\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2013 (2013), No. 100, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2013/100\hfil Weak solutions] {Weak solutions for nonlocal evolution variational inequalities involving gradient constraints and variable exponent} \author[M. Xiang, Y. Fu \hfil EJDE-2013/100\hfilneg] {Mingqi Xiang, Yongqiang Fu} % in alphabetical order \address{Mingqi Xiang \newline Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China} \email{xiangmingqi\_hit@163.com} \address{Yongqiang Fu \newline Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China} \email{fuyqhagd@yahoo.cn} \thanks{Submitted March 7, 2013. Published April 19, 2013.} \subjclass[2000]{35K30, 35K86, 35K59} \keywords{Nonlocal evolution variational inequality; variable exponent space; \hfill\break\indent Galerkin approximation; penalty method} \begin{abstract} In this article, we study a class of nonlocal quasilinear parabolic variational inequality involving $p(x)$-Laplacian operator and gradient constraint on a bounded domain. Choosing a special penalty functional according to the gradient constraint, we transform the variational inequality to a parabolic equation. By means of Galerkin's approximation method, we obtain the existence of weak solutions for this equation, and then through a priori estimates, we obtain the weak solutions of variational inequality. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we are concerned with the existence of weak solutions for nonlocal (Kirchhoff type) parabolic variational inequality involving variable exponent. More precisely, we shall find a function $u\in\mathscr{K}=\{w(x,t)\in V(Q_T)\cap L^{\infty}(0,T;L^2(\Omega)): w(x,0)=0, |\nabla w(x,t)|\leq 1\text{ a.e. } (x,t)\in Q_T\}$ satisfying the follow inequality \begin{equation} \begin{aligned} & \int_{Q_T}\frac{\partial v}{\partial t}(v-u)\,dx\,dt +\int_0^Ta\Big(t,\int_\Omega |\nabla u|^{p(x)}dx\Big) \int_\Omega |\nabla u|^{p(x)-2}\nabla u\nabla(v-u)\,dx\,dt\\ &\geq \int_{Q_T}f(v-u)\,dx\,dt, \end{aligned} \label{e1.1} \end{equation} for all $v\in V(Q_T)$ with $\frac{\partial v}{\partial t}\in V'(Q_T)$, $v(x,0)=0$, $|\nabla v(x,t)|\leq1$ a.e. $(x,t)\in Q_T$, where $V'(Q_T)$ is the dual space of variable exponent Sobolev space $V(Q_T)$ (see Definition \ref{def2.2} below). In recent years, the research of nonlinear problems with variable exponent growth conditions has been an interesting topic. $p(\cdot)$-growth problems can be regarded as a kind of nonstandard growth problems and these problems possess very complicated nonlinearities, for instance, the $p(x)$-Laplacian operator $-\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)$ is inhomogeneous. And these problems have many important applications in nonlinear elastic, electrorheological fluids and image restoration (see \cite{c3,r1,z2,z3,z4}). Many results have been obtained on this kind of problems, see \cite{a1,a2,b1,b2,d1,d2,f2,f3,f4,m1}. Especially, in \cite{b2,m1}, the authors studied the existence and uniqueness of weak solutions for anisotropy parabolic variation inequalities in the framework of variable exponent Sobolev spaces. Motivating by their works, we study a class variational inequalities with gradient constrain and variable exponent. To the best of our knowledge, there are no papers dealing with parabolic equalities involving variable growth and gradient constraints. For the fundamental theory about variable exponent Lebesgue and Sobolev spaces, we refer to \cite{f1,k1}. The basic theory about Variational inequalities, we refer the reader to \cite{c1,m2} for the details. The study of Kirchhoff-type problems has received considerable attention in recent years, see \cite{a3,a4,c4,g3,g2,h1,t1,z1}. This interest arises from their contributions to the modeling of many physical and biological phenomena. We refer the reader to \cite{g1,l3} for some interesting results and further references. In \cite{a3,a4}, the authors discussed the asymptotic stability for Kirchhoff systems with variable exponent growth conditions \begin{gather*} u_{tt}-M(\mathscr{F}u(t))\Delta_{p(x)}u+Q(t,x,u,u_t)+f(x,u)=0\quad\text{in } \mathbb{R}_0^{+}\times\Omega\\ u(t,x)=0\quad\text{on } \mathbb{R}_0^{+}\times\partial\Omega, \end{gather*} where $M(\tau)=a+b\tau^{\gamma-1}$, $\tau\geq0$ with $a,b\geq0, a+b>0$ and $\gamma>1$, and $\mathscr{F}u(t)=\int_\Omega\{|Du(x,t)|^{p(x)}/p(x)\}dx$, $\Delta _{p(x)}=\operatorname{div}(|Du|^{p(x)-2}Du)$. On the one hand, our motivation for investigating \eqref{e1.1} arises from reaction-diffusion equations that model population density or heat propagation (see \cite{c2}). The following equation describes the density of a population (for instance of bacteria) subject to spreading \begin{gather*} u_t={a(u)}\Delta u+F(u)\quad\text{in }\Omega\times(0,T),\\ u(x,t)=0\quad\text{on }\partial\Omega\times(0,T),\\ u(x,0)=u_0(x)\quad\text{in }\Omega. \end{gather*} The diffusion coefficient $a$ depends on a nonlocal quantity related to the total population in the domain $\Omega$; that is, the diffusion of individuals is guided by the global state of the population in the medium. From an experimentalist point view, it certainly makes sense to introduce nonlocal quantities, since measurements are often averages. The function $F$ describes the reaction or growth of the population. On the other hand, we can use problem \eqref{e1.1} to describe the motion of a nonstationary fluid or gas in a nonhomogeneous and anisotropic medium and the nonlocal term $a$ appearing in \eqref{e1.1} can describe a possible change in the global state of the fluid or gas caused by its motion in the considered medium. This article is organized as follows. In section 2, we will give some necessary definitions and properties of variable exponent Lebesgue spaces and Sobolev spaces. Moreover, we introduce the space $V(Q_{T})$ and give some necessary properties, which provides a basic framework to solve our problem. In section 3, using the penalty method, we consider class of parametrized parabolic equations, and obtain weak solutions by Galerkin's approximation. In section 4, we give the proof of main theorem to this paper. \section{Preliminaries} In this section, we first recall some important properties of variable exponent Lebesgue spaces and Sobolev spaces, see \cite{d2,f1,k1} for details. \subsection{Variable exponent Lebesgue space and Sobolev space} Let $\Omega\subset\mathbb{R}^N$ be a domain. A measurable function $p:\Omega\to [1,\infty)$ is called a variable exponent and we define $p^{-}=\operatorname{ess\,inf}_{x\in \Omega}p(x)$ and $p^{+}=\operatorname{ess\,sup}_{x\in \Omega}p(x)$. If $p^{+}$ is finite, then the exponent $p$ is said to be bounded. The variable exponent Lebesgue space is \[ L^{p(x)}(\Omega)=\{u:\Omega\to \mathbb{R} \text{ is a measurable function}; \rho_{p(x)}(u) =\int_{\Omega}|u(x)|^{p(x)}dx<\infty\} \] with the Luxemburg norm \[ \|u\|_{L^{p(x)}(\Omega)}=\inf\{\lambda>0 : \rho_{p(x)}(\lambda^{-1}u)\leq1\}, \] then $L^{p(x)}(\Omega)$ is a Banach space, and when $p$ is bounded, we have the following relations \begin{align*} \min\{\|u\|^{p^-}_{L^{p(x)}(\Omega)},\|u\|^{p^+}_{L^{p(x)}(\Omega)}\} \leq\rho_{p(x)}(u) \leq\max\{\|u\|^{p^-}_{L^{p(x)}(\Omega)},\|u\|^{p^+}_{L^{p(x)}(\Omega)}\}. \end{align*} That is, if $p$ is bounded, then norm convergence is equivalent to convergence with respect to the modular $\rho_{p(x)}$. For bounded exponent the dual space $(L^{p(x)}(\Omega))'$ can be identified with $L^{p'(x)}(\Omega)$, where the conjugate exponent $p'$ is defined by $p'=\frac{p}{p-1}$. If $10$ such that \[ |p(y)-p(z)|\leq\frac{c_1}{\log(e+|y-z|^{-1})} \] for all points $y, z\in \Omega$; \item[(2)] there exist constants $c_{2}>0$ and $p_{\infty}\in\mathbb{R}$ such that \[ |p(y)-p_{\infty}|\leq\frac{c_{2}}{\log(e+|y|^{-1})} \] for all $y\in \Omega$. \end{itemize} \end{definition} The Variable exponent Sobolev space $W^{1,p(x)}(\Omega)$ is defined as \[ W^{1,p(x)}(\Omega)=\{u\in L^{p(x)}(\Omega): |\nabla u|\in L^{p(x)}(\Omega)\} \] and equipped with the norm \[ \|u\|_{W^{1,p(x)}(\Omega)}=\|u\|_{L^{p(x)}(\Omega)} +\|\nabla u\|_{L^{p(x)}(\Omega)}, \] then the space $W^{1,p(x)}(\Omega)$ is a Banach space. The space $W^{1,p(x)}_{0}(\Omega)$ is defined as the closure of $C^{\infty}_{0}(\Omega)$ with the norm of $\|\cdot\|_{W^{1,p(x)}(\Omega)}$. If $11$, then for every $u\in W^{1, p(x)}_{0}(\Omega)$ we have \[ \|u\|_{L^{p(x)}(\Omega)}\leq c \operatorname{diam}(\Omega)\|\nabla u\|_{L^{p(x)}(\Omega)}, \] where the constant $c$ only depends on the dimension $N$ and the log-H\"older constant of $p$. \end{theorem} \subsection{Variable exponent Sobolev space $V(Q_T)$} \begin{definition} \label{def2.2} \rm Let $\Omega\subset\mathbb{R}^N$ be a bounded domain with smooth