L^{1}_{\mathbb{R}}([0,T])}<+\infty. $$ For all $t \in [0,T]$, we have \[ \varphi(u_{f_n}'(t)) =\varphi(u_{f_n}'(0))+\int_0^{t} \frac{d}{dt}\varphi(u_{f_n}'(s))ds \leq \varphi(u_{f_n}'(0))+\sup_{n\geq 1}|\varphi(u_{f_n}')|_{L^{1}_{\mathbb{R}}([0,T])}. \] Now we assert that $\varphi(u_{f_n}'(t))\leq \beta_2$ for every $t\in [0,T]$, here $\beta_2$ is a positive constant. Indeed for all $t\in[0,T]$, we have \begin{align*} \varphi(u_{f_n}'(0)) &\leq |\varphi(u_{f_n}'(t))-\varphi(u_{f_n}'(0))|+\varphi(u_{f_n}'(t))\\ &\leq \int_0^{T}|\frac{d}{dt}\varphi(u_{f_n}'(t))|dt+\varphi(u_{f_n}'(t)). \end{align*} Hence $$ \varphi(u_{f_n}'(0))\leq\sup_{n\geq 1} \int_0^{T} |\frac{d}{dt}\varphi(u_{f_n}'(t))|dt+\frac{1}{T}\sup_{n\geq 1} \int_0^{T}\varphi(u_{f_n}'(t)) dt <+\infty . $$ Whence we have $$ \beta_1:=\sup_{n\geq 1}\sup_{t\in[0,T]}\|u_{f_n}'(t)\|<+\infty , \quad \beta_2:=\sup_{n\geq 1}\sup_{t\in[0,T]}\varphi(u_{f_n}'(t))<+\infty . $$ So that $(u_{f_n}'(t))$ is relatively compact with respect to the norm topology of $H$ using the inf-compactness assumption on $\varphi$. The proof can be therefore achieved as Theorem \ref{Theo1} by invoking Lemma\ref{lem1} and a closure type lemma in \cite[Theorem VI-4]{CV}. \end{proof} Here is an existence and uniqueness result related to Theorem \ref{Theo2} when the perturbation is single-valued. \begin{theorem}\label{Theo3} Let $H$ be a separable Hilbert space, $\varphi:H \to [0,+\infty]$ is a proper, convex, lower semicontinuous and even function satisfying: $\varphi(0)=0$ and for each $\alpha,\beta>0$, the set $\{x\in D(\varphi): \|x\| \leq \alpha, \varphi(x) \leq \beta \}$ is compact and $f:[0,T]\times H \to H$ is a Carath\'eodory mapping satisfying : \\ \emph{$(\mathcal {H}_1)$} $\| f(t,u)-f(t,v)\|\leq L\|u-v\|$ for all $(t,u,v)\in[0,T]\times H\times H$, for some positive constant $L>0$.\\ \emph{$(\mathcal {H}_2)$} There is a $L^2([0,T];\mathbb{R^{+}})$ integrable function $\alpha:\mathbb{R}\to\mathbb{R^{+}} $ such that $\|f(t,u)\|\leq \alpha(t)$ for all $(t,u)\in[0,T]\times H$. If $00$, \item[(ii)] There is an $L^2([0,T];\mathbb{R^{+}})$ integrable function $\alpha:[0,T]\to\mathbb{R^{+}} $ such that $| f(t,u)|\leq \alpha(t)$ for all $(t,u)\in[0,T]\times \mathbb{R}$. \end{itemize} Let $H= L^2(\Omega)$, and define $\varphi:H\to [0,+\infty]$ by $$ \varphi (u)= \begin{cases} \frac{1}{2}\int_{\Omega}|\operatorname{grad} u |^2dx +\int_{\partial\Omega}j(u)d\sigma,& \text{if }u\in H^{1}(\Omega)\text{ and } j(u) \in L^{1}(\partial \Omega), \\ +\infty, & \text{otherwise}. \end{cases} $$ According to Br\'ezis \cite[Theorem 12]{BR}, $\varphi$ is proper, convex and lower semicontinuous on $H$, with $\partial\varphi(u)=-\Delta_{x}u$, and $D(\varphi)=\{ u \in W^{1,2}(\Omega): -\frac{\partial u}{\partial \nu}\in \gamma(u), \text{ a.e. on } \partial\Omega\}$. We consider $u=u(t,x)=u(t)(x)$ and we rewriter the problem \eqref{eP} in the abstract form \begin{gather*} -u'''(t)+ \partial\varphi(u'(t))+f(t,u(t))\ni 0\quad\text{a.e. }t\in [0,T],\\ u(0)=-u(T), \quad u'(0)=-u'(T),\quad u''(0)=-u''(T), \end{gather*} or \begin{gather*} u'''(t)\in \partial\varphi(u'(t))+f(t,u(t))\quad\text{a.e. }t\in [0,T],\\ u(0)=-u(T), \quad u'(0)=-u'(T),\quad u''(0)=-u''(T). \end{gather*} We remark that $\varphi(0)=0$, $\varphi$ is even and that the inf-compactness condition on $\varphi$ holds because $W^{1,2}(\Omega)$ is compactly imbedded in $L^2(\Omega)$. Then, we can applying Theorem \ref{Theo3} to derive the existence of a solution to \eqref{eP}. If $0