boundary. Denote $Q_T=\Omega\times(0,T),01$, we set \[ V(Q_{T})=\{u\in L^{2}(Q_{T}) : |\nabla u|\in L^{p(x)}(Q_{T}), u(\cdot,t)\in W_0^{1,p(x)}(\Omega)\quad\text{a.e. }t\in(0,T)\}, \] with the norm \[ \|u\|=\|u\|_{L^{2}(Q_{T})}+\|\nabla u\|_{L^{p(x)}(Q_{T})}. \] \end{definition} \begin{remark}\label{rmk2.1} \rm Following the standard proof for Sobolev spaces, we can prove that $V(Q_{T})$ is a Banach space, and it's easy to check that $V(Q_{T})$ can be continuously embedded into the space $L^r(0,T; W^{1, p^{-}}_{0}(\Omega)\cap L^2(\Omega))$, where $r=\min\{p^-,2\}$. It is worth to mention the paper \cite{b2} where the space $V(Q_T)$ is defined in a similar way. \end{remark} By the same method in \cite{d1}, we have the following theorem. \begin{theorem}[\cite{d1}] \label{thm2.2} The space $C^{\infty}_{0}(Q_{T})$ is dense in $V(Q_{T})$. \end{theorem} Since $C^{\infty}_{0}(Q_{T})\subset C^{\infty}(0,T; C^{\infty}_{0}(\Omega))$, we have the following result. \begin{lemma} \label{lem2.1} The space $ C^{\infty}(0,T; C^{\infty}_{0}(\Omega))$ is dense in $V(Q_{T})$. \end{lemma} Let $V'(Q_{T})$ denote the dual space of $V(Q_{T})$. \begin{theorem}[\cite{b2,d1}] \label{thm2.3} A function $g\in V'(Q_{T})$ if and only if there exist $\bar{g}\in L^{2}(Q_{T})$ and $\bar{G}\in (L^{p'(x)}(Q_{T}))^N$ such that \begin{equation} \int_{Q_{T}}g\varphi \,dx\,dt =\int_{Q_{T}}\bar{g}\varphi \,dx\,dt + \int_{Q_{T}}\bar{G}\nabla \varphi \,dx\,dt.\label{e2.4} \end{equation} \end{theorem} \begin{remark} \label{rmk2.2} \rm It follows from the proof of Theorem \ref{thm2.3} that $V(Q_{T})$ is reflexive and \[ V'(Q_{T})\hookrightarrow L^{s'}(0,T; W^{-1,(p^{+})'}(\Omega)+L^{2}(\Omega)), \quad\text{where } s=\max\{p^{+},2\}. \] \end{remark} Similar to that in \cite{d1}, we give the following definition. \begin{definition} \label{def2.3} \rm We define the space $W(Q_{T})=\{u\in V(Q_{T}): \frac{\partial u}{\partial t}\in V'(Q_{T})\}$ with the norm \[ \|u\|_{W(Q_{T})}=\|u\|_{V(Q_{T})}+\big\|\frac{\partial u}{\partial t} \big\|_{V'(Q_{T})}, \] where $\frac{\partial u}{\partial t}$ is the weak derivative of $u$ with respect to time variable $t$ defined by \[ \int_{Q_{T}}\frac{\partial u}{\partial t}\varphi \,dx\,dt =-\int_{Q_{T}}u\frac{\partial \varphi}{\partial t}\,dx\,dt,\quad \text{for all } \varphi\in C^{\infty}_{0}(Q_{T}). \] \end{definition} \begin{lemma}[\cite{d1}] \label{lem2.2} The space $W(Q_{T})$ is a Banach space. \end{lemma} By the method in \cite{d1}, we have the following result. \begin{theorem} \label{thm2.4} The space $C^{\infty}(0,T;C^{\infty}_{0}(\Omega))$ is dense in $W(Q_{T})$. \end{theorem} The following theorem can be proved similarly to that in \cite{d1}, thus we omit its proof. \begin{theorem}[\cite{a1,d1}] \label{thm2.5} $W(Q_{T})$ can be embedded continuously in $C(0,T;L^{2}(\Omega))$. Furthermore, for all $u,v \in W(Q_T)$ and $s,t\in [0,T]$ the following rule for integration by parts is valid \[ \int^t_s\int_{\Omega}\frac{\partial u}{\partial t}v\,dx\,d\tau =\int_{\Omega}u(x,t)v(x,t)dx-\int_{\Omega}u(x,s)v(x,s)dx -\int^t_s\int_{\Omega}u\frac{\partial v}{\partial t}\,dx\,d\tau. \] \end{theorem} The following theorem gives a relation between almost everywhere convergence and weak convergence. \begin{theorem}[\cite{c3}] \label{thm2.6} Let $p(x): Q_{T}\to \mathbb{R}$ be a bounded globally log-H\"older continuous function, with $p^{-}>1$. If $\{u_{n}\}^{\infty}_{n=1}$ is bounded in $L^{p(x)}(Q_{T})$ and $u_{n}\to u$ a.e. $(x,t)\in Q_{T}$ as $n\to\infty$, then there exists a subsequence of $\{u_n\}$ still denoted by $\{u_n\}$ such that $u_{n}\to u$ weakly in $L^{p(x)}(Q_{T})$ as $n\to\infty$. \end{theorem} We will give a compact embedding for $V(Q_T)$ in the following. \begin{theorem}[\cite{l2}] \label{thm2.7} Let $B_0\subset B\subset B_1 $ be three Banach spaces, where $B_0$, $B_1$ are reflexive, and the embedding $B_0\subset B$ is compact. Denote $W=\{v:v\in L^{p_0}(0,T;B_0), \frac{\partial v}{\partial t}\in L^{p_1}(0,T;B_1)\}$, where $T$ is a fixed positive number, $1 \frac{2N}{N+2}$ $(N\geq2)$, the embedding $W_0^{1,p^-}(\Omega)\hookrightarrow L^2(\Omega)$ is compact. By Remarks \ref{rmk2.1} and \ref{rmk2.2}, the embeddings $V(Q_T)\hookrightarrow L^r(0,T;W_0^{1,p^-}(\Omega)\cap L^2(\Omega))$ and \begin{align*} V'(Q_{T})\hookrightarrow L^{s'}(0,T; W^{-1,(p^{+})'} (\Omega)+L^2(\Omega))\hookrightarrow L^{s'}(0,T; W^{-1,\lambda}(\Omega)) \end{align*} are continuous, where $\lambda=\min\{2,(p^+)'\}$. As the embedding $L^2(\Omega)\hookrightarrow W^{-1,\lambda}(\Omega)$ is continuous, by Theorem \ref{thm2.7}, $F$ is relatively compact in $L^r(0,T;L^2(\Omega))$. \end{proof} \section{Existence of solutions for parabolic equations} In this section, for $\varepsilon\in(0,1)$, we consider the following nonlocal parabolic equation with Diriclet boundary-value conditions: \begin{equation} \label{e3.1} \begin{gathered} \begin{aligned} &\frac{\partial u}{\partial t}-a\Big(t,\int_\Omega |\nabla u|^{p(x)}dx\Big) \operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)\\ &-\frac{1}{\varepsilon}\operatorname{div} \big((|\nabla u|^{p(x)-2}-1)^+ \nabla u\big) =f(x,t), \quad (x,t)\in \Omega\times(0,T), \end{aligned}\\ u(x,t)=0, \quad (x,t)\in\partial\Omega\times(0,T),\\ u(x,0)=0,\quad x\in\Omega, \end{gathered} \end{equation} where $(|\nabla u|^{p(x)-2}-1)^+=\max\{|\nabla u|^{p(x)-2}-1,0\}$. We assume that \begin{itemize} \item[(H1)] $a(t,s):[0,\infty)\times[0,\infty)\to(0,\infty)$ is a continuous function and there exists two positive constants $a_0$ and $a_1$ such that \[ a_0\leq a(t,s)\leq a_1\quad \text{for each } (t,s)\in[0,\infty)\times[0,\infty). \] \item[(H2)] $p(x): \Omega\to (1,\infty)$ is a global log-H\"older continuous function. Denote $p^-=\inf_{x\in\overline{\Omega}}p(x)$, $p^+=\sup_{x\in\overline{\Omega}}p(x)$. And there holds \[ 22$, as $n\to\infty$, there holds \begin{equation} \begin{aligned} &\int_{Q_T}|\nabla u_n-\nabla u_\varepsilon|^{p(x)}\,dx\,dt\\ &\leq C\int_{Q_T}(|\nabla u_n|^{p(x)-2}\nabla u_n -|\nabla u_\varepsilon|^{p(x)-2}\nabla u_\varepsilon) (\nabla u_n-\nabla u_\varepsilon)\,dx\,dt \to 0. \end{aligned} \label{e3.14} \end{equation} Therefore, from \eqref{e3.14}, we obtain $\nabla u_n\to\nabla u_\varepsilon \quad\text{in }(L^{p(x)}(Q_T))^N$. Thus, there exists a subsequence of $\{u_n\}$ still denoted by $\{u_n\}$ such that \begin{equation} \int_{\Omega}|\nabla u_n-\nabla u_\varepsilon|^{p(x)}dx\to0\quad \text{a.e. }t\in [0,T].\label{e3.15} \end{equation} Since \begin{align*} &\Big|\int_\Omega|\nabla u_n|^{p(x)}-|\nabla u_\varepsilon|^{p(x)}dx\Big|\\ &\leq \int_\Omega p(x)\big||\nabla u_n| +\theta(|\nabla u_n|-|\nabla u_\varepsilon|)\big|^{p(x)-1}\big||\nabla u_n| -|\nabla u_\varepsilon|\big|dx\\ &\leq C\big\||\nabla u_n|^{p(x)-1}+|\nabla u_\varepsilon|^{p(x)-1} \big\|_{L^{p'(x)}(\Omega)}\|\nabla u_n -\nabla u_\varepsilon\|_{L^{p(x)}(\Omega)}, \end{align*} where $0\leq\theta\leq1$, by \eqref{e3.15}, we have \[ \int_\Omega|\nabla u_n|^{p(x)}\to\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx \quad \text{a.e. } t\in[0,T]. \] Thus, by the continuity of $a$, we obtain that \[ \bar{a}(t)=a\Big(t,\int_{\Omega}|\nabla u_\varepsilon|^{p(x)}dx\Big)\quad \text{a.e. }t\in[0,T] \] Since $\nabla u_n\to\nabla u_\varepsilon \quad\text{in }(L^{p(x)}(Q_T))^N$, there exists a subsequence of $\{u_n\}$ (still labeled by $\{u_n\}$) such that $\nabla u_n\to \nabla u_\varepsilon$ for a.e. $(x,t)\in\ Q_T$, then \begin{align*} &a\Big(t,\int_{\Omega}|\nabla u_n|^{p(x)}dx\Big)|\nabla u_n|^{p(x,t-2)} \nabla u_n\\ &\to a\Big(t,\int_{\Omega}|\nabla u_\varepsilon|^{p(x)}dx\Big)| \nabla u_\varepsilon|^{p(x)-2}\nabla u_\varepsilon\quad\text{a.e. } (x,t)\in Q_T. \end{align*} By Theorem \ref{thm2.6}, we obtain $\xi=a\big(t,\int_{\Omega}|\nabla u_\varepsilon|^{p(x)}dx\big) |\nabla u_\varepsilon|^{p(x)-2}\nabla u_\varepsilon$. Similarly, $\eta=(|\nabla u_\varepsilon|^{p(x,t)-2}-1)^+\nabla u_\varepsilon$. It follows from \eqref{e3.10} that \begin{align*} &\int_{Q_T}\frac{\partial u_\varepsilon}{\partial t}\varphi \,dx\,dt +\int_{0}^{T}a\Big(t,\int_{\Omega}|\nabla u_n|^{p(x)}dx\Big) \int_\Omega|\nabla u|^{p(x)-2}\nabla u_\varepsilon \nabla\varphi\\ &+\frac{1}{\varepsilon}(|\nabla u_\varepsilon|^{p(x,t)-2}-1)^+ \nabla u_\varepsilon\nabla\varphi \,dx\,dt =\int_{Q_T}f\varphi \,dx\,dt, \end{align*} for all $\varphi\in V(Q_T)$. Since $u\in V(Q_T)$ and $\frac{\partial u}{\partial t}\in V'(Q_T)$, by Theorem \ref{thm2.5}, up to a set of measure zero, we have $u\in C(0,T;L^2(\Omega))$. \end{proof} \section{Existence of solutions for the variational inequality} In this section, we prove our main theorem. \begin{theorem} \label{thm4.1} Under assumptions {\rm (H1)--(H3)} there exists a function $u(x,t)\in \mathscr{K} $ such that \begin{align*} &\int_{Q_T}\frac{\partial v}{\partial t}(v-u)\,dx\,dt +\int_0^T a\Big(t,\int_\Omega|\nabla u|^{p(x)}dx\Big) \int_\Omega|\nabla u|^{p(x)-2}\nabla u\nabla (v-u)\,dx\,dt \\ &\geq \int_{Q_T} f(v-u)\,dx\,dt \end{align*} for all $v\in V(Q_T)$ with $\frac{\partial v}{\partial t}\in V'(Q_T)$, $v(x,0)=0$, $|\nabla v|\leq 1$ a.e. $(x,t)\in Q_T$. \end{theorem} \begin{proof} We will prove this theorem in three steps. \noindent\textbf{(Step 1) A priori estimates.} In Definition \ref{def3.1}, we take $\varphi=u_\varepsilon\chi_{(0,\tau)}$ as a test function, where $\chi_{(0,\tau)}$ is defined as the characteristic function of $(0,\tau)$, $\tau\in (0,T]$, then \begin{align*} &\int_{Q_\tau}\frac{\partial u_\varepsilon}{\partial t}u_\varepsilon \,dx\,dt +\int_{Q_\tau}a\Big(t,\int_\Omega| \nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_\varepsilon|^{p(x)}\\ & +\frac{1}{\varepsilon} (|\nabla u_\varepsilon|^{p(x)-2}-1)^+|\nabla u_\varepsilon|^2 \,dx\,dt\\ &= \int_{Q_\tau}f(x,t)u_\varepsilon \,dx\,dt, \end{align*} where $Q_\tau=\Omega\times (0,\tau)$. Similar to Section 3, we have \[ \int_\Omega|u_\varepsilon(x,\tau)|^2dx+\int_{Q_\tau} |\nabla u_\varepsilon|^{p(x)}\,dx\,dt\leq C,\quad\text{for all } \tau\in[0,T]. \] Therefore, \begin{equation} \frac{1}{\varepsilon}\int_{Q_T}(|\nabla u_\varepsilon|^{p(x)-2}-1)^+ |\nabla u_\varepsilon|^2 \,dx\,dt + \big\|u_\varepsilon\big\|_{L^\infty(0,T;L^2(\Omega))} +\big\|u_\varepsilon\big\|_{V(Q_T)}\leq C.\label{e4.1} \end{equation} Since \begin{align*} &\int_{Q_T}\big|a\Big(t,\int_\Omega| \nabla u_\varepsilon|^{p(x,t)}dx\Big) |\nabla u_\varepsilon|^{p(x)-2}\nabla u_\varepsilon\big|^{p'(x)}\,dx\,dt\\ &\leq C\int_{Q_T} |\nabla u_\varepsilon|^{p(x)}\,dx\,dt\\ &\leq C\max\{\big\|\nabla u_\varepsilon\big\|^{p_-}_{L^{p(x)}(Q_T)}, \big\|\nabla u_\varepsilon\big\|^{p_+}_{L^{p(x)}(Q_T)}\} \leq C, \end{align*} there holds \[ \Big\| \big|a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_\varepsilon|^{p(x)-2}\nabla u_\varepsilon\big| \Big\|_{L^{p'(x)}(Q_T)} \leq C. \] \noindent\textbf{(Step 2) Passage to the limit.} By \eqref{e4.1}-\eqref{e4.2}, there exists a subsequence of $\{u_\varepsilon\}_{\varepsilon>0}$, still denoted by $\{u_{\varepsilon}\}_{\varepsilon>0}$, such that \begin{equation} \begin{gathered} u_{\varepsilon}\stackrel{\ast}\rightharpoonup u\quad\text{weakly * in } L^\infty(0, T; L^2(\Omega)),\\ u_{\varepsilon}\rightharpoonup u\quad \text{weakly in } V(Q_T),\\ a\Big(t,\int_\Omega| \nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_{\varepsilon}|^{p(x)-2}\nabla u_{\varepsilon}\rightharpoonup A\quad \text{weakly in } (L^{p'(x)}(Q_T))^N. \end{gathered}\label{e4.3} \end{equation} For all $\varphi\in V(Q_T)$, there holds \[ \int_{Q_T}[(|\nabla u_\varepsilon|^{p(x)-2}-1)^+ \nabla u_\varepsilon-(|\nabla \varphi|^{p(x)-2}-1)^+ \nabla \varphi](\nabla u_\varepsilon-\nabla \varphi)\,dx\,dt\geq0. \] Since \[ \int_{Q_T}|(|\nabla u_\varepsilon|^{p(x)-2}-1)^+ \nabla u_\varepsilon|^{p'(x)}\,dx\,dt \leq\int_{Q_T}(|\nabla u_\varepsilon|^{p(x)-2}-1)^+ |\nabla u_\varepsilon|^2\,dx\,dt, \] by \eqref{e4.1}, we obtain that $\int_{Q_T}|(|\nabla u_\varepsilon|^{p(x)-2}-1)^+ \nabla u_\varepsilon|^{p'(x)} \,dx\,dt\to0$ as $\varepsilon\to 0$; that is, $\|(|\nabla u_\varepsilon|^{p(x)-2}-1)^+ \nabla u_\varepsilon\|_{L^{p'(x)}(Q_T)}\to0$. From $\nabla u_\varepsilon\rightharpoonup u$ weakly in $(L^{p(x)}(Q_T))^N$, we have \[ \int_{Q_T}(|\nabla\varphi|^{p(x)-2}-1)^+ \nabla\varphi(\nabla u-\nabla \varphi)\,dx\,dt\leq 0 \] We take $\varphi=u+\lambda w$, where $0<\lambda<1$ and $w\in V(Q_T)$, then \[ \int_{Q_T}(|\nabla(u+\lambda w)|^{p(x)-2}-1)^+ \nabla(u+\lambda w)\nabla w\,dx\,dt\leq0. \] Since $|(|\nabla(u+\lambda w)|^{p(x)-2}-1)^+ \nabla(u+\lambda w)\nabla w|\leq C(|\nabla u|^{p(x)}+|\nabla w|^{p(x)})\in L^1(Q_T)$ and $(|\nabla(u+\lambda w)|^{p(x)-2}-1)^+ \nabla(u+\lambda w)\nabla w\to (|\nabla u|^{p(x)-2}-1)^+ \nabla u\nabla w$ as $\lambda\to0$, by the Lebesgue Dominated Convergence Theorem and the arbitrariness of $w$, we obtain \begin{align*} \int_{Q_T}(|\nabla u|^{p(x)-2}-1)^+ |\nabla u|^2\,dx\,dt=0 \end{align*} Thus, $|\nabla u|\leq 1$ a.e. $(x,t)\in Q_T$. Taking $\varphi=v-u_{\varepsilon}$ as a test function in \eqref{e3.1}, where $v\in V(Q_T)$, $\frac{\partial v}{\partial t}\in V'(Q_T)$, $v(x,0)=0$ and $|\nabla v|\leq 1$ a.e. $(x,t)\in Q_T$, then \begin{align*} &\int_{Q_T}\frac{\partial v}{\partial t}(v-u_{\varepsilon}) +a\Big(t,\int_\Omega| \nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_{\varepsilon}|^{p(x)-2}\nabla u_{\varepsilon} \nabla (v-u_{\varepsilon})\\ & -f(x,t)(v-u_{\varepsilon})\,dx\,dt\\ &=\int_{Q_T}\frac{\partial u_{\varepsilon}}{\partial t}(v-u_{\varepsilon}) +a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_{\varepsilon}|^{p(x)-2}\nabla u_{\varepsilon} \nabla (v-u_{\varepsilon})\\ &\quad -f(x,t)(v-u_{\varepsilon})\,dx\,dt +\int_{Q_T}\frac{\partial (v-u_{\varepsilon})}{\partial t}(v-u_{\varepsilon}) \,dx\,dt\\ &=\frac{1}{\varepsilon}\int_{Q_T}\big((|\nabla v|^{p(x)-2}-1)^+ \nabla v-(|\nabla u_\varepsilon|^{p(x)-2}-1)^+\nabla u_\varepsilon\big) (\nabla v-\nabla u_{\varepsilon})\,dx\,dt\\ &\quad +\int_{Q_T}\frac{\partial (v-u_{\varepsilon})}{\partial t} (v-u_{\varepsilon})\,dx\,dt \geq 0, \end{align*} and further \begin{equation} \begin{aligned} &\int_{Q_T}a\Big(t,\int_\Omega| \nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_{\varepsilon}|^{p(x)}\,dx\,dt\\ &\leq \int_{Q_T}a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_{\varepsilon}|^{p(x)-2}\nabla u_{\varepsilon}\nabla u\,dx\,dt\\ &\quad +\int_{Q_T}\frac{\partial v}{\partial t}(v-u_{\varepsilon})\,dx\,dt -\int_{Q_T}f(x,t)(v-u_{\varepsilon})\,dx\,dt. \end{aligned} \label{e4.4} \end{equation} For $k>0$, we denote \[ u^{(k)}=\begin{cases} k, &u<-k,\\ u, &|u|\leq k,\\ k, &u>k, \end{cases} \] and $u^{(k)}_\mu(x,t)=\mu\int_0^t e^{\mu(s-t)}u^{(k)}(x,s)ds$. It's easy to check that $\frac{\partial u^{(k)}_\mu}{\partial t}=\mu(u^{(k)}-u^{(k)}_\mu)$. From that in \cite{b2}, we obtain $u^{(k)}_\mu\to u^{(k)}$ strongly in $L^2(Q_T)$ and weakly in $V(Q_T)$ as $\mu\to\infty$. Denote $A_k=\{(x,t)\in Q_T:|u|\leq k\}$, then $u^{(k)}=u$ in $A_k$ and $\operatorname{sgn}(u^{(k)}-u^{(k)}_\mu)=\operatorname{sgn}(u-u^{(k)}_\mu)$ in $ Q_T\setminus A_k$ (because $|u^{(k)}_\mu|\leq k$). Thus, \begin{align*} &\int_{Q_T}\frac{\partial u^{(k)}_\mu}{\partial t}(u^{(k)}_\mu-u)\,dx\,dt\\ &=\mu\int_{Q_T}(u^{(k)}-u^{(k)}_\mu)(u^{(k)}_\mu-u)\,dx\,dt\\ &=-\mu\int_{A_k}(u-u^{(k)}_\mu)^2\,dx\,dt -\mu\int_{Q_T\setminus A_k }(u^{(k)}-u^{(k)}_\mu)(u-u^{(k)}_\mu)\,dx\,dt\leq0. \end{align*} By a diagonal rule, we obtain a sequence denoted by $v_k$ such that $v_k\to u$ strongly in $L^2(Q_T)$ and weakly in $V(Q_T)$ as $k\to\infty$, and $\limsup_{k\to\infty}\int_{Q_T}\frac{\partial v_k}{\partial t}(v_k-u)\,dx\,dt\leq0$. Taking $v=v_k$ in \eqref{e4.4}, we obtain \begin{align*} &\limsup_{\varepsilon\to0}\int_{Q_T}a\Big(t,\int_\Omega| \nabla u_\varepsilon|^{p(x)}dx\Big)|\nabla u_{\varepsilon}|^{p(x)}\,dx\,dt\\ &\leq \int_{Q_T}A\nabla u\,dx\,dt+\int_{Q_T}\frac{\partial v_k}{\partial t}(v_k-u)\,dx\,dt -\int_{Q_T}f(x,t)(v_k-u)\,dx\,dt. \end{align*} Letting $k\to\infty$, we have \begin{align*} &\mathop{\lim\sup}_{\varepsilon\to 0}\int_{Q_T}a \Big(t,\int_\Omega| \nabla u_\varepsilon|^{p(x)}dx\Big)|\nabla u_{\varepsilon}|^{p(x)}\,dx\,dt\\ &\leq \int_{Q_T}A\nabla u\,dx\,dt=\lim_{\varepsilon\to 0} \int_{Q_T}a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_{\varepsilon}|^{p(x)-2}\nabla u_{\varepsilon}\nabla u\,dx\,dt; \end{align*} that is, \begin{equation} \limsup_{\varepsilon\to 0}\int_{Q_T}a \Big(t,\int_\Omega| \nabla u_\varepsilon|^{p(x)}dx\Big)| \nabla u_{\varepsilon}|^{p(x)-2}\nabla u_{\varepsilon} \nabla (u_{\varepsilon}-u)\,dx\,dt\leq 0.\label{e4.5} \end{equation} As the sequence $\Big\{a\Big(t,\int_\Omega| \nabla u_\varepsilon|^{p(x)}dx\Big)\Big\}_\varepsilon$ is uniformly bounded and equi-integrable in $L^1(Q_T)$, there exist a subsequence of $\{u_\varepsilon\}$ (for convenience still relabeled by $\{u_\varepsilon\}$ ) and $a^*$ such that $a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big)\to a^*$ for almost every $t\in [0,T]$. Since \[ \Big|\Big(a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big)-a^*\Big) |\nabla u|^{p(x)-2}\nabla u\Big|^{p'(x)} \leq C|\nabla u|^{p(x)}\in L^1(Q_T), \] by the Lebesgue dominated convergence theorem, we obtain \begin{align*} a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u|^{p(x)-2}\nabla u\to a^*|\nabla u|^{p(x)-2}\nabla u\quad \text{strongly in } L^{p'(x)}(Q_T). \end{align*} Since \begin{align*} 0&\leq \int_{Q_T}a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big) (|\nabla u_{\varepsilon}|^{p(x)-2}\nabla u_{\varepsilon}-|\nabla u|^{p(x)-2} \nabla u)(\nabla u_{\varepsilon}-\nabla u)\\ &=\int_{Q_T}a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_{\varepsilon}|^{p(x)-2}\nabla u_{\varepsilon}(\nabla u_{\varepsilon} -\nabla u)\\ &\quad -a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u|^{p(x)-2}\nabla u(\nabla u_{\varepsilon}-\nabla u)\,dx\,dt, \end{align*} we have \begin{equation} \liminf_{\varepsilon\to 0}\int_{Q_T}a\Big(t,\int_\Omega | \nabla u_\varepsilon|^{p(x)}dx\Big)|\nabla u_{\varepsilon}|^{p(x)-2} \nabla u_{\varepsilon}\nabla(u_{\varepsilon}-u)\,dx\,dt\geq0. \label{e4.6} \end{equation} From \eqref{e4.5}--\eqref{e4.6} and $\nabla u_\varepsilon\rightharpoonup\nabla u$ weakly in $(L^{p(x)}(Q_T))^N$, there holds \[ \lim_{\varepsilon\to 0}\int_{Q_T}a\Big(t,\int_\Omega | \nabla u_\varepsilon|^{p(x)}dx\Big)(|\nabla u_{\varepsilon}|^{p(x)-2} \nabla u_{\varepsilon}-|\nabla u|^{p(x)-2}\nabla u)\nabla(u_{\varepsilon}-u) \,dx\,dt=0. \] Similar to Section 3, we have $\nabla u_{\varepsilon}\to\nabla u\ {\rm strongly\ in}\ (L^{p(x)}(Q_T))^N$ as $\varepsilon\to 0$. Thus there exists a subsequence of $\{u_{\varepsilon}\}$, still labeled by $\{u_{\varepsilon}\}$ such that $\nabla u_{\varepsilon}\to\nabla u\ {\rm a.e.}\ (x,t)\in Q_T$ and $\int_{\Omega}|\nabla u_\varepsilon|^{p(x)}dx\to\int_\Omega|\nabla u|^{p(x)}dx$ a.e. $t\in[0,T]$. Thus, we obtain that \[ A=a\Big(t,\int_\Omega|\nabla u|^{p(x)}dx\Big)|\nabla u|^{p(x)-2}\nabla u. \] \noindent\textbf{(Sep 3) Existence of weak solutions.} By Fatou's Lemma, \begin{align*} &\liminf_{\varepsilon\to 0}\int_{Q_T} a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big)| \nabla u_\varepsilon|^{p(x)}\,dx\,dt\\ &\geq \int_{Q_T} a\Big(t,\int_\Omega|\nabla u|^{p(x)}dx\Big) |\nabla u|^{p(x)}\,dx\,dt. \end{align*} For all $v\in V(Q_T)$ with $\frac{\partial v}{\partial t}\in V'(Q_T)$, $v(x,0)= 0$, $|\nabla v|\leq 1$ a.e. $(x,t)\in Q_T$, we take $\varphi=v-u_{\varepsilon}$ as a test function in \eqref{e3.1}, then \begin{align*} &\int_{Q_T}\frac{\partial v}{\partial t}(v-u_\varepsilon) +a\Big(t,\int_\Omega| \nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_{\varepsilon}|^{p(x)-2}\nabla u_{\varepsilon} \nabla(v-u_{\varepsilon})\\ &-f(x,t)(v-u_{\varepsilon})\,dx\,dt\\ &=\frac{1}{\varepsilon}\int_{Q_T}\big((|\nabla v|^{p(x)-2}-1)^+\nabla v-(|\nabla u_\varepsilon|^{p(x)-2}-1)^+\nabla u_\varepsilon\big)(\nabla v-\nabla u_{\varepsilon})\,dx\,dt\\ &\quad+\int_{Q_T}\frac{\partial (v-u_{\varepsilon})}{\partial t} (v-u_{\varepsilon})\,dx\,dt\geq0, \end{align*} and furthermore, \begin{align*} &\liminf_{\varepsilon\to0}\int_{Q_T}\frac{\partial v}{\partial t}(v-u_\varepsilon) +a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_{\varepsilon}|^{p(x)-2}\nabla u_{\varepsilon} \nabla v\\ &-f(x,t)(v-u_{\varepsilon})\,dx\,dt\\ &\geq\int_{Q_T} a\Big(t,\int_\Omega|\nabla u|^{p(x)}dx\Big) |\nabla u|^{p(x)}\,dx\,dt. \end{align*} Since \[ a\Big(t,\int_\Omega|\nabla u_\varepsilon|^{p(x)}dx\Big) |\nabla u_{\varepsilon}|^{p(x)-2}\nabla u_{\varepsilon}\rightharpoonup a\Big(t,\int_\Omega|\nabla u|^{p(x)}dx\Big)|\nabla u|^{p(x)-2}\nabla u \] weakly in $(L^{p'(x)}(Q_T))^N$, and $u_{\varepsilon}\rightharpoonup u$ weakly in $V(Q_T)$, there holds \begin{align*} &\int_{Q_T}\frac{\partial v}{\partial t}(v-u)\,dx\,dt+ \int_0^T a\Big(t,\int_\Omega|\nabla u|^{p(x,t)}dx\Big) \int_\Omega|\nabla u|^{p(x)-2}\nabla u\nabla(v-u)\,dx\,dt\\ &\geq \int_{Q_T} f(x,t)(v-u)\,dx\,dt. \end{align*} Thus we have proved our main theorem. \end{proof} \begin{thebibliography}{99} \bibitem{a1} S. Antontsev, S. Shmarev; \emph{Parabolic equations with anisotropic nonstandard growth conditions}, Free Bound. Probl. 60 (2007) 33-44. \bibitem{a2} S. Antontsev, S. Shmarev; \emph{Anistropic parabolic equations with variable nonlinearity}, Publ. Mat. 53 (2) (2009) 355-399. \bibitem{a3} G. Autuori, P. Pucci, M. C. Salvatori, Asympototic stability for anisotropic Kirchhoff systems, J. Math. Anal. Appl. 352 (2009) 149-165. \bibitem{a4} G. Autuori, P. Pucci, M. C. Salvatori; \emph{Global nonexistence for nonlinear Kirchhoff systems}, Arch. Rational Mech. Anal. 196 (2010) 489-516. \bibitem{b1} O. M. Buhrii, S. P. Lavrenyuk; \emph{On a parabolic variational inequality that generalizes the equation of polytropic filtration}, Ukr. Math. J. 53 (7) (2001) 1027¨C1042. Translation from Ukr. Mat. Zh. 53 (2001), N 7, 867-878. \bibitem{b2} O. M. Buhrii, R. A. Mashiyev; \emph{Uniqueness of solutions of parabolic variational inequality with variable exponent of nonlinearity}, Nonlinear Anal. 70 (6) (2009) 2326-2331. \bibitem{c1} S. Carl. V. K. Le, D. Motreanu; \emph{Nonsmooth variational problems and their inequalities}. Comparison principles and applications, Springer Monographs in Mathematics. Springer, New York, 2007. \bibitem{c2} N. H. Chang, M. Chipot; \emph{On some model diffusion problems with a nonlocal lower order term}, Chin. Ann. Math, 24B: 2(2003) 147-264. \bibitem{c3} Y. M. Chen, S. Levine, M. Rao; \emph{Variable exponent linear growth functionals in inmage restoration}, SIMA. J. Appl. Math. 66 (2006) 1383-1406. \bibitem{c4} M. Chipot, B. Lovat; \emph{Existence and uniqueness resluts for a class of nonlocal elliptic and parabolic problems}, Dyn. Contin. Discrete Impuls. Syst. Ser. A 8 (1) (2001) 35-51. \bibitem{d1} L. Diening, P. N\"agele, M. R\"u\u{z}i\u{c}ka; \emph{Monotone operator theory for unsteady problems in variable exponent spaces}, CVEE (2011) 1-23. \bibitem{d2} L. Diening, P. Harjulehto, P. H\"ast\"o, M. R\"u\u{z}i\u{c}ka; \emph{Lebesgue and Sobolev spaces with variable exponents}, Lecture Notes in Mathematics. Vol. 2017, Springer, Berlin, 2011. \bibitem{f1} X. L. Fan, D. Zhao; \emph{On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$}, J. Math. Anal. Appl. 263 (2001) 424-446. \bibitem{f2} Y. Q. Fu, N. Pan; \emph{Existence of solutions for nonlinear parabolic problems with $p(x)$-growth}, J. Math. Appl. 362 (2010) 313-326. \bibitem{f3} Y. Q. Fu, N. Pan; \emph{Local Boundedness of Weak Solutions for Nonlinear Parabolic Problem with $p(x)$-Growth}, J. Ineq. Appl. 2010, Article ID 163296, 16pp. \bibitem{f4} Y. Q. Fu, M. Q. Xiang, N. Pan; \emph{Regularity of Weak Solutions for Nonlinear Parabolic Problem with $p(x)$-Growth}, EJQTDE 4 (2012) 1-26. \bibitem{g1} M. Ghergu, V. R\u{a}dulescu; \emph{Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics}, Springer Monographs in Mathematics, Springer Verlag, Heidelberg, 2012 \bibitem{g2} M. Ghist, M. Gobbino; \emph{Hyperbolic-parabolic singular perturbation for mildly degenerate Kirchhoff equations: time-decay estimates}, J. Differential Equations 245 (2008) 2979-3007. \bibitem{g3} M. Gonnino; \emph{Quasilinear degennerate parabolic equation of Kirchhoff type}, Math. Methods Appl. Sci. 22 (1999) 375-388. \bibitem{h1} H. Hashimoto, T. Yamazaki; \emph{Hyperbolic-parabolic singular perturbation for quasilinear equations of Kirchhoff type}, J. Differential Equations 237 (2007) 491-525. \bibitem{k1} O. Kov\'a\v{c}ik and J. R\'akosnik; \emph{On spaces $L^{p(x)}$ and $W^{k,p(x)}$}, Czechoslovak Math. J. 41 (116) (1991) 592-618. \bibitem{l1} R. Landes; \emph{On the existence of weak solutions for quasilinear parabolic initial boundary value problem}, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981) 217-237. \bibitem{l2} J. L. Lions; \emph{Queleues M\'{e}thodes de R\'{e}solution des Probl\`{e}mes aux Limites Nonlineaires}, Dunod, Paris, 1969. \bibitem{l3} B. Lovat; \emph{Etudes de quelques probl\`{e}ms paraboliques non locaux}, Th\`{e}se, Universite de Metz, 1995. \bibitem{m1} R. A. Mashiyev, O. M. Buhrii; \emph{Existence of solutions of the parabolic variational inequality with variable exponent of nonlinearity}, J. Math. Anal. Appl. 377 (2011) 450-463. \bibitem{m2} D. Motreanu, V. R\u{a}dulescu; \emph{Variational and Nonvariational Methods in Nonlinear Analysis and Boundary Value Problems}, Nonconvex Optimization and Its Applications, Vol. 67, Kluwer Academic Publishers, Dordrecht, 2003. \bibitem{r1} K. Rajagopal, M. R\"{u}\u{z}ika; \emph{Mathematical modeling of electrorheological materials}, Continu. Mech. Thermodyn. 13 (2001) 59-78. \bibitem{t1} A. Tudorascu, M. Wunsch; \emph{On a nonlinear, nonlocal parabolic problem with conservation of mass, mean and variance}, Comm. Partial Differential Equations 36 (8) (2011) 1426-1454. \bibitem{z1} S. Zheng, M. Chipot; \emph{Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms}, Asymptot. Anal. 45 (2005) 301-312. \bibitem{z2} V. Zhikov; \emph{Averaging of functionals of the calculus of variations and elasticity theory}, Math. USSR-Izv 29 (1987) 675-710. \bibitem{z3} V. Zhikov; \emph{On Lavrentiev's phenomenonong}, Russ. J. Math. Phys. 3 (1995) 249-269. \bibitem{z4} V. Zhikov; \emph{Solvability of the three-dimensional thermistor problem}, Proc. Stekolov Inst. Math. 261 (1) (2008) 101-114. \end{thebibliography} \end{document